ebook img

Bose statistics and classical fields PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bose statistics and classical fields

Bose statisti s and lassi al (cid:28)elds 1 1,2 2,3 1 Emilia Witkowska , Mariusz Gajda and Kazim3ie2r/z46Rz¡»ewski 2Institute of Physi s, Polish A ademy of S ien es, Aleja Lotników , 02-668 Warsaw, Poland 3 Fa ulty of Mathemati s and S ien es, Cardinal Stefan Wyszy«ski Univ3e2r/s4it6y, Warsaw, Poland Center for Theoreti al Physi s, Polish A ademy of S ien es, Aleja Lotników , 02-668 Warsaw, Poland (Dated: January 13, 2009) Classi al (cid:28)elds ounterpartof theideal Bosegasstatisti s ina trapisinvestigatedbyperforming al ulations in the anoni al ensemble. There exists the optimal ut-o(cid:27) whi h allows to mat h the 9 full probability distribution of the ondensate population by its lassi al ounterpart. Universal 0 s aling of that ut-o(cid:27)with temperature and dimensionality is derived. 0 2 E = n ǫ n i sAotftthheeeenled torfoXmIaXgn eetnit u(cid:28)ryeldeq,uthileibtrhiuemorythoefrmaosody naallmed- wBohseeregsaisngilne-apahrtair mleoenni ertgriaespǫojf=en~eωrgjy[8℄. InPorjderjtjo, a J bla k body radiation, su(cid:27)ered for the persistent ultra- obtain the probability distribution we (cid:28)rst onsider par- 3 violet divergen e. It was Max Plan k [1℄ who ured the tition fun tions. The aNnoni al ensemble partition fun - 1 problemintrodu inga on eptoflightquantalater alled tion for a system with ex ex ited bosons and tempera- T photons. With thehelpofphotonsthe energy arriedby ture of 1D harmoni os illator is [10℄: ] high frequen y degrees of freedom was tamed. ∞ ∞ r he preMliomrienathryanid2ea0syoefaBrsoslaet[e3r℄Einitnrsotdeuin e[d2℄s,tasttiimstui laaltepdrobpy- Zex(Nex,β)=nX1=0nX2=0...e−βEδNex,Nex (1) t o erties of the ideal gas of indistinguishable massive par- ∞ n j N = n t. ti les that are now alled bosons. In parti ular it was where j arepopulations of th state, ex j=1 j is a shownthat entirelydue to the indistinguishability, when a number of bosons and β = 1/kBT. KroneP ker delta m N ooled, bosons tend to assemble at the ground state of fun tion in (1) enfor es the ondition of ex thermal d- the binding potential at relatively high temperature. bosons. In termsNof these fun tions proPba1Dbi(lNity ,dβis)tr=i- ex ex n This phenomena alled Bose-Einstein ondensation bution of having thermalNbosons is Z (N ,β)/Z Z = Z (N ,β) o was(cid:28)nallyrealizedintheseminalexperimentsin1995[4℄. ex ex N with N Nex=0 ex ex . Intro- [c Of ourserealisti theoryhadtodepartfromtheidealgas δdu in=g a1n i2nπteegixr(aal−rbe)pdrxesentPation of the delta fun tion and wasto a ount forintera tions. While a well known a,b 2π 0 and al ulating the integral we 1 Gross-Pitaevskii equation ombined with small ex ita- obtain: R v tions - the Bogoliubov approximation [5℄ - forms a good ∞ ∞ 1 1 69 ebxapsiesriomfeanntaslyresqisuinreeaar mabestohloudtevzaelridoftoermhpiegrhaetrurtee,mmpearnay- P1D(Nex,β)= ZN Xj=1e−βjNexYl6=j 1−e−β(ǫl−ǫj) . (2) 7 tures. Several groups proposed a lassi al (cid:28)eld approxi- 1 . mation as an e(cid:27)e tive approa h to nonzero temperature Similarprobabilitydistribution anbe al ulatedforthe 1 Bose gas [6℄. This is like traveling the road from Jaynes lassi al ounterpart. In this ase the anoni al ensem- 0 9 to Max Plan k ba kward in time -ignoring the granular ble partition fun tion must takeinto a ount ontinuous 0 hara terofatomsandstipulatingthatamountofatoms values of populations while energy levels are quantized : may be hanging in a ontinuous way. Understandably aspreviously. Forthe lassi al ounterpartssumsarere- v equipartition of the energy between the modes leads to pla ed by integral and the anoni al ensemble partition i X theultravioletdivergen ejustasitwasfor lassi alradi- fun tion is: ar a utito-no.(cid:27)Htoen uer,etthheeapurtohbolresmin.tDroid(cid:27)uer eenat ashuothrtorwsaavnedlesnogmthe Zex(Nex,β)= d2α d2α...e−βEδ(Nex−Nex), Z π Z π ofthem di(cid:27)erentlyindi(cid:27)erentpapers hoosethevalueof the ut-o(cid:27) [6, 7℄. |α |2 ∈ (0,∞) E (3=) j where amplitudes , the energy ItisthepurposeofthisRapidCommuni ationtoshow, Kmax|α |2ǫ N = Kmax|α |2 based on exa tly soluble models of the ideal gas, that Pj=1 j j and ex Pj=1 j . NKotmi aex, that there exists the optimal ut-o(cid:27) that allows to mat h the we in lude a (cid:28)nite numbers of states up to only. full probability distribution of the number of ondensed Populations of the higher energy states are set to zero atomsbyits lassi al(cid:28)elds ounterpart. Wegiveas aling and not taken into a ount within the lassi al approx- ofthis ut-o(cid:27)withtemperatureanddimensionalityofthe imation. δT(ahe−ibn)te=gra1l re∞predsexnetixa(tai−onb)of the Dira delta bindingpotential. Ofparti ularinterestisthepopulation fun tion 2π R−∞ simpli(cid:28)es al ula- of the last state retained in the optimal lassi al (cid:28)elds tions whi h give: approximation. It depends on dimensionality but not on 1 Kmax Kmax 1 temperature. P1D(Nex,β)= e−βjNex . ZN Xj=1 Yl6=j β(ǫl−ǫj) (4) We start our analysis with the one-dimensional (1D) 2 2.5 1DHLΒPN,ex 0000....000000110505ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ ÑΩΒKmax 112...050 èèèèáèèèáèèèèáèèèáôèèèáèèèáèèèáôèèèáèèèèáèèôèáèèèáèèèáèèôèáèèèáèèèáèèôèáèèèáèèèèáôèèèáèèèáèèèáôèèèáèèèáèèôèáèèèáèèèáèèôèèáèèèáèèèáôèèèáèèèáèèèôáèèèáèèèáèèôèáèèèèáèèèáèôèèáèèèáèèèáôèèèáèèèáèèèôáèèèáèèèáèèôèáèèèáèèèáèôèèáèèèáèèèôáèèèáèèèáèèôèáèèèáèèèáèôè 50 100 150 200 0.0 0.2 0.4 0.6 0.8 1.0 N ex T(cid:144)T c Nex FIG.1: (Coloronline)Probabilitydistributionofhaving bosons outside the ground state of a 1D trap. Points repre- FIG. 2: (CTol/oTrconline) Solution of the equation (10) as a sent the exa t quantum~dωisβtKribmuatxion=w0h.9ile lines are its las- fun tionNo=f 103 HforN3D=h2ar·m10o4ni (cid:3)traNp=an6d·t1o0t5al•number of ~siω aβlK mouaxnt=erp1arts with ~ωβKmax =(cid:21)1d.1ot-dashed line, bosons ( ), ~ωKm(axβ), ( ). Dashed (cid:21) solid lineaNnd=1000 ~ωβ(cid:21) d=as0h.0e4dline. line represents a value of given by the expression Total numberof bosons is and at . (11). 3.0 Note, that this formula leads to the equipartition of en- hnjiǫj = kBT 2.5 ergy in every single-parti le mode, i.e. , hnji Β wǫjh.erTehis feaistuthreeimse ahnaroa tuepriasttiio nfoorf tthheersmtaaPtle1sDot(afNteeneo,rfgβya) Kmax 2.0 ex lassi al system. ProbabilityPdi1sDtr(iNbut,ioβn)s Ω 1.5 ex Ñ and its lassi al ounterpart are shown in Fig.1. One an see that there exists an oKptima=l v1a/lu~eωβof 1.0 max the ut-o(cid:27) whi h in this ase is equalto . Forthisoptimalvaluequantumdistributionandits las- 0.5 si al ounterpart are almost indistinguishable. Noti e, 1 2 3 4 K max that other values of lead to a shift of the entire D distributionwhileitsshapedoesnot hangesigni(cid:28) antly. Itisinterestingtoanalyzethesystemin2and3spatial dimensions. Now, the problem is more omplex sin e we have to deal with a degenera y. There exists ex ellent F~ωIGK.m3a:xβ(wCitohlodrimonenlisnieo)naSli tayliDn~ωg. KPoomfinatxthsβea=r eu0gt.i4-vo7e(cid:27)7n+bpya0r.f5oa6rmm2eDutelar approximate formulas in the literature and we (cid:28)nd the (11), line is the best linear (cid:28)t: . result of [9℄ the most useful for our purposes: 1 (N +H/η−1)! η Nex η P(N ,β)= ex , and are di(cid:27)erent: ex ZN (H/η−1)!(Nex)! (cid:18)η+1(cid:19) (5) Kmax 1 H (β,K ) = , cl max Xj6=0 βǫj (8) with parameters: ∞ Kmax 1 1 η H = . H(β) = eβǫj −1, (6) cl cl Xj6=0 (βǫj)2 (9) Xj6=0 ∞ 1 This lassi al version of Eq.(5) is not obvious. We ηH = . (eβǫj −1)2 (7) he ked the lassi al ounterpart of (5) by omparing Xj6=0 with(4)in1D,andwiththesaddlepointsmethod[11℄re- sultsin3D.Forthesystemswithsmallnumberofbosons, Please note again that ea h term in the sum (6) is a as onsidered numeri ally here, the maxima of distribu- j mean o upation of the single-parti le level whi h in tions oin idebut therearesomedeviationsin its width. hn iǫ = j j the lassi al version (8) implied equipartition The agreement improves for larger systems. k T B . The simple expression(5) isvalid foranytrapping In order to ompare the quantum and lassi al oun- H η potential whi h ontrols fun tions and through the terpart of the probability distribution (5) we hoose the ǫ K j max single parti le energy spe trum of a trap. Within the ut-o(cid:27) in su hawaythatthemaximaofboth dis- H lassi al(cid:28)elds formula(5)isstill validbut parameters tributions oin ide. The maximum of probability distri- 3 bution (5) is equal to H and equation for optimal Kmax 0.06 HaL 0.020 leads: 0.05 0.015 H(β)=Hcl(β,Kmax). (10) LΒ 0.04 00..000150 In Fig.2 the solution of the above equation is plotted HPN,ex 0.03 0.000100 150 200 250 for 3D geometry and di(cid:27)erent~ωtoKtal nβumber of bosons. 0.02 max Forlargesystemsthe value of pra ti allydoes T 0.01 not depend on . Some deviations from this onstant vTa/lTue an beTobserved forvery lowrelativetemperatures 0.00 c c only ( is a riti aNl temperature) a~nωdKthis rβegion 0 200 400 600 800 1000 max de reaseswithin reasing . Thevalueof sat- N urates at: ex (~ωKmaxβ)D−1 =(cid:26)1ζ(,D)(D−1)(D−1)!, for DD =≥21, 0.06 HbL 0.015 for , 0.05 0.01 ζ(D) (11) LΒ 0.04 0.005 dwihtieorne an biestuhseedRaiesmaan rnitZereitoanfufonr ttihoeno[~1pω2tK℄i.mmTaahlxi sh ooin e- HPN,ex 0.03 01.00 200 300 of the maximal energy of lassi al states . The 0.02 ondition (11) de(cid:28)nes the universal value of the ut-o(cid:27) K maxwhi hforlargesystems,as onsideredinthe lassi- 0.01 al(cid:28)eldsmethod,dependsonlyontemperatureandspa e 0.00 dimensionality. InFig.4we ompare3Dquantumproba- 0 200 400 600 800 1000 bility distribution given by (5) with its lassi al ounter- part where the Kmax was hosen a ording to (10). We Nex seethatnotonlythemaxima oin idebutalsotheentire Nex distributions are very similar. Therefore, by the appro- FIG.4: (Coloronline)Probabilitydistributionofhaving (a) priate hoi e of on~eωKpamraaxmeter only, the ut-o(cid:27) energy b(bo)sons outside thegroundstateofa 3Dtrap and3Dbox of lassi almodes , we ana uratelymimi the potentials. Points are exa t distribution while solid lines true quantum statisti s by the statisti s of the lassi al representNits=op1t0im00al lassi al ounterparts. Total numberof (cid:28)eldssatisfyingtheequipartitionofenergy. Thisoptimal bosons is . Noti e, for3Dboxpotentialprobability D distributions are wider as omparedto 3D harmoni trap. ut-o(cid:27) s ales nearly linearly with dimensionality , see Fig.3. The same analysis an be applied for the uniform N ex system with peLriodi boundary onditions, i.e. ubi under the ondition of l thermal bosoqns.pT(nheq p=rol)ba=- ibasnoxdthoenfnileǫ=nkgt=h0,±~.21k,2±T/h22,em..s,.i.nwghleeI-rnpeartkthii s=le ea2nsπee(r,ngxyt,hnsepy,e n utztr)-u/omL(cid:27) ohbpnf(ilniqtqiys≥toaflth)e=a,−vwipni(tg∞nheqtxhl≥ape (tln l+yon1=db)i.tolisTo)onhnesonfinNthmeexoadtveheerramigsealpboopsuolnaNtsi,oins pKamraamxe=te2rπ(isnmdaexte,rnmmianxe,dnmbayx)t/hLeamndaβxt~ihm2eKa l2onwda/ivt2eimo-vne( 1t0o)r wiqthNwexeightPpN(l=N1ex|N)q= Zex.(NSeuxm,βm)a/ZtiNonoofvhearvainllg Neexx, de(cid:28)nes its value. For large systems max very atoms withinq , givesthe formulaforthe averagepopu- weakly depends on temperature similarlβy~a2sKfo2r th/e2mha=r- lation of the mode: max mπ(oζn(3i /2p)o/t4e)n2tia≃l.1I.t3s4v,a0l.u6e8,s0a.t2u9rates at 1 N Nex in 3D, 2D, 1D respe - hnqi= e−βǫqlZex(Nex−l). tively what was found numeri ally. In Fig. 4 the quan- ZN NXex=0Xl=1 (13) tumprobabilitydistributionandits lassi al ounterpart are shown for the optimal ut-o(cid:27) given by Eq.(10). One For the lassi al distribution, where populations hange an see that not only the maximum but also a shape of in the ontinuousway, it is onvenientto use aprobabil- both distributions are very lose. intHeraevsitngtom aatl hueladtethtehepraovbearabgileitypodpiustlaritbiountiohnnsKmitaxisi ooff liint)y/gZdaeetxn(lsNeiateysxt)ilnsbtoesaodn.sIinntmhiosd eaqse,isthp˜le=preo−bβalbǫqilZiteyx(oNf ehxav−- while the probability density of having ex- tohbeta(cid:28)inneadlbmyo doensoidfetrhineg plarsosbi aablilidtiisetsrpib(untqio≥n.l)Iotfa amnobdee a tly l bosons in mode q is p˜(nq = l)= −dp˜l/dl.qThen, q l the(cid:28)nalexpressionfortheaveragepopulationof mode being o upied by at least bosons [13℄: is: ∞ ∞ 1 p(n ≥l)= ... ...e−βEδ , 1 N Nex q Zex(Nex)nX1=0 nXq≥l Nex,Nex hnqicl = ZN Z0 dNexZ0 dle−βǫqlZex(Nex−l). (12) (14) 4 0.6 HaL Eq.(14) is a ontinuous version of Eq.(13) and based on 0.5 Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ theEuler-Ma laurinsummationformulathhneleiad−inhgnteirm≃ q cl q 0.4 0o.f5itsdi(cid:27)eren eisapproximatelyequalto K > . Therefore,theaverageo upationofthe maxmode <nkmax 0.3 twuimthionnteh.eI nlaFssigi .5alt(cid:28)heeldasvmereatgheopdoipsulalartgieorntshhannKtmhaexqiuaannd- 0.2 hn i è è è è è è è è è è è è è è è Kmax cl for 3D harmoni trap (a) and 3D box pTo/teTn- 0.1 tial (b) areshown as fun tions of the temperature c. Summation of populations over all ex ited modes must 0.0 N ex 0.0 0.2 0.4 0.6 0.8 1.0 give a number of ex ited atoms in both ases that T(cid:144)T is why in the lassi al ase the populations have to be c 1.0 larger. The values of the average o upations are very HbL lose to expe ted ones in the thermodynami al limit. 0.8 ŸŸ Ÿ Ÿ Ÿ Ÿ In summary, we onsidered a lassi al ounterpart of Ÿ Ÿ the probability distribution of the ideal Bose gas within > 0.6 max the anoni al ensemble. We found that there exists the <nk 0.4èè è è è è è è otrpitbiumtaioln uotf-ot(cid:27)hewh io nhdaelnloswatsetopompautl ahtitohnebpyrobitasbi lliatyssdi ias-l 0.2 (cid:28)elds ounterparts. We found the s aling of the ut-o(cid:27) energies with temperature and dimensionality. This be- 0.0 ing a very simple model it nevertheless sheds some light 0.0 0.2 0.4 0.6 0.8 1.0 ontheoptimal hoi eofthe ut-o(cid:27)forweaklyintera ting T(cid:144)Tc bosonsand moresigni(cid:28) antly on the veryfoundations of the method itself. We understood now mu h better that FIG. 5: (Color online) Average populations hnKmaxi of the (cid:28)nite numberofthe lassi al(cid:28)elds anadequatelyrepre- Kmax • sent the statisti al properties of the full quantum many (cid:28)nal mode (cid:4) Eq.(13) ( ), and for the lassi al distribu- body system of bosons. tion Eq.(14) ( ), for 3D harmoni trap (a) and 3D box (b) potentials. Linesrepresentexpe tedresultsinthethermody- A knowledgment The authors are grateful for use- N =1000 nami al limit. Numberof atoms . ful dis ussion with M. Brew zyk. The authors a knowl- edge support by the Polish Government resear h funds for 2006-2009. [1℄ M.Plan k,Verhandlungen derDeuts henPhysikalis hen K. Rz¡»ewski, J. Phys. B 40, R1-R37 (2007). Gesells haft 2, 202-204 (1900). [7℄ Š. Zawitkowski, M. Brew zyk, M. Gajda, K. Rz¡»ewski, [2℄ A.Einstein,Sitzber.Kgl.Preuss.Akad.Wiss.1,3(1925); Phys. Rev. A 70, 033614 (2004); E. Witkowska, M. A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 22, 261 Gajda, J. Mostowski, J. Phys. B: At. Mol. Opt. Phys., (1924). 40, 1-13 (2007). [3℄ S.N. Bose, Z. Phys. 26, 178 (1924). [8℄ We hooseazerooftheenergys aleatthesingleparti le [4℄ M.H. Anderson, J.H. Ensher, M.R. Mattews, C.E. Wie- ground state. man,E.A.Cornell,S ien e 269,198(1995);K.B.Davis, [9℄ V. V. Ko harovsky, Vl. V. Ko harovsky, and Marlan M.-O.Mewes,M.R.Andrews,N.J.vanDruten,D.S.Dur- O. S ully, Phys. Rev. A 61, 053606 (2000); V. V. fee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 Ko harovsky,Vl.V.Ko harovsky,andMarlanO.S ully, (1995). Phys. Rev. Lett. 84, 2306 (2000). [5℄ N. N. Bogoliubov, J. Phys. U. S. S. R.11, 23 (1947). [10℄ C. Weiss and M.Wilkens, OPTICS EXPRESS 1 No.10, [6℄ Y. Kagan, B. V. Svistunov, Phys. Rev. Lett. 79, 3331 272 (1997); S. Grossmann, M. Holthaus, OPTICS EX- (1997); M.J.Davis, S.A.MorganandK.BurnettPhys. PRESS 1 No. 10, 262 (1997); M. Holthaus and E. Kali- Rev. Lett. 87, 160402 (2001); A. Sinatra, C. Lobo, Y. nowski, Ann. Phys. 270, 198-230, (1998). Castin, Phys. Rev. Lett. 87, 210404 (2001); K. Góral, [11℄ M. Holthaus and E. Kalinowski, Ann. Phys. 276, 321- M. Gajda, K. Rz¡»ewski, Opt. Express 8, 92 (2001); 360, (1999). A. Sinatra, C. Lobo, Y. Castin, J. Phys. B: At. Mol. [12℄ Formula(11)is easily derivedwith thehelpof theusual Opt. Phys. 35, 3599-3631 (2002); M. J. Davis and S. A. repla ementofthesumbytheintegralin(8)and(6)and Morgan, Phys. Rev. A 68, 053615 (2003); M. Brew zyk, retaining theleading termin thedegenera y fa tor. P. Borowski, M. Gajda, K. Rz¡»ewski, J. Phys. B 37, [13℄ Z.Idziaszek, Š. Zawitkowski, M.Gajda, and K. 2725 (2004); M. J. Davis and P. B. Blakie, J. Phys. A: Rz¡»ewski, to be published. Math. Gen. 38, 10259 (2005); M. Brew zyk, M. Gajda,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.