ebook img

Bordered Heegaard Floer Homology PDF

294 Pages·2018·5.418 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bordered Heegaard Floer Homology

Number 1216 Bordered Heegaard Floer Homology Robert Lipshitz Peter S. Ozsvath Dylan P. Thurston July 2018 • Volume 254 • Number 1216 (fourth of 5 numbers) Number 1216 Bordered Heegaard Floer Homology Robert Lipshitz Peter S. Ozsvath Dylan P. Thurston July 2018 • Volume 254 • Number 1216 (fourth of 5 numbers) Library of Congress Cataloging-in-Publication Data Names: Lipshitz,R.(Robert),author. |Ozsv´ath,PeterSteven,1967–author. |Thurston,Dylan P.,1972–author. Title: BorderedHeegaardFloerhomology/RobertLipshitz,PeterS.Ozsv´ath,DylanP.Thurston. Description: Providence, RI : American Mathematical Society, [2018] | Series: Memoirs of the American Mathematical Society, ISSN 0065-9266 ; volume 254, number 1216 | Includes biblio- graphicalreferencesandindex. Identifiers: LCCN2018029366|ISBN9781470428884(alk. paper) Subjects: LCSH:Floer homology. |Three-manifolds(Topology)|Topologicalmanifolds. |Sym- plecticgeometry. Classification: LCCQA665.L572018|DDC516.3/6–dc23 LCrecordavailableathttps://lccn.loc.gov/2018029366 DOI:https://doi.org/10.1090/memo/1216 Memoirs of the American Mathematical Society Thisjournalisdevotedentirelytoresearchinpureandappliedmathematics. Subscription information. Beginning with the January 2010 issue, Memoirs is accessible from www.ams.org/journals. The 2018 subscription begins with volume 251 and consists of six mailings, each containing one or more numbers. Subscription prices for 2018 are as follows: for paperdelivery,US$999list,US$799.20institutionalmember;forelectronicdelivery,US$879list, US$703.20institutional member. Uponrequest, subscribers topaper delivery ofthis journalare also entitled to receive electronic delivery. If ordering the paper version, add US$20 for delivery withintheUnitedStates;US$80foroutsidetheUnitedStates. Subscriptionrenewalsaresubject tolatefees. Seewww.ams.org/help-faqformorejournalsubscriptioninformation. Eachnumber maybeorderedseparately;please specifynumber whenorderinganindividualnumber. Back number information. Forbackissuesseewww.ams.org/backvols. Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904USA. All orders must be accompanied by payment. Other correspondenceshouldbeaddressedto201CharlesStreet,Providence,RI02904-2213USA. Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for useinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationin reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. Excludedfromtheseprovisionsismaterialforwhichtheauthorholdscopyright. Insuchcases, requestsforpermissiontoreuseorreprintmaterialshouldbeaddresseddirectlytotheauthor(s). Copyrightownershipisindicatedonthecopyrightpage,oronthelowerright-handcornerofthe firstpageofeacharticlewithinproceedingsvolumes. MemoirsoftheAmericanMathematicalSociety (ISSN0065-9266(print);1947-6221(online)) ispublishedbimonthly(eachvolumeconsistingusuallyofmorethanonenumber)bytheAmerican MathematicalSocietyat201CharlesStreet,Providence,RI02904-2213USA.Periodicalspostage paid at Providence, RI.Postmaster: Send address changes to Memoirs, AmericanMathematical Society,201CharlesStreet,Providence,RI02904-2213USA. (cid:2)c 2018bytheAmericanMathematicalSociety. Allrightsreserved. ThispublicationisindexedinMathematicalReviews(cid:2),Zentralblatt MATH,ScienceCitation Index(cid:2),ScienceCitation IndexTM-Expanded,ISI Alerting ServicesSM,SciSearch(cid:2),Research Alert(cid:2),CompuMathCitationIndex(cid:2),CurrentContents(cid:2)/Physical,Chemical&EarthSciences. ThispublicationisarchivedinPortico andCLOCKSS. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 232221201918 Contents Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. The bordered Floer homology package . . . . . . . . . . . . . . . . . 3 1.3. On gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4. The case of three-manifolds with torus boundary . . . . . . . . . . . 6 1.5. Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6. Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.7. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. A∞ structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1. A∞ algebras and modules . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2. A∞ tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3. Type D structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4. Another model for the A∞ tensor product . . . . . . . . . . . . . . 22 2.5. Gradings by non-commutative groups . . . . . . . . . . . . . . . . . 26 Chapter 3. The algebra associated to a pointed matched circle . . . . . . . 29 3.1. The strands algebra A(n,k) . . . . . . . . . . . . . . . . . . . . . . . 29 3.2. Matched circles and their algebras . . . . . . . . . . . . . . . . . . . 34 3.3. Gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 4. Bordered Heegaard diagrams . . . . . . . . . . . . . . . . . . . 45 4.1. Bordered Heegaard diagrams: definition, existence, and uniqueness . 45 4.2. Examples of bordered Heegaard diagrams . . . . . . . . . . . . . . . 51 4.3. Generators, homology classes and spinc structures . . . . . . . . . . 53 4.4. Admissibility criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.5. Closed diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Chapter 5. Moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1. Overview of the moduli spaces . . . . . . . . . . . . . . . . . . . . . 61 5.2. Holomorphic curves in Σ×[0,1]×R . . . . . . . . . . . . . . . . . . 64 5.3. Holomorphic curves in R×Z×[0,1]×R . . . . . . . . . . . . . . . 70 5.4. Compactifications via holomorphic combs . . . . . . . . . . . . . . . 73 5.5. Gluing results for holomorphic combs . . . . . . . . . . . . . . . . . 82 5.6. Degenerations of holomorphic curves . . . . . . . . . . . . . . . . . . 89 5.7. More on expected dimensions . . . . . . . . . . . . . . . . . . . . . . 99 Chapter 6. Type D modules . . . . . . . . . . . . . . . . . . . . . . . . . . 109 iii iv CONTENTS 6.1. Definition of the type D module . . . . . . . . . . . . . . . . . . . . 109 6.2. ∂2 =0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3. Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4. Twisted coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Chapter 7. Type A modules . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.1. Definition of the type A module . . . . . . . . . . . . . . . . . . . . 145 7.2. Compatibility with algebra . . . . . . . . . . . . . . . . . . . . . . . 147 7.3. Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.4. Twisted coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Chapter 8. Pairing theorem via nice diagrams . . . . . . . . . . . . . . . . 157 Chapter 9. Pairing theorem via time dilation . . . . . . . . . . . . . . . . . 161 9.1. Moduli of matched pairs . . . . . . . . . . . . . . . . . . . . . . . . 162 9.2. Dilating time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 9.3. Dilating to infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.4. Completion of the proof of the pairing theorem . . . . . . . . . . . . 183 9.5. A twisted pairing theorem . . . . . . . . . . . . . . . . . . . . . . . 184 9.6. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Chapter 10. Gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.1. Algebra review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.2. Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 10.3. Type A structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.4. Type D structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.5. Refined gradings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10.6. Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Chapter 11. Bordered manifolds with torus boundary . . . . . . . . . . . . 205 11.1. Torus algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 11.2. Surgery exact triangle . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.3. Preliminaries on knot Floer homology . . . . . . . . . . . . . . . . 209 (cid:2) − 11.4. From CFD to HFK . . . . . . . . . . . . . . . . . . . . . . . . . . 212 − (cid:2) 11.5. From CFK to CFD: Statement of results . . . . . . . . . . . . . 216 11.6. Generalized coefficient maps and boundary degenerations . . . . . 220 − (cid:2) 11.7. From CFK to CFD: Basis-free version . . . . . . . . . . . . . . . 225 11.8. Proof of Theorem 11.26 . . . . . . . . . . . . . . . . . . . . . . . . 244 11.9. Satellites revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Appendix A. Bimodules and change of framing . . . . . . . . . . . . . . . . 255 A.1. Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 A.2. Sketch of the construction . . . . . . . . . . . . . . . . . . . . . . . 256 A.3. Computations for 3-manifolds with torus boundary . . . . . . . . . 261 (cid:2) A.4. From HFK to CFD for arbitrary integral framings . . . . . . . . . 265 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Index of Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Abstract We construct Heegaard Floer theory for 3-manifolds with connected bound- ary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module (cid:2) from the other piece is HF of the glued manifold. Asaspecialcaseoftheconstruction,wespecializetothecaseofthree-manifolds with torus boundary. This case can be used to give another proof of the surgery (cid:2) exact triangle for HF. We relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling. Received by the editor August 10, 2014 and, in revised form, August 20, 2015, October 23, 2015,andJanuary4,2016. ArticleelectronicallypublishedonJune13,2018. DOI:https://doi.org/10.1090/memo/1216 2010MathematicsSubjectClassification. Primary57R58,57M27;Secondary53D40,57R57. Keywordsandphrases. Three-manifoldtopology,low-dimensionaltopology,HeegaardFloer homology,holomorphiccurves,extendedtopologicalfieldtheory. The first author was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship,NSFgrantsDMS-0905796andDMS-1149800andaSloanResearchFellowship. The first author is affiliated with the Department of Mathematics, University of Oregon, Eugene,Oregon97403. Email: [email protected]. The second author was supported by NSF grants DMS-0505811, DMS-0804121, and DMS- 1105810. The second author is affiliated with the Department of Mathematics, Princeton University, Princeton,NewJersey08544. Email: [email protected]. ThethirdauthorwassupportedbyNSFgrantsDMS-1008049andDMS-1358638andaSloan ResearchFellowship. ThethirdauthorisaffiliatedwiththeDepartmentofMathematics,IndianaUniversity,Bloom- ington,Indiana47405. Email: [email protected]. (cid:2)c2018 American Mathematical Society v List of Figures 1.1 Example of cutting a Heegaard diagram . . . . . . . . . . . . . . . . 3 3.1 Splittings and shuffles of Reeb chords . . . . . . . . . . . . . . . . . . 34 3.2 Pointed matched circles for the genus 2 surface . . . . . . . . . . . . 35 3.3 Orientation of a pointed matched circle . . . . . . . . . . . . . . . . . 35 4.1 3-manifold represented by a bordered Heegaard diagram . . . . . . . 48 4.2 Bordered Heegaard diagram for the trefoil complement . . . . . . . . 52 4.3 Heegaard diagrams for handlebodies . . . . . . . . . . . . . . . . . . 52 4.4 Another Heegaard diagram for a genus 2 handlebody . . . . . . . . . 53 5.1 Examples of three kinds of codimension 1 degenerations . . . . . . . 63 5.2 A capping operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Sources of curves at east ∞ . . . . . . . . . . . . . . . . . . . . . . . 72 5.4 Visualizing shuffle curves, I . . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Visualizing shuffle curves, II . . . . . . . . . . . . . . . . . . . . . . . 73 5.6 Schematic of a height 2 holomorphic comb . . . . . . . . . . . . . . . 75 5.7 MB(x,y;S(cid:2);P) may be a proper subset of MB(x,y;S(cid:2);P), I . . . 77 5.8 MB(x,y;S(cid:2);P) may be a proper subset of MB(x,y;S(cid:2);P), II . . . 78 5.9 1-parameter family of maps v from an odd shuffle component . . . . 88 5.10 Annulus at east ∞ that does not exist . . . . . . . . . . . . . . . . . 91 5.11 Expected and unexpected behavior of M(x,y;S(cid:2);P(cid:3))⊂M(x,y;S(cid:2)) 96 5.12 Degenerations discussed in Theorem 5.61 . . . . . . . . . . . . . . . . 97 (cid:3) 5.13 Domains of model curves used to compute inv . . . . . . . . . . . . 104 5.14 Jittered intersection number . . . . . . . . . . . . . . . . . . . . . . . 105 5.15 Parts of the proof of Lemma 5.73 (index additivity) . . . . . . . . . . 106 (cid:3) 6.1 Local illustrations of possible contributions to ∂2 in CFD . . . . . . 116 6.2 Labeling of triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Curves α and αH, before and after a handleslide . . . . . . . . . . . 121 6.4 A triangle is a strip with a boundary puncture . . . . . . . . . . . . 124 vii viii LISTOFFIGURES 6.5 A degeneration at v . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12 6.6 Straightening α-arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.7 Illustration of a boundary bigon degenerating, in proof of invariance 136 6.8 Curves α, αH and α(cid:3) in Σ . . . . . . . . . . . . . . . . . . . . . . . . 139 6.9 Two compositions of triangles, as degenerations of a rectangle . . . . 141 7.1 Local illustrations of terms occurring the A∞ relation for C(cid:3)FA . . . 148 7.2 Domain where m is necessary for associativity . . . . . . . . . . . . 149 3 8.1 First step in making a bordered Heegaard diagram nice . . . . . . . 158 9.1 Schematic of an ideal-matched comb . . . . . . . . . . . . . . . . . . 172 9.2 Illustration of the fibered product in the proof of Proposition 9.40 . . 182 9.3 Degenerating a hexagon . . . . . . . . . . . . . . . . . . . . . . . . . 185 11.1 Bordered Heegaard diagrams with torus boundary . . . . . . . . . . 205 11.2 Labeling of regions around ∂Σ (torus case) . . . . . . . . . . . . . . . 206 11.3 From bordered diagrams to doubly-pointed diagrams . . . . . . . . . 214 11.4 Diagram for the longitude of a solid torus . . . . . . . . . . . . . . . 216 (cid:3) 11.5 Examples of reconstructing CFD from CFK . . . . . . . . . . . . . . 221 11.6 Boundary degeneration as end of a one-dimensional moduli space . . 222 11.7 Sketch of some of the maps from Theorem 11.36 . . . . . . . . . . . . 228 11.8 Twisting, in proof of Theorem 11.36 . . . . . . . . . . . . . . . . . . 229 11.9 Pinching off the winding region . . . . . . . . . . . . . . . . . . . . . 234 11.10 Homology classes in the winding region . . . . . . . . . . . . . . . . . 234 11.11 Pinching Ω along C . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 2 11.12 Illustration of the proof of Theorem 11.26 . . . . . . . . . . . . . . . 248 11.13 Diagram for the (2,1) cable . . . . . . . . . . . . . . . . . . . . . . . 250 11.14 Cable of the trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 A.1 Bordered Heegaard diagrams for diffeomorphisms . . . . . . . . . . . 258 A.2 Heegaard diagrams for Dehn twists of the torus . . . . . . . . . . . . 262 A.3 DA bimodules for generators of the genus-one mapping class group . 264 A.4 Isotoped Heegaard diagram for identity map of torus . . . . . . . . . 265 A.5 The bimodule C(cid:3)FAA(I,0) for the torus . . . . . . . . . . . . . . . . . 266 A.6 The bimodule CF(cid:3)DD(I,0) for the torus . . . . . . . . . . . . . . . . 266 CHAPTER 1 Introduction 1.1. Background Since the pioneering work of Simon Donaldson, techniques from gauge theory have taken a central role in the study of smooth four-manifold topology [DK90]. His numerical invariants, associated to closed, smooth four-manifolds with b+ >1, 2 have shed much light on our understanding of differential topology in dimension four. Moreover,theseinvariants,andthesubsequentclosely-relatedSeiberg-Witten invariants [Wit94] and Heegaard Floer invariants [OSz04d] all fit into a formal frameworkreminiscentofthe“topologicalquantumfieldtheories” proposedbyWit- ten[Wit88]. Crudelyspeaking, thesetheorieshave thefollowingform. Toaclosed three-manifoldY oneassociatesa(suitablygraded)abeliangroup,theFloerhomol- ogy of Y, and, to a four-manifold W with boundary identified with Y, a homology class in the Floer homology of the boundary. If a closed, smooth four-manifold X decomposes along Y into a union of two four-manifolds with boundary X and X , 1 2 thenthenumerical(Donaldson,Seiberg-Witten,orHeegaardFloer)invariantofthe closedfour-manifoldisobtainedasasuitablepairingbetweentherelativeinvariants coming from X and X in a corresponding version of Floer homology of Y. 1 2 As the name suggests, the first such construction was proposed by Andreas Floer (for a restricted class of three-manifolds) as a tool for studying Donaldson’s theory. A complete construction of the corresponding three-dimensional Floer the- ory for Seiberg-Witten invariants was given by Kronheimer and Mrowka [KM07]. Heegaard Floer homology was defined by Zoltán Szabó and the second author. The aim of the present work is to perform a corresponding construction one dimension lower. Specifically, we produce an invariant which, loosely speaking, associatestoaparametrized,closed,orientedsurfaceF adifferentialgradedalgebra A(F) and associates to a three-manifold whose boundary is identified with F a differential graded module over A(F). When a closed, oriented three-manifold can be decomposed along F into two pieces Y and Y , a suitable variant of Floer 1 2 homology is gotten as a pairing of the differential graded modules associated to Y 1 and Y . 2 Wegivenow aslightly moredetailedversionofthispicture, startingwithsome more remarks about Heegaard Floer homology, and then a more precise sketch of the invariants constructed in the present book. Recall that there are several variants of Heegaard Floer homology stemming from the fact that, in its most basic form, the Heegaard Floer homology of a three- manifold is the homology of a chain complex defined over a polynomial ring in an indeterminantU. Thefulltheorycanbepromotedtoconstructinvariantsforclosed, 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.