ebook img

Body mass index and survival in women with breast cancer PDF

16 Pages·2017·0.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Body mass index and survival in women with breast cancer

promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/78837/ Paper: Chan, DS, Vieira, AR, Aune, D, Bandera, EV, Greenwood, DC, McTiernan, A, Navarro Rosenblatt, D, Thune, I, Vieira, R and Norat, T (2014) Body mass index and survival in women with breast cancer--systematic literature review and meta- analysis of 82 follow-up studies. Annals of Oncology http://dx.doi.org/10.1093/annonc/mdu042 White Rose Research Online [email protected] Annals of Oncology Advance Access published April 27, 2014 review AnnalsofOncology00:1–14,2014 doi:10.1093/annonc/mdu042 Body mass index and survival in women with breast — cancer systematic literature review and meta-analysis of 82 follow-up studies D.S.M.Chan1*,A.R.Vieira1,D.Aune1,2,E.V.Bandera3,D.C.Greenwood4,A.McTiernan5, D.NavarroRosenblatt1,I.Thune6,7,R.Vieira8&T.Norat1 1DepartmentofEpidemiologyandBiostatistics,SchoolofPublicHealth,ImperialCollegeLondon,London,UK;2DepartmentofPublicHealthandGeneralPractice, FacultyofMedicine,NorwegianUniversityofScienceandTechnology,Trondheim,Norway;3RutgersCancerInstituteofNewJersey,Rutgers,TheStateUniversityofNew Jersey,NewJersey,USA;4DivisionofBiostatistics,CentreforEpidemiologyandBiostatistics,UniversityofLeeds,Leeds,UK;5DivisionofPublicHealthSciences,Fred D o HutchinsonCancerResearchCenter,Washington,USA;6DepartmentofOncology,OsloUniversityHospital,Oslo;7FacultyofHealthSciences,DepartmentofCommunity w n Medicine,UniversityofTromso,Tromso,Norway;8SchoolofMathematicsandStatistics,UniversityofNewcastle,NewcastleuponTyne,UK lo a d e d fro Received12December2013;accepted16January2014 m h ttp Background: Positive association between obesity and survival after breast cancer was demonstrated in previous ://a n n meta-analysesofpublisheddata,butonlytheresultsforthecomparisonofobeseversusnon-obesewassummarised. o n c Methods:WesystematicallysearchedinMEDLINEandEMBASEforfollow-upstudiesofbreastcancersurvivorswith .o x bodymassindex(BMI)beforeandafterdiagnosis,andtotalandcause-specificmortalityuntilJune2013,aspartofthe fo rd World Cancer Research Fund Continuous Update Project. Random-effects meta-analyseswere conducted to explore jo u themagnitudeandtheshapeoftheassociations. rn a Results:Eighty-twostudies,including213075breastcancersurvivorswith41477deaths(23182frombreastcancer) wls.o wereidentified.ForBMIbeforediagnosis,comparedwithnormalweightwomen,thesummaryrelativerisks(RRs)oftotal vie arg/ mortalitywere1.41[95%confidenceinterval(CI)1.29–1.53]forobese(BMI>30.0),1.07(95CI1.02–1.12)foroverweight ret Im (BMI25.0–<30.0)and1.10(95%CI0.92–1.31)forunderweight (BMI<18.5)women.Forobesewomen,thesummary pe RRs were 1.75 (95% CI 1.26–2.41) for pre-menopausal and 1.34 (95% CI 1.18–1.53) for post-menopausal breast rial C cancer.Foreach5kg/m2incrementofBMIbefore,<12monthsafter,and≥12monthsafterdiagnosis,increasedrisksof o lle 17%,11%,and8%fortotalmortality,and17%,18%,and29%forbreastcancermortalitywereobserved,respectively. g e Conclusions:Obesityisassociatedwithpooreroverallandbreastcancersurvivalinpre-andpost-menopausalbreast Lo n cancer,regardlessofwhenBMIisascertained.Beingoverweightisalsorelatedtoahigherriskofmortality.Randomised do n clinicaltrialsareneededtotestinterventionsforweightlossandmaintenanceonsurvivalinwomenwithbreastcancer. L ib Keywords:bodymassindex,meta-analysis,survivalafterbreastcancer,systematicliteraturereview ra ry o n A p ril 2 introduction obesity[4],whichhasfurtherbeenlinkedtobreastcancerrecur- 8 , 2 rence [5] and poorer survival in pre- and post-menopausal 0 1 Thenumberoffemalebreastcancersurvivorsisgrowingbecause breastcancer[6,7].Preliminaryfindingsfromrandomised,con- 4 oflongersurvivalasaconsequenceofadvancesintreatmentand trolled trials suggest that lifestyle modifications improved bio- earlydiagnosis.Therewere∼2.6millionfemalebreastcancersur- markers associated with breast cancer progression and overall vivorsinUSin2008[1],andintheUK,breastcanceraccounted survival[8]. for∼28%ofthe2millioncancersurvivorsin2008[2]. Thebiologicalmechanismsunderlyingtheassociationbetween Obesityisapandemichealthconcern, withover500 million obesityand breast cancer survival are notestablished,andcould adults worldwide estimated to be obese and 958 million were involve interacting mediators of hormones, adipocytokines, and overweight in 2008 [3]. One of the established risk factors for inflammatory cytokines which link to cell survival or apoptosis, breast cancer development in post-menopausal women is migration, and proliferation [9]. Higher level of oestradiol pro- duced in postmenopausal women through aromatisation of androgensintheadiposetissues[10],andhigherlevelofinsulin *Correspondenceto:DorisS.M.Chan,DepartmentofEpidemiologyandBiostatistics, [11],aconditioncommoninobesewomen,arelinkedtopoorer SchoolofPublicHealth,ImperialCollegeLondon,StMary’sCampus,NorfolkPlace, prognosis inbreast cancer. Apossibleinteractionbetween leptin London W2 1PG, UK. Tel: +44-0-20-759-48590; Fax: +44-0-20-759-43193; E-mail:[email protected] and insulin [12], and obesity-related markers of inflammation ©TheAuthor2014.PublishedbyOxfordUniversityPressonbehalfoftheEuropeanSocietyforMedicalOncology. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense(http://creativecommons.org/licenses/by-nc/3.0/), whichpermitsnon-commercialre-use,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Forcommercialre-use,pleasecontact [email protected] review AnnalsofOncology [13] have also been linked to breast cancer outcomes. Non-bio- statisticalanalysis logicalmechanismscouldincludechemotherapyunder-dosingin Categorical and dose–response meta-analyses were conducted obesewomen,suboptimaltreatment,andobesity-relatedcompli- usingrandom-effectsmodelstoaccountforbetween-studyhet- cations[14]. erogeneity [18]. Summary relative risks (RRs) were estimated Numerous studies have examined the relationship between using the average of the natural logarithm of the RRs of each obesityand breast canceroutcomes, and past reviews have con- study weighted by the inverse of the variance and then cluded that obesity is linked to a lower survival; however, when unweighted by applying a random-effects variance component investigatedinameta-analysisofpublisheddata,onlytheresults whichisderivedfromtheextentofvariabilityoftheeffectsizes of obese compared with non-obese or lighter women were of the studies. The maximallyadjusted RRestimates were used summarised[6,7,15]. for the meta-analysis except for the follow-up of randomised, We carried out a systematic literature review and meta-ana- controlled trials [19, 20] where unadjusted results were also lysis of published studies to explore the magnitude and the included,asthesestudiesmostlyinvolvedamorehomogeneous shape of the association between body fatness, as measured by study population. BMI or Quetelet’s Index (QI) measured in bodymassindex(BMI),andtheriskoftotalandcause-specific unitsofkg/m2wasused. mortality,overallandinwomenwithpre-andpost-menopausal We conducted categorical meta-analyses by pooling the cat- breast cancer. As body weight may change close to diagnosis egorical results reported inthestudies. Thestudies used differ- D o w and during primary treatment of breast cancer [16], we exam- ent BMI categories. In some studies, underweight (BMI <18.5 n ined BMI in three periods: before diagnosis, <12 months after kg/m2 according to WHO international classification) and loa d diagnosis,and≥12monthsafterbreastcancerdiagnosis. normal weight women (BMI 18.5–<25.0kg/m2) were classified ed together but, in some studies, they were classified separately. fro m Similarly, most studies classified overweight (BMI 25.0–<30.0 h materialsandmethods kg/m2)andobese(BMI≥30.0kg/m2)womenseparatelybut,in ttp://a somestudies,overweightandobesewomenwerecombined.The n datasourcesandsearch n o reference category was normal weight or underweight together n c Wecarriedoutasystematicliteraturesearch,limitedtopublica- withnormalweight,dependingonthestudies.Forconvenience, .ox tionsinEnglish,forarticlesonBMIandsurvivalinwomenwith the BMI categories are referred to as underweight, normal ford breastcancerinOVIDMEDLINEandEMBASEfrominception weight,overweight,andobeseinthepresentreview.Wederived jo u to 30 June 2013 using the search strategy implemented for the the RRs for overweight and obese women compared with rna WCRF/AICR Continuous Update Project on breast cancer sur- ls normal weight women in two studies [19, 21] that had more .o vival.Thesearchstrategycontainedmedicalsubjectheadingsand rg textwordsthatcoveredabroadrangeoffactorsondiet,physical t[h22an].SfotuudrieBsMthIactarteepgoorrtieedsruessiunlgtstfhoerombeetsheocdomofpaHraedmwlinitghentoanl-. at Im/ activity, and anthropometry. The protocol for the review is obesewomenwereanalysedseparately. pe available at http://www.dietandcancerreport.org/index.php [17]. Thenon-lineardose–responserelationshipbetweenBMIand ria Inaddition,wehand-searchedthereferencelistsofrelevantarti- mortalitywasexaminedusingthebest-fittingsecond-orderfrac- l Co cles,reviews,andmeta-analysispapers. tional polynomial regression model [23], defined as the one lleg e withthelowestdeviance.Non- L o studyselection linearity was tested using the likelihood ratio test [24]. In the nd o Included were follow-up studies of breast cancer survivors, non-linear meta-analysis, the reference category wasthe lowest n L BMIcategoryineachstudyandRRswererecalculatedusingthe ib whichreportedestimatesoftheassociationsofBMIascertained ra methodofHamlingetal.[22]whenthereferencecategorywas ry before and after breast cancer diagnosis with total or cause- o specificmortalityrisks.StudiesthatinvestigatedBMIafterdiag- notthelowestBMIcategoryinthestudy. n A We also conducted linear dose–response meta-analyses, ex- p nnoossiissw(BerMeIdi<v1id2edmionntothtsw)oagnrdouBpMs:IBM12I<m1o2nmthosnothrsmafotererdaifatger- cluding the category underweight when reported separately in ril 28 diagnosis(BMI≥12months).Outcomesincludedtotalmortal- the studies, by pooling estimates of RR per unit increase (with , 20 ity, breast cancer mortality, death from cardiovascular disease, its standard error) provided by the studies, or derived by us 14 from categorical data using generalised least-squares for trend anddeathfromcausesotherthanbreastcancer.Whenmultiple estimation [25]. To estimate the trend, the numbers of publications on the same study population were found, results outcomesandpopulationat-riskforatleastthreeBMIcategor- basedonlongerfollow-upandmoreoutcomeswereselectedfor ies, or the information required to derive them using standard themeta-analysis. methods[26],andmeansormediansoftheBMIcategories,or ifnotreportedinthestudies,theestimatedmidpointsofthecat- dataextraction egories had to be available. When the extreme BMI categories DSMC, TN, and DA conducted the search. DSMC, ARV, and wereopen-ended,weusedthewidthoftheadjacentclose-ended DNR extracted the study characteristics, tumour-related infor- category to estimate the midpoints. Where the RRs were pre- mation, cancer treatment, timing and method of weight and sented by subgroups (age group [27], menopausal status [28, heightassessment,BMIlevels,numberofoutcomesandpopula- 29], stage [30] or subtype [31] of breast cancer, orothers [32– tion at-risk, outcome type, estimates of association and their 34]), an overall estimate for the study was obtained byafixed- measure of variance [95% confidence interval (CI) or P value], effect model before pooling in themeta-analysis.We estimated andadjustmentfactorsintheanalysis. theriskincreaseofdeathforanincrementof5kg/m2ofBMI.  |Chanetal. review AnnalsofOncology Toassessheterogeneity,wecomputedtheCochranQtestand total, breast cancer or non-breast cancer mortality in obese I2 statistic [35]. The cut points of 30% and 50% were used for women (before or <12 months after diagnosis) compared with low,moderate,andsubstantiallevelofheterogeneity.Sourcesof the reference BMI [69, 71–74, 76, 77, 79, 82], two publications heterogeneity were explored by meta-regression and subgroup reportednon-significantinverseassociations[75,80]andthree analysesusingpre-definedfactors,includingindicatorsofstudy publications reported no association [70, 78, 81] of BMI with quality(menopausalstatus,hormonereceptorstatus,numberof survival after breast cancer. Hence, 79 publications from 82 outcomes, length of follow-up, study design, geographic loca- follow-up studies with 41477 deaths (23182 from breast tion,BMIassessment,adjustmentforconfounders,andothers). cancer)in213075breastcancersurvivorswereincludedinthe Small study or publication bias was examined by Egger’s test meta-analyses (Figure 1). Supplementary Table S1, available at [36]and visual inspection ofthefunnelplots. Theinfluence of Annals of Oncology online shows the characteristics of the eachindividualstudyonthesummaryRRwasexaminedbyex- studiesincludedinthemeta-analysesanddetailsoftheexcluded cluding the study in turn [37]. A P value of <0.05 was consid- studies are in supplementary Table S2, available at Annals of ered statistically significant. All analyses were conducted using Oncology online. Results of the meta-analyses are summarised Stata version 12.1 (Stata Statistical Software: Release 12, inTable1. StataCorpLP,CollegeStation,TX). Studies were follow-up of women with breast cancer iden- tifiedinprospectiveaetiologiccohortstudies(womenwerefree D o w results owfhcoasnecepraratticeipnaronltmsewnte)r,eoridceonhtiofiretds oifnbrheoassptitcaalnsceorrsuthrvroivuogrhs nloa d e Afattnoetsasloafn1d2m4pourtballiictaytiionnwsionmveesntigwaittihngbtrheaesrteclaatniocnershwiperoefibdoedny- cinanccaesre–rceognisttrroielss,tuordifeoslloorwr-aunpdoomfbisreedasctlcinainccaelrtrpiaaltsie.ntsenrolled d from tified.Weexcluded31publications,includingfourpublications Some studies included only premenopausal women [83–85] h omneaosuthreerofobasessoitcyiatiniodnic[e4s2–[3583–],4a1n],d1125ppuubblliiccaattiioonnsssuwpitehroseudteda oinrclpuodsetdmebnoothp.auMsaelnwopoamuesnal[s2t1at,u2s7,w8as6–u9s4u]a,llbyutdemteorsmtisnteuddieast ttp://an n bypublicationsofthesamestudywithmoreoutcomes[54–68]. timeofdiagnosis.Yearofdiagnosiswasfrom1957–1965[70]to on c Afurther 14 publications were excluded because of insufficient 2002–2009 [74]. Patient tumour characteristics and stage of .ox data for the meta-analysis (five publications [69–73]) or un- disease at diagnosis varied across studies, and some studies ford adjusted results (nine publications [74–82]), from which nine included carcinoma in situ. No all studies provided clinical in- jou publications reported statistically significant increased risk of formationonthetumour,treatment,andco-morbidities. rna ls .o rg a/ 22590 unique records identified in MEDLINE 21566 records excluded on the basis of title t Im and EMBASE until 30 June 2013 and abstract pe 19 articles found in handsearch ria l C o 651 articles excluded for not fulfilling the lle inclusion criteria ge L 87 no original data o n 338 did not report on the associations of d o 1043 full-text articles retrieved and assessed interest n L for inclusion 33 abstract/commentary ib ra 10 meta-analyses ry 183 irrelevant study design on A p ril 2 392 potentially relevant articles in women 268 articles did not investigate body 8, 2 with breast cancer fatness and mortality 01 4 31 articles excluded in present review 4 examined obesity index 124 articles on body fatness and mortality 12 no measure of association 15 superseded publications 14 articles excluded in meta-analysis 5 insufficient data 8 unadjusted results 79 relevant articles (82 studies) on body mass index and mortality included in the meta-analyses in present review Figure1. Flowchartofsearch. doi:10.1093/annonc/mdu042 |   r | Table1. Summaryofmeta-analysesofBMIandsurvivalinwomenwithbreastcancera e C h v an BMIbeforediagnosis BMI<12monthsafterdiagnosis BMI≥12monthsafterdiagnosis i et N RR(95%CI) I2(%) N RR(95%CI) I2(%) N RR(95%CI) I2(%) e al. Ph Ph Ph w Totalmortality Underversusnormalweight 10 1.10(0.92–1.31) 48% 11 1.25(0.99–0.57) 63% 3 1.29(1.02–1.63) 0% 0.04 <0.01 0.39 Overversusnormalweight 19 1.07(1.02–1.12) 0% 22 1.07(1.02–1.12) 21% 4 0.98(0.86–1.11) 0% 0.88 0.18 0.72 Obeseversusnormalweight 21 1.41(1.29–1.53) 38% 24 1.23(1.12–1.33) 69% 5 1.21(1.06–1.38) 0% 0.04 <0.01 0.70 Obeseversusnon-obese – – – 12 1.26(1.07–1.47) 80% – – – <0.01 Per5kg/m2increase 15 1.17(1.13–1.21) 7% 12 1.11(1.06–1.16) 55% 4 1.08(1.01–1.15) 0% 0.38 0.01 0.52 Breastcancermortality Underversusnormalweight 8 1.02(0.85–1.21) 31% 5 1.53(1.27–1.83) 0% 1 1.10(0.15–8.08) – 0.18 0.59 Overversusnormalweight 21 1.11(1.06–1.17) 0% 12 1.11(1.03–1.20) 14% 2 1.37(0.96–1.95) 0% 0.66 0.31 0.90 Obeseversusnormalweight 22 1.35(1.24–1.47) 36% 12 1.25(1.10–1.42) 53% 2 1.68(0.90–3.15) 67% 0.05 0.02 0.08 Obeseversusnon-obese – – – 6 1.26(1.05–1.51) 64% – – – 0.02 Per5kg/m2increase 18 1.18(1.12–1.25) 47% 8 1.14(1.05–1.24) 66% 2 1.29(0.97–1.72) 64% 0.01 0.01 0.10 Cardiovasculardiseaserelatedmortality Overversusnormalweight 2 1.01(0.80–1.29) 0% – – – – – – 0.87 Obeseversusnormalweight 2 1.60(0.66–3.87) 78% – – – – – – 0.03 Per5kg/m2increase 2 1.21(0.83–1.77) 80% – – – – – – 0.03 Non-breastcancermortality Overversusnormalweight – – – 5 0.96(0.83–1.11) 26% – – – 0.25 Obeseversusnormalweight – – – 5 1.29(0.99–1.68) 72% – – – 0.01 A n n aBMIbeforeandafterdiagnosis(<12monthsafter,or≥12monthsafterdiagnosis)wasclassifiedaccordingtotheexposureperiodwhichthestudiesreferredtointheBMIassessment;theBMIcategories als wereincludedinthecategoricalmeta-analysesasdefinedbythestudies. of O Ph,Pforheterogeneitybetweenstudies. nc o lo g y 4102 ,82 lirpA no yrarbiL nodnoL egelloC lairepmI ta /gro.slanruojdrofxo.cnonna//:ptth morf dedaolnwoD review AnnalsofOncology % BMI Study RR (95% Cl) Weight kg/m2 Underweight v normal weight Buck 2011 1.98 (0.79, 4.96) 3.29 <18.5 v 18.5–24.9 Conroy 2011 1.13 (0.89, 1.42) 17.23 <22.5 v 22.5–24.9 Lu 2011 0.89 (0.70, 1.14) 16.79 <20 v 20–24.9 Chen 2010 1.44 (0.88, 2.37) 8.51 <=18.4 v 18.5–24.9 Emaus 2010 1.70 (0.86, 3.33) 5.44 <<=18.4 v 18.5–24.9 Hellmann 2010 1.36 (0.87, 2.11) 9.79 <=19.9 v 20–25 Nichols 2009 1.75 (0.94, 3.25) 6.21 <=18.4 v 18.5–24.9 Abrahamson 2006 0.73 (0.52, 1.04) 12.75 <=18.4 v 18.5–24.9 Kroenke 2005 0.89 (0.70, 1.13) 16.98 <21 v 21–22 Bernstein 2002 1.13 (0.43, 2.97) 3.01 <=18.4 v 18.5–24.9 Subtotal (I-squared = 48.2%, P = 0.043) 1.10 (0.92, 1.31) 100.00 . Overweight v normal weight Kamineni 2013 1.09 (0.69, 1.72) 1.18 25–29.9 v <25 Buck 2011 1.03 (0.69, 1.56) 1.47 25–29.9 v 18.5–24.9 Conroy 2011 1.15 (0.93, 1.42) 5.47 25–29.9 v 22.5–24.9 D Lu 2011 0.99 (0.84, 1.15) 9.94 25–29.9 v 20–24.9 o w Chen 2010 1.02 (0.81, 1.27) 4.85 25–29.9 v 18.5–24.9 n Emaus 2010 1.02 (0.81, 1.27) 4.85 25–29.9 v 18.5–24.9 loa Hellmann 2010 1.22 (0.92, 1.61) 3.13 25.1–30 v 20–25 de d KNeicehgoalsn 22000190 11..1163 ((00..9920,, 11..4452)) 44..7741 2255––2299..99 vv <18=.254–.294.9 fro m West-Wright 2009 0.98 (0.78, 1.24) 4.56 25–29 v <=24 h Caan 2008 1.20 (0.80, 1.70) 1.73 25–29.9 v <=24.9 ttp Dal Maso 2008 1.02 (0.83, 1.25) 5.85 25–29.9 v <=24.9 ://a Reding 2008 1.20 (0.90, 1.60) 2.96 >22.4–25.8 v <–20.6 n n Reeves 2007 1.02 (0.94, 1.12) 32.20 25–<30 v 18.5–<25 on Abrahamson 2006 1.47 (0.96, 2.24) 1.37 25–29.9 v 18.5–24.9 c.o Kroenke 2005 1.11 (0.91, 1.34) 6.55 25–29 v 21–22 x Reeves 2000 1.19 (0.92, 1.53) 3.79 25–26 v <=24 ford Zhang 1995 1.00 (0.50, 2.20) 0.45 24.7–28.8 v 16–24.6 jo u Holmberg 1994 2.38 (0.84, 6.77) 0.23 25–28 v <19 rn Subtotal (I-squared = 0.0%, P = 0.882) 1.07 (1.02, 1.12) 100.00 als . .o Obese v normal weight rg KBaumcki n2e0n1i1 2013 11..3115 ((00..7574,, 22..2426)) 21..2107 >>==3300 vv <182.55–24.9 at Im/ Conroy 2011 1.54 (1.23, 1.91) 7.31 >=30 v 22.5–24.9 pe Lu 2011 1.23 (1.04, 1.47) 8.97 >=30 v 20–24.9 ria Chen 2010 1.58 (1.13, 2.22) 4.42 >=30 v 18.5–24.9 l C EHmelalmuasn 2n0 210010 11..4671 ((11..0182,, 12..9393)) 53..0954 >>=303 0v v2 01–82.55–24.9 olleg e Keegan 2010 1.21 (1.00, 1.48) 8.12 >=30 v <=24.9 L Nichols 2009 1.52 (1.17, 1.98) 6.06 >=30 v 18.5–24.9 on West-Wright 2009 1.42 (1.08, 1.88) 5.70 >=30 v <25 do n Caan 2008 1.60 (1.10, 2.30) 3.90 >=30 v <=24.9 L Dal Maso 2008 1.29 (0.99, 1.68) 6.02 >=30 v <=24.9 ib Reding 2008 1.90 (1.40, 2.50) 5.39 >=25.8 v <=20.6 ra ry Cleveland 2007 1.63 (1.08, 2.45) 3.34 >30 v <24.9 o Reeves 2007 1.06 (0.86, 1.30) 7.67 >=30 v 18.5–25 n A Abrahamson 2006 2.93 (1.37, 6.29) 1.16 >=30 v 18.5–24.9 p KBreorennstkeein 2 2000052 11..2108 ((00..9851,, 11..5722)) 63..8758 >>=253 0v v1 82.15––2224.9 ril 28 Reeves 2000 1.49 (1.18, 1.86) 7.08 >=27 v <=24 , 2 0 Zhang 1995 1.50 (0.70, 2.90) 1.31 28.9–45.9 v 16–24.6 1 4 Holmberg 1994 5.93 (1.98, 17.80) 0.58 >=29 v <19 Subtotal (I-squared = 37.6%, P = 0.043) 1.41 (1.29, 1.53) 100.00 . 0.125 1 8 Figure2. Categoricalmeta-analysisofpre-diagnosisBMIandtotalmortality. MostofthestudieswerebasedinNorthAmericaorEurope. 24698 patients [97]. Total number of deaths ranged from 56 There were three studies from each of Australia [79, 95, 96], [93] to 7397 [108], and the proportion of deaths from breast Korea[97,98]andChina[99–101];twostudiesfromJapan[71, cancer ranged from 22% [27] to 98% [84] when reported. All 102]; one study from Tunisia [103] and four international but eight studies [30, 93, 94, 98, 99, 109–111] had an average studies [19, 104–106]. Study size ranged from 96 [107] to follow-upofmorethan5years. doi:10.1093/annonc/mdu042 |  review AnnalsofOncology BMIandtotalmortality women(I2=69%,P<0.01;I2=63%,P<0.01,respectively).For categoricalmeta-analysis. ForBMIbeforediagnosis,compared BMI ≥12 months after diagnosis, the summary RRs were 1.21 withnormalweight women,thesummaryRRswere1.41 (95% (95% CI 1.06–1.38, 5 studies) for obese women, 0.98 (95% CI CI1.29–1.53,21studies)forobesewomen,1.07(95%CI1.02– 0.86–1.11, 4 studies) for overweight women, and 1.29 (95% CI 1.12,19studies)foroverweightwomen,and1.10(95%CI0.92– 1.02–1.63, 3 studies) for underweight women (supplementary 1.31, 10 studies) for underweight women (Figure 2). For BMI Figure S2, available at Annals of Oncology online). Twelve <12 months after diagnosis and the same comparisons, the additional studies reported results for obese versus non-obese summary RRs were 1.23 (95% CI 1.12–1.33, 24 studies) for women <12 months after diagnosis, and the summary RR was obese women, 1.07 (95% CI 1.02–1.12, 22 studies) for 1.26(95%CI1.07–1.47,I2=80%,P<0.01). overweightwomen,and1.25(95%CI0.99–1.57,11studies)for underweight women (supplementary Figure S1, available at dose–responsemeta-analysis. TherewasevidenceofaJ-shaped Annals of Oncology online). Substantial heterogeneities were association in the non-linear dose–response meta-analyses of observed between studies of obese women and underweight BMIbeforeandafterdiagnosiswithtotalmortality(allP<0.01; Total mortality Breast cancer mortality D Pre-diagnosis BMI Pre-diagnosis BMI o w n 2 3 lo a d e d 1.5 2 fro m h ttp RR 1 RR ://a n 1 n o n c .o x Best fitting fractional polynomial Best fitting fractional polynomial fo 0.5 95% confidence interval P < 0.001 0.5 P = 0.21 95% confidence interval rdjou rn 15 20 25 30 35 40 15 20 25 30 35 40 a BMI (kg/m2) BMI (kg/m2) ls.o rg a/ BMI <12 months after diagnosis BMI <12 months after diagnosis t Im p 3 Best fitting fractional polynomial Best fitting fractional polynomial eria 2 95% confidence interval 3 95% confidence interval l Colle g 2 e L R R o R R nd 1 on 1 L ib ra P = 0.007 P = 1.00 ry o 0.5 0.5 n A 15 20 2B5MI (kg/m32)0 35 40 15 20 2B5MI (kg/m32)0 35 40 pril 28 , 2 0 1 BMI >12 months after diagnosis BMI >12 months after diagnosis 4 Best fitting fractional polynomial Best fitting fractional polynomial 95% confidence interval 95% confidence interval 2 R 1.5 R R R 2 1 1.5 1 P < 0.001 P = 0.86 0.5 0.5 15 20 25 30 35 40 15 20 25 30 35 40 BMI (kg/m2) BMI (kg/m2) Figure3. Non-lineardose–responsecurvesofBMIandmortality.  |Chanetal. review AnnalsofOncology Per 5 kg/m2 % Study BMI RR (95% Cl) Weight Pre-diagnosis BMI Kamineni 2013 1.14 (0.88, 1.47) 1.62 Conroy 2011 1.28 (1.14, 1.46) 6.95 Lu 2011 1.09 (1.00, 1.19) 13.36 Chen 2010 1.15 (1.01, 1.32) 5.79 Emaus 2010 1.14 (1.00, 1.30) 6.15 Hellmann 2010 1.26 (1.05, 1.52) 3.21 Nichols 2009 1.20 (1.06, 1.35) 7.26 West-Wright 2009 1.15 (1.01, 1.31) 5.89 Caan 2008 1.26 (1.05, 1.52) 3.12 Dal Maso 2008 1.11 (0.98, 1.26) 6.61 Reding 2008 1.17 (1.10, 1.23) 25.25 Abrahamson 2006 1.52 (1.16, 1.99) 1.49 Kroenke 2005 1.13 (1.02, 1.25) 9.06 D Zhang 1995 1.14 (0.93, 1.39) 2.59 o w Helmberg 1994 1.47 (1.14, 1.89) 1.67 n lo Subtotal (I-squared = 6.6%, P = 0.379) 1.17 (1.13, 1.21) 100.00 a d . ed BMI <12 months after diagnosis fro m Ewertz 2012 1.08 (0.99, 1.19) 10.73 h Goodwin 2012 1.12 (0.94, 1.34) 4.97 ttp Kawai 2012 1.52 (0.89, 2.60) 0.71 ://a n Baumgartner 2011 0.94 (0.83, 1.06) 7.91 n o Azambuja 2010 1.17 (1.06, 1.29) 10.00 nc Chen 2010 1.13 (0.99, 1.29) 7.31 .ox Dawood 2008 1.12 (0.96, 1.30) 6.30 ford Majed 2008 1.05 (1.01, 1.10) 16.49 jo u Vitolins 2008 1.22 (1.10, 1.34) 10.03 rn a Abrahamson 2006 1.27 (1.11, 1.45) 7.20 ls .o Tao 2006 1.30 (1.01, 1.68) 2.78 rg Berclaz 2004 1.07 (1.02, 1.12) 15.58 a/ Subtotal (I-squared = 54.8%, P = 0.011) 1.11 (1.06, 1.16) 100.00 t Im p . e BMI >=12 months after diagnosis rial C Elatt 2010 1.11 (0.98, 1.27) 28.42 o Nichols 2009 1.10 (0.98, 1.24) 35.22 lle g Caan 2008 1.14 (0.92, 1.42) 10.34 e L Ewertz 1991 0.99 (0.86, 1.13) 26.01 on d Subtotal (I-squared = 0.0%, P = 0.517) 1.08 (1.01, 1.15) 100.00 o n . L ib ra ry o 0.5 1 2 n A p Figure4. Lineardose–responsemeta-analysisofBMIandtotalmortality. ril 2 8 , 2 0 1 4 Figure 3), suggesting that underweight women may be at BMIandbreastcancermortality slightly increased risk compared with normal weight women. categorical meta-analysis. BMI was significantly associated The curves show linear increasing trends from 20kg/m2 for with breast cancer mortality. Compared with normal weight BMIbeforediagnosisand<12monthsafterdiagnosis,andfrom women,forBMI before diagnosis, thesummaryRRswere1.35 25kg/m2 for BMI ≥12 months after diagnosis. When linear (95% CI 1.24–1.47, 22studies) forobesewomen,1.11 (95% CI models were fitted excluding the underweight category, the 1.06–1.17,21studies)foroverweightwomen,and1.02(95%CI summary RRs of total mortality for each 5kg/m2 increase in 0.85–1.21, 8 studies) for underweight women (Figure 5). For BMIwere1.17(95%CI1.13–1.21,15studies,6358deaths),1.11 BMI <12 months after diagnosis, the summary RRs were 1.25 (95% CI 1.06–1.16, 12 studies, 6020 deaths), and 1.08 (95% CI (95% CI 1.10–1.42, 12studies) forobesewomen,1.11 (95% CI 1.01–1.15, 4 studies, 1703 deaths) for BMI before, <12 months 1.03–1.20,12studies)foroverweightwomen,and1.53(95%CI after, and ≥12 months after diagnosis, respectively (Figure 4). 1.27–1.83, 5 studies) for underweight women (supplementary SubstantialheterogeneitywasobservedbetweenstudiesonBMI Figure S3, available at Annals of Oncology online). Substantial <12monthsafterdiagnosis(I2=55%,P=0.01). heterogeneity was observed between studies of obese women doi:10.1093/annonc/mdu042 |  review AnnalsofOncology % BMI Study RR (95% Cl) Weight kg/m2 Underweight v normal weight Alsaker 2011 0.66 (0.38, 1.16) 8.17 <20 v 20–24.9 Conroy 2011 1.22 (0.87, 1.71) 16.83 <22.5 v 22.5–24.9 Lu 2011 0.86 (0.65, 1.12) 21.45 <20 v 20–24.9 Emaus 2010 1.49 (0.66, 3.37) 4.25 <18.5 v 18.5–25 Hellmann 2010 1.77 (0.99, 3.18) 7.60 <=19.9 v 20–25 Nichols 2009 0.93 (0.22, 3.85) 1.48 <=18.4 v 18.5–24.9 Kroenke 2005 0.88 (0.65, 1.19) 19.17 <21 v 21–22 Whiteman 2005 1.07 (0.81, 1.41) 21.05 <=18.5 v 18.51–22.90 Subtotal (I-squared = 31.1%, P = 0.179) 1.02 (0.85, 1.21) 100.00 . Overweight v normal weight Kamineni 2013 1.45 (0.62, 3.39) 0.39 25–29.9 v <25 Alsaker 2011 1.14 (0.96, 1.35) 9.70 25–29.9 v 20–24.9 Conroy 2011 1.17 (0.86, 1.58) 3.05 25–29.9 v 22.5–24.9 Lu 2011 0.99 (0.83, 1.18) 9.10 25–29.9 v 20–24.9 Emaus 2010 1.01 (0.79, 1.30) 4.54 25.1–29.9 v 18.5–25 D Hellmann 2010 1.23 (0.84, 1.79) 1.97 25.1–30 v 20–25 o Nichols 2009 1.48 (0.98, 2.24) 1.65 25–29.9 v 18.5–24.9 w n Rosenberg 2009 0.90 (0.70, 1.20) 3.88 25–30 v <=24.9 lo West-Wright 2009 1.16 (0.83, 1.62) 2.52 25–29 v <=24 ad e Caan 2008 1.40 (0.80, 2.30) 1.01 25–29.9 v <=24.9 d Dal Maso 2008 1.07 (0.85, 1.35) 5.27 25–29.9 v <=24.9 fro Reeves 2007 1.05 (0.88, 1.26) 8.74 25–<30 v 18.5–<25 m KWErnhogieteenrmk 2ea0 n20 04200505 110...128259 (((010...806883,,, 111...442346))) 412.3.73.8652 222552–––222994 ..v98 2vv1 <<–=22022.24.9 http://a n Maehle 2004 1.03 (0.87, 1.40) 4.98 Q2-Q4 v Q1 no Schairer 1999 1.30 (0.90, 1.70) 2.79 23.34–26.15 v <=21.28 nc Galanis 1998 1.70 (0.60, 4.50) 0.28 22.7–25.7 v <=22.6 .o x Jain 1994 1.20 (0.75, 1.91) 1.29 24.14–27.34 v <=22.21 fo Tornberg 1993 1.40 (1.00, 1.90) 2.74 26–27 v <=21 rd Tretli 1990 1.09 (0.95, 1.24) 15.38 Q4 v Q1 jou Subtotal (I-squared = 0.0%, P = 0.658) 1.11 (1.06, 1.17) 100.00 rn a . ls Obese v normal weight .org Kamineni 2013 2.41 (1.00, 5.81) 0.88 >=30 v <25 a/ AClosnarkoeyr 22001111 11..5425 ((11..2055,, 12..8050)) 84..2773 >>==3300 vv 2202–.52–424.9 t Im p LEHume l2alm0u1as1n 2n0 210010 111...248032 (((011...901911,,, 122...409629))) 842...324486 >>>==3033 00v vv2 021–082–.552–42.95 erial C o Nichols 2009 1.42 (0.86, 2.36) 2.38 >=30 v 18.5–24.9 lle Rosenberg 2009 1.20 (0.90, 1.60) 5.49 >30 v <25 ge West-Wright 2009 1.71 (1.16, 2.53) 3.60 >=30 v <25 L o Caan 2008 1.60 (0.90, 2.70) 2.06 >=30 v <=24.9 n d Dal Maso 2008 1.38 (1.02, 1.86) 5.19 >=30 v <=24.9 o n Cleveland 2007 1.88 (1.04, 3.34) 1.86 >30 v <24.9 L Reeves 2007 1.12 (0.73, 1.73) 3.03 >=30 v 18.5–<25 ib Kroenke 2005 1.09 (0.80, 1.48) 5.04 >=30 v 21–22 rary Whiteman 2005 1.34 (1.09, 1.65) 7.86 >=30 v <=22.9 o Enger 2004 0.76 (0.53, 1.07) 4.20 >=24.9 v <20.4 n A Maehle 2004 1.38 (1.04, 1.84) 5.55 Q5 v Q1 p Schairer 1999 1.60 (1.20, 2.10) 5.68 >=26.15 v <=21.28 ril 2 Galanis 1998 2.20 (0.90, 5.40) 0.85 >=25.8 v <=22.6 8 Jain 1994 0.78 (0.48, 1.22) 2.71 >27.34 v <22.22 , 2 0 Tornberg 1993 1.70 (1.20, 2.30) 4.67 >=28 v <=21 1 4 Tretli 1990 1.35 (1.18, 1.54) 10.87 Q5 v Q1 Subtotal (I-squared = 35.5%, P = 0.051) 1.35 (1.24, 1.47) 100.00 . 0.125 1 8 Figure5. Categoricalmeta-analysisofpre-diagnosisBMIandbreastcancermortality. (I2=53%, P=0.02). For BMI ≥12 months after diagnosis, the dose–responsemeta-analysis. Therewasnosignificantevidence summary RRs of the two studies identified were 1.68 (95% CI of a non-linear relationship between BMI before, <12 months 0.90–3.15) for obese women and 1.37 (95% CI 0.96–1.95) for after, and ≥12 months after diagnosis and breast cancer overweight women (supplementary Figure S4, available at mortality (P=0.21, P=1.00, P=0.86, respectively) (Figure 3). AnnalsofOncologyonline).Thesummaryofanothersixstudies When linear models were fitted excluding data from the thatreportedRRsforobeseversusnon-obese<12monthsafter underweight category, statistically significant increased risks of diagnosiswas1.26(95%CI1.05–1.51,I2=64%,P=0.02). breast cancer mortality with BMI before and <12 months after  |Chanetal. review AnnalsofOncology Per 5 kg/m2 % Study BMI RR (95% Cl) Weight Pre-diagnosis BMI Kamineni 2013 1.55 (1.00, 2.40) 1.43 Alsaker 2011 1.23 (1.12, 1.36) 9.57 Conroy 2011 1.24 (1.03, 1.48) 5.65 Lu 2011 1.08 (0.98, 1.19) 9.78 Hellmann 2010 1.33 (1.04, 1.70) 3.76 Nichols 2009 1.22 (0.97, 1.53) 4.20 Rosenberg 2009 1.07 (0.93, 1.23) 7.40 West-Wright 2009 1.28 (1.06, 1.55) 5.31 Caan 2008 1.27 (0.96, 1.67) 3.15 Dal Maso 2008 1.15 (1.00, 1.33) 7.23 Cleveland 2007 1.40 (1.09, 1.81) 3.50 Kroenke 2005 1.05 (0.92, 1.21) 7.54 Whiteman 2005 1.17 (1.07, 1.27) 10.33 D Enger 2004 0.85 (0.66, 1.09) 3.64 ow n Schairer 1999 1.36 (1.14, 1.62) 5.69 lo a Galanis 1998 1.61 (1.02, 2.54) 1.34 d e JTaoirnn b1e9r9g4 1993 01..9358 ((01..7185,, 11..1665)) 45..8664 d from Subtotal (I-squared = 47.3%, P = 0.014) 1.18 (1.12, 1.25) 100.00 h .BMI <12 months after diagnosis ttp://an n Hou 2013 0.98 (0.92, 1.05) 20.45 o n Kawai 2012 1.48 (0.80, 2.74) 1.76 c.o x Ranagopoulou 2012 1.13 (1.00, 1.27) 15.77 fo Sestak 2010 1.15 (1.05, 1.26) 18.09 rd jo Olsson 2009 1.11 (0.97, 1.26) 14.83 urn Vitolins 2008 1.22 (1.08, 1.36) 16.24 als Hebert 1998 1.34 (1.01, 1.78) 6.43 .o rg Newman 1997 1.34 (1.01, 1.78) 6.44 a/ Subtotal (I-squared = 65.8%, P = 0.005) 1.14 (1.05, 1.24) 100.00 t Im . p e BMI >=12 months after diagnosis ria Nichols 2009 1.48 (1.19, 1.83) 54.22 l C o Caan 2008 1.10 (0.83, 1.44) 45.78 lle g Subtotal (I-squared = 63.7%, P = 0.097) 1.29 (0.97, 1.72) 100.00 e L . o n d o n L ib 0.5 1 2 ra ry Figure6. Lineardose–responsemeta-analysisofBMIandbreastcancermortality. on A p ril 2 8 diagnosiswereobserved(Figure6).ThesummaryRRsforeach normalweight(summaryRR=1.01,95%CI0.80–1.29).Foreach , 2 0 5kg/m2increasewere1.18(95%CI1.12–1.25,18studies,5262 5kg/m2 increase in BMI, the summary RR was 1.21 (95% CI 14 breast cancer deaths) for BMI before diagnosis and 1.14 (95% 0.83–1.77).Fivestudiesreportedresultsfordeathsfromanycause CI1.05–1.24,8studies,3857breastcancerdeaths)forBMI<12 otherthanbreastcancer(N=2704deaths)[21,34,108,113,114]. months afterdiagnosis,withmoderate(I2=47%,P=0.01)and The summary RRs were 1.29 (95% CI 0.99–1.68, I2=72%, substantial(I2=66%,P=0.01)heterogeneities betweenstudies, P=0.01)forobesewomen,and0.96(95%CI0.83–1.11,I2=26%, respectively. Only two studies on BMI ≥12 months after P=0.25) for overweight women compared with normal weight diagnosis and breast cancer mortality (N=220 deaths) were women. identified.ThesummaryRRwas1.29(95%CI0.97–1.72). BMIandothermortalityoutcomes subgroup,meta-regression,andsensitivity analyses Only two studies reported results for death from cardiovascular disease (N=151 deaths) [27, 112]. The summary RR for Theresultsofthesubgroupandmeta-regressionanalysesarein obese versus normal weight before diagnosis was 1.60 (95% CI supplementary Tables S3 and S4, available at Annals of 0.66–3.87). No association was observed for overweight versus Oncologyonline.SubgroupanalysiswasnotcarriedoutforBMI doi:10.1093/annonc/mdu042 | 

Description:
activity, and anthropometry. The protocol for the review is Metagenics/Metaproteomics, personal fees from Pfizer, outside the submitted work.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.