ebook img

Blue Supergiants as a Tool for Extragalactic Distances - Empirical Diagnostics PDF

25 Pages·0.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Blue Supergiants as a Tool for Extragalactic Distances - Empirical Diagnostics

Blue Supergiants as a Tool for Extragalactic Distances – Empirical Diagnostics⋆ FabioBresolin InstituteforAstronomy,UniversityofHawaii,HonoluluHI96822,USA [email protected] 3 0 0 Abstract. Bluesupergiantstarscanbeexceptionallybrightobjectsintheoptical,makingthem 2 primetargetsforthedeterminationofextragalacticdistances.Idescribehowtheirphotometric n and spectroscopic propertiescan be calibratedto provide ameasurement of theirluminosity. I a first review two well-known techniques, the luminosity of the brightest blue supergiants and, J withtheaidofrecentspectroscopicdata,theequivalentwidthoftheBalmerlines.NextIdiscuss 0 somerecentdevelopmentsconcerningtheluminositydependenceofthewindmomentumandof 1 theflux-weightedgravity,whichcanprovide,ifproperlycalibrated,powerfuldiagnosticsforthe determinationofthedistancetotheparentgalaxies. 1 v 9 1 Introduction 7 1 1 Massive stars can reach, duringcertain phases of their post-main sequenceevolution, 0 exceptional visual luminosities, approaching M ∼−10 in extreme cases. It is thus V 3 naturaltotryandusethemasstandardcandlesforextragalacticstudies,aswasrealized 0 long ago by Hubble. For this contribution I will concentrate on the blue supergiants, / h a ratherbroadbutusefuldefinitionforthe stars containedin the upperpartof theH– p R diagram and with spectral types O, B and A. This includes ‘normal’ supergiants o- (Ia)and hypergiants(Ia+), as well as moreexoticobjectssuch as the LuminousBlue r Variables(LBV’s).Verybrightstarscanalsobefoundamongtheyellowhypergiants, t s howevertheiridentificationinextragalacticsystemsismoreproblematic,becausetheir a intermediatecolorcoincideswiththatofnumerousGalacticforegrounddwarfs. : v Fromthepointofviewoftheextragalacticdistancescale,itisnotthemostmassive, Xi intrinsicallymostluminousO-typestars(Mbol≤−11)whichareappealing.Becauseof thedecreaseofthebolometriccorrectionwithtemperaturefromOtoAstarsdownto r a ∼7000K, the visually brightest supergiantsfound in galaxies are mostly 25–40M⊙ mid-Btoearly-Atypestars,withM between−8and−9[48].Thiscanbeseenfrom bol Table1, which is a (probably incomplete) compilation of the visually brightest blue stars in the Milky Way, LMC and SMC, excludingin general LBV’s with maximum lightamplitudeslargerthan0.5mag.ThelabelLBVinthelastcolumnidentifiesknown or suspected LBV’s, from the compilation of [87]. Sources for the photometry and spectraltypesaregivenasafootnotetothetable,howeverinafewcasesthedatahave been updated with more recent determinations. The absolute visual magnitudes have ⋆Invited review at the International Workshop on Stellar Candles for the Extragalactic Dis- tance Scale, held in Concepcio´n, Chile, December 9–11, 2002. To be published in: Stellar Candles, Lecture Notes in Physics (http://link.springer.de/series/lnpp), Copyright: Springer- Verlag,Berlin-Heidelberg-NewYork,2003 2 FabioBresolin generallybeen correctedfor extinctionby assuming the spectraltype vs. B−V color index relation in the MK system given by [45] and AV =3.1×EB−V. Stars brighter thanM =−8.0inallthreegalaxiesareplottedinthecolor-magnitude(c-m)diagram V ofFig.1,togetherwiththelociofIa+,IaandIabstars,andstellartracksfor60,40,25 and20M⊙from[52]. Fig.1. In thiscolor-magnitude diagram thebrightest starshaving MV <−8 inthe Milky Way (squares),LMC(circles)andSMC(triangles)areshownwiththelargersymbols.Opensymbols refertoconfirmedorcandidateLBV’swithmagnitudevariationssmallerthan0.5mag.Thesmall pointsrepresentGalacticstarsfainterthanMV =−8and/orofspectraltypeFandlater.Schematic evolutionarymodelsatsolarmetallicityandvariousZAMSmassesfrom[52]areshownbythe thicklines.Thegridgivingluminosityclassesandspectraltypesisfrom[45] Extragalacticstellarastronomyhasquicklyevolvedfromtheidentification,viapho- tometryandqualitativespectroscopy,ofindividualbrightstarsmostlywithingalaxies oftheLocalGroup,tothequantitativeanalysisofstellarspectrawellbeyondthebound- ariesoftheLocalGroup.Theobservationandanalysisofextragalacticsupergiantshas importantramificationsforthestudyofmassivestellarevolutionwithmassloss,super- novaprogenitors,stellarinstabilitiesneartheupperboundaryofthestellarluminosity distribution,andchemicalabundances.HereIreviewfourdifferenttechniquesconcern- BlueSupergiantsasaToolforExtragalacticDistances 3 Table1.ThevisuallybrightestbluestarsintheMilkyWay,LMCandSMC StarID MV,0 SpectralType MilkyWay MV,0≤−8.0 HD other CygOB2-12 −10.4 B5IeLBV 80077 −9.4 B2/3Ia+LBV 92693 −8.73 A2Ia 152236 z 1Sco −8.70 B1.5Ia+ WRA977 −8.7 B1.5Ia+ 92207 −8.55 A0Ia 197345 a Cyg −8.45 A2Iae 168607 −8.4 B9Ia+LBV 316285 He3-1482 −8.4 BIeLBV 169454 −8.29 B1Ia+ MWC314 −8.2 <B2LBV 92964 −8.17 B2.5Iae 223385 6Cas −8.00 A3Iae LMC MV,0≤−8.5 m−M=18.5 HD Sk 33579 −6744 −9.57 A4Ia+ 269902 −69239 −9.34 B9Iae 32034 −6717 −9.03 B9Iae 270086 −69299 −8.91 A1Ia+ 269546 −6882 −8.89 B3Iab 269923 −69247 −8.85 B6Iab 269857 −68131 −8.80 A9Ia 269781 −67201 −8.77 A0Iae 269331 −6993 −8.67 A5Ia 268654 −697 −8.63 B9Iae 268835 −6946 −8.60 B8p 269128 −6863 −8.6 B2.5Ia+LBV 269661 −69170 −8.56 B9Ia+ 268718 −6916 −8.52 B9Iabe 268946 −6658 −8.51 A0Ia 37836 −69201 −8.5 BpecLBV SMC MV,0≤−8.0 m−M=19.0 AV Sk 475 152 −9.15 A0Ia+ 136 54 −8.41 A0Ia 56 −8.32 B8Ia+ 315 106 −8.30 A0Ia 78 40 −8.30 B1.5Ia+ 443 137 −8.21 B2.5Ia 56 31 −8.17 B2.5Ia 65 33 −8.15 B8Ia+ 48 27 −8.08 B5Ia 76 39 −8.07 B9Ia+ SOURCES —MILKYWAY-[34].DistancetoHD92207,HD92693,HD92964andHD223385:[23].CygOB2-12:[49]. LBVdatafrom[87].LMC-[67].SMC-[6],[47]. 4 FabioBresolin ingtheuseofbluesupergiantsinthecontextofmeasuringextragalacticdistances.Two ofthemhavequitealonghistory: • luminosityofthebrightestbluesupergiants • equivalentwidthoftheBalmerlines whilethetworemainingonesarebasedonmorerecentdevelopmentsintheanalysisof stellarwindsandtheatmospheresofbluesupergiantstars: • thewindmomentum–luminosityrelationship • theflux-weightedgravity–luminosityrelationship 2 The Luminosity ofthe Brightest Blue Supergiants as a Standard Candle SincethepioneeringworkofHubble[29]agreatamountofeffortshavebeendevoted tothecalibrationoftheluminosityofthevisuallybrightestblueandredsupergiantstars in nearbygalaxiesas a distance indicator.This work culminated in a series of papers byA.Sandage,R.Humphreysandothersinthe1970–80’sonthebrightstellarcontent of galaxiesin the LocalGroup and in a handfulof more distant late-type spirals (see reviewsby[70],[31]and,morerecently,[68]).Whilethebrightestredsupergiantswere soon recognizedas a more accurate secondarystandard,thanks to the smaller depen- denceoftheirbrightnessontheparentgalaxyluminosity,hereIwillbrieflysummarize theworkconcerningthebrightestbluestars,generallyoftypesfromlateBtoA.Note thataphotometriccolorselectioncriterion(B−V) <0.4isolatessupergiantsofspec- 0 tral type earlier than F5. Even if nowadaysthis method is not consideredsufficiently accuratewhencomparedwiththebestavailableextragalacticdistanceindicators,ithas beenadoptedalsoduringthepastdecadewheneverobservationalmaterialonmoreac- curatedistanceindicators(Cepheids,TRGB,SNIa,etc.)waslacking. Someofthemaindifficultiesinusingtheluminosityofthebrighteststarsingalax- ies as a standardcandle were recognizedby Hubble himself, namely the unavoidable confusionbetweenreal‘isolated’starsandunresolvedsmallstellarclustersorHII re- gions,andthepresenceofforegroundobjectsin theGalaxy.While the latterproblem is easily solved by avoiding stars of intermediate color in the c-m diagram, the for- mer is much more subtle, eventually becoming the main criticism to the bright blue starmethodraisedbyHumphreysandcollaborators[33],[32],who,withstellarspec- troscopyinsomeofthenearestgalaxies,revealedthecompositenatureofmanyofthose objectswhichwerepreviouslyconsideredtobethebrighteststars. Hubble’soriginalcalibrationofthemeanabsolutemagnitudeofthethreebrightest stars in a galaxy, M (3) , introduced as a more robust measure of the visually most B 0 luminousstarsthanthesinglebrighteststar,wasflawed(headopted<M >≃−6.3, pg about3magnitudestoofaint),whichwaspartlyresponsibleforthelargevaluehefound fortheexpansionrateoftheuniverse. ThedependenceofM (3) ontheparentgalaxyluminosity[M (3) (cid:181) M(gal) ],an B 0 B 0 0 effectalreadydiscussedbyHubbleandbyHolmberg,wasfirstinvestigatedindetailby [71] aspartof a seriesofpaperson thebrighteststarsin resolvedspiralandirregular BlueSupergiantsasaToolforExtragalacticDistances 5 galaxies, with distances calibrated via observations of Cepheids (see [69], and refer- ences therein).The existence of such a correlationhampersthe use of the luminosity of the brightestblue stars as a standardcandle.Moreover,the standarddeviationof a singleobservationasmeasuredby[71]was≃0.5mag,muchlargerthantheirquoted 0.1mag for the standard deviation of the mean of the three brightest red supergiants. Thelatterwerelateralsofoundtoobeyadependenceontheparentgalaxyluminosity, albeitwithashallowerslope. The M (3) –M(gal) relationship has been customarily interpreted as a statistical B 0 0 effect,sincemoreluminousandlargergalaxiescanpopulatethestellarluminosityfunc- tionuptobrightermagnitudesthansmallergalaxies.Aflatteningofthisrelationmight be detected in galaxies brighter than M(gal) =−19 [70], correspondingto the total 0 luminosity of large spirals, in which the observed limit is simply imposed by the lu- minosityofthebrightestpost-mainsequenceB-andA-typestarsintheH–Rdiagram. Therefore, while large, late-type spiral galaxies, such as M101, may contain stars as brightasM ≃−10,the brightestbluestarsin dwarfslike NGC6822orIC1613are B foundatM ≃−7.Numericalsimulationsby[73]and[25]haveprovidedsupportfor B thestatisticalinterpretation,makingvariationsinthestellarluminosityandmassfunc- tionamonggalaxiesunnecessarytoexplaintheobservedtrend. Amongthemostrecentcompilationsofthebrightestbluestarsinnearbyresolved galaxies is that of [24], based on updated stellar photometry of galaxies included in previousworksby[59],[38]and[68].TheresultingrelationbetweenM (3) andparent B 0 galaxy total luminosity is shown in Fig.2, where different symbols are used for 17 standardgalaxiesandafewtestgalaxies(onlythosewithavailableCepheiddistances fromthelistof[24]areshown,togetherwithIC4182[69]).Inthisplot,distancesfor some of the galaxies have been updated from the results of the HST Key Project, as summarizedby[20](asanaside,nosystematicstudyofthebrighteststarsinthewhole sampleanalyzedbytheKeyProjecthasbeenpublished).Thestandardgalaxiesdefine alinearregression: M (3) =−1.76(±0.45)+[0.40(±0.03)]M (gal) (1) B 0 B 0 with a standard deviation s (M )=0.26. The rather small dispersion is, at least B partly,aresultoftheparticularselectionofthe‘standard’galaxiesmadeby[24].Infact, s (M )≃0.6 is obtainedfrom the data of [59] and [68]. Differencesin the treatment B offoregroundandinternalextinctionexistbetweendifferentauthors.Furthermore,[70] hasadvocatedthe use of the irregularbluevariablesamongthe brightestblue stars, a viewstronglyopposedby[33].Wemustalsonotethatconsensusstillhastobereached concerningthechoiceoftheindividualbrightestbluestarsinthemostluminousgalax- iesinFig.2.Forexample,spectroscopyofbrightobjectsinM81by[96]hasrevealed that none of the seven brightest supergiantcandidatescould be confirmed as a single star,imposingafainterupperlimitforM (3) .ThepointsinFig.2correspondingtothe B 0 otherluminousgalaxies,M31andM101,arelikelytobeaffectedbysimilarproblems, andcouldthereforealsoberevisedtolowerM (3) values. B 0 Numericalsimulationssuchasthoseby[73],shownbythedotted(50%limitsofthe probabilitydistribution)and long-dashed(99.5%) curves,can explain both the trend, whichhoweverispredictednottobelinear,andthedispersionintheobservationaldata, 6 FabioBresolin Fig.2.Therelationshipbetweentheaveragemagnitudeofthethreebrightestbluestarsandthe magnitudeoftheparentgalaxy.Datafrom[24],withminorupdatesonthedistances.Fulldots refertothecalibrationgalaxies,whiletheopensymbolsareusedfortheadditionaltestgalaxies for which a Cepheid distance is available. The straight line represents the linear regression to the calibration points. The numerical simulations showing the 50% and 99.5% limits of the probabilitydistribution(dottedandlong-dashedlines,respectively)arefrom[73] atleastuptothemaximumgalaxybrightnessconsideredinthemodels.Itappearsthat removing objects with Cepheid distances from the linear regression as done by [24] (thoseshownherebytheopensymbols)mightnotbefullyjustified,sinceaconsider- abledispersionatthelow-luminosityendisexpectedfromtheincompletefillingofthe stellarluminosityfunction.However,considerationsontheevolutionarystatusofsome ofthe dwarfgalaxiesmightprovidesomejustificationforthe removalofsomeofthe datapoints. Thegeneralconclusionwecandrawfromtheseresultsisthatdistancemodulitoin- dividualgalaxiescannotbedeterminedfromthesimplephotometryofbrightbluestars to betterthan atleast0.5mag(0.9magaccordingto [68]). Thisislargerthans (M ), B asaresultofthestrongdependenceofM (3) onM(gal) .Moreover,thenecessityof B 0 0 spectroscopicconfirmationofthebrighteststarsmustbestressed.OutsideoftheLocal Group,aftertheinitialeffortsatmoderateresolutionin M81,NGC2403,M101[32], [96],high-qualityspectroscopyofthebrightstellarcontentofgalaxieshascomewithin reachofmodernequipmenton8m-classtelescopesatincreasingdistances.Asanexam- ple,Icitetheworkby[8]and[9]inNGC3621andNGC300,whichwillbediscussed laterinthispaper. BlueSupergiantsasaToolforExtragalacticDistances 7 To conclude the section on extragalactic distances based on the luminosity of the brightestbluestars,ahandfulofworkspublishedinthelastdecadecanbehighlighted: –brighteststarsingalaxieswithradialvelocities<500kms−1:aprojectaimingatthe measurementofthedistanceofalargenumberof(mostlydwarf)resolvedgalaxiesin the LocalVolume(v <500kms−1) hasbeencarriedoutsince 1994byKarachent- rad sev andcollaborators,usinga M (3) calibrationobtainedby [38] (see [75],[16] and B 0 referencestherein).RecentlytheTRGBmethodisbeingused[39]. – brightest stars in Virgo galaxies: brightest star candidates have been detected from ground-based images taken under excellent seeing conditions in two Virgo spirals, NGC4523[74]andNGC4571[57].Distancesof13(±2)and14.9(±1.5)Mpcwere derived, respectively,from yellow and blue supergiants. The brightest stars in a third galaxy in Virgo, M100, were discussed by [21], based on HST WFPC2 images. The CepheiddistancefromtheHSTKeyProjectis14.3(±0.5)Mpc. –additionalgalaxiesinthefield(D∼7-8Mpc):thebrightestblueandredsupergiants have been used by [77], [78] and [79] to measure distances to a few spiral galaxies, includingNGC925andNGC628,adoptingthecalibrationof[68]. 3 Spectroscopic Diagnostics:Equivalent Width of the Balmer Lines Thespectroscopicapproachalleviatesthemajordifficultiesofthephotometricmethod described in the previous section. Small clusters, close companions and HII regions can be easily identified from line profiles, compositeappearanceof the spectrum and presenceofnebularlines.Inaddition,theanalysisofthespectraldiagnostics(equivalent widths, line profiles, continuum fluxes) can provide detailed information on element abundances,spectralenergydistributions,windoutflowsandstellarreddening. Thediscoveryofarelationshipbetweenstellaropticalspectrallinesandluminosity dates back to the 1920’s, when the character of the lines, diffuse vs. sharp, and their strengthwerefoundtocorrelatewiththeabsolutemagnitudeofstarsoftypeAandB [1], [2], [17], [93]. The hydrogenBalmer lines in particular were soon recognizedto playanimportantroleinconnectionwiththeproblemofmeasuringstellarluminosities usingspectra,a factwhichcontinuesto holdtrueevenforthemostrecenttechniques involvingthespectralanalysisofbluesupergiants.Theluminosityeffectonthewidthof theBalmerlinesderivesfromtheirdependenceonthepressure(Starkbroadening),as realizedby[30]and[80],withalineabsorptioncoefficientinthewingsproportionalto theelectronpressure(andalsodependentonthetemperature).Asaresult,narrowerand weakerlinesareformedwithdecreasingpressureandsurfacegravity,andconsequently withincreasingluminosity. Iwillnotdiscusshereadditional,somewhatrelatedmethods,including:i)therela- tionshipbetweenMV andthestrengthoftheOItripletatl ∼7774A˚,whichholdsfor theA–Gspectraltypes[4];ii)thestrengthandtheeffectivewavelengthoftheBalmer jump, as in the Barbier, Chalonge & Divan classification system [12], and iii) photo- metric indexes centred on selected Balmer lines, such as the b index used by [14], [15] and [95]. Another luminosity diagnostic for B9–A2 supergiants, the strength of 8 FabioBresolin theSiIIll 6347,6371lines,wasproposedby[66],but[19]showedthatthisindicator breaksdownforbrightSMCstars,asalikelyeffectofthereducedmetallicity. Work by [56] on the equivalentwidth of the Hg line, W(Hg ), led to a calibration of its relationship with absolute magnitude, lower values of W(Hg ) being found for high-luminositystars.AspectraltypedependenceamongtheBandAstarsofdifferent luminosityclasseswasalsodetected.Thecut-offatthebrightendofthisearlycalibra- tion(M >−7)wasimposedbythescarcityofsupergiantstarswithknowndistances. V Refinementstothecalibrationofthistechniquewereintroducedby[7]andby[37]. ThelatterusedaW(Hg )–M calibrationbasedonGalacticstarstoestimatethedistance V to the Magellanic Clouds, thus pioneeringstellar spectroscopyas a way to determine extragalacticdistances(seealso[13]).Morerecentcalibrationshavebeenproposedby [54](O–Adwarfsandgiants),[92]and[28](supergiants),accountingforthespectral typedependence.Amongtheapplications,Irecalltheworkby[5],whousedW(Hg )to determineluminosityclassesforalargenumberofstarsintheSMC. Correlations between Balmer lines of blue supergiants and stellar luminosity are not restricted to the use of Hg . A strong luminosity effect on the Ha line was found fromnarrow-bandphotometryofGalacticearly-typestarsby[3].Later[82]turnedtheir attentiontotheequivalentwidthoftheHa andHb linesinasampleofB–Asupergiants intheLMCandSMC.Theavailabilityintheseextragalacticsystemsofalargenumber ofbluesupergiantsuptoextremeluminosities,allatacommondistanceandwithsmall reddening,isamajoradvantageforcalibrationpurposes.TheHa andHb linesarein emissionforthevisuallybrightestbluestarsintheClouds,asrecognizedsincetheearly stellarspectroscopicworkinthesegalaxies[18],asignatureofthepresenceofextended atmospheresandmasslossthroughstellarwinds.Theluminosityeffectisparticularly stronginHa ,whichinlate-Bandearly-Asupergiantsbeginstoshowaclearemission nature,mostlywithacharacteristicP-Cygniprofile,aroundM =−7[65].Thefilling V of the line profiles by stellar wind becomes progressively smaller as one proceedsto Balmerlinesofhigherorder,sothatHg ,Hd ,etc.areincreasinglybetterdiagnosticsof stellar surface gravity.Examples of Ha , Hb and Hg line profiles are shown in Fig.3 forstarsofdifferentvisualbrightness,fromM =−9.3to−6.2intheLMC(thetwo V brightestobjects),theMilkyWay(HD92207)andNGC300(thethreefainterobjects), all plotted at the same intermediate spectral resolution. Excellent examples of higher resolution profiles of Balmer lines of B–A supergiantscan be found in the papers by [65],[40]and[89]. Forextragalacticdistancestudiesitisessentialthatthescatter inthe relationships between observablesbe small. In the case of the equivalentwidth of Ha and Hb vs. magnitude,thermsscatterfoundby[82]forabout40B5–A0supergiantsintheLMC was0.3–0.4mag.However,thescatter doublesforsimilarstars in theSMC, aneffect attributedtoametallicitydependenceofthemasslossrate.WhenHg andHd arecon- sidered[83]a∼0.5magdispersionisfoundintheLMC.Ontheotherhand,[92]and [28], using their W(Hg )–M calibration, claim a probable error ≃0.2mag (standard V deviation≃0.3mag),forasingleobservation.However,wenotethatinthelattertwo worksstarsbrighterthanM =−8areexcludedfromthecalibration,somewhatreduc- V ingitsusefulnessforextragalacticwork. BlueSupergiantsasaToolforExtragalacticDistances 9 Fig.3. Examples of Hg (left), Hb (middle) and Ha (right) lineprofiles in blue supergiants of different visual brightness (decreasing from top to bottom, as indicated in the legend) in the LMC,MilkyWayandNGC300.TheLMCandGalacticspectra(courtesyN.PrzybillaandR. Kudritzki)havebeendegradedtothe5A˚ resolutionoftheNGC300data Since the mid-1980’s not much work has been published about new applications oftheW(Hg )–M relationship,possiblybecauseofthesomewhatuncertainresultsob- V tainedintheCloudsand,mostofall,becauseofthelackofhigh-qualityspectraforblue supergiantsingalaxiesbeyondtheMagellanicClouds.Withtheavailabilityof8–10m telescopesinrecenttimesthespectroscopyofalargenumberofstarswellbeyondthe LocalGroupboundarieshas becomefeasible, and new calibrationsand tests of spec- troscopic luminosity diagnostics are likely to appear in future years. Several projects areunderwaywithinourgroupandotherstousethecurrentgenerationofmulti-object spectrographs(FLAMES,FORSandVIMOSattheVLT,DEIMOSatKeck,GMOSat Gemini)toobservealargefractionofthebrightstellarcontentingalaxiesoftheLocal Groupandbeyond. Afirst,modernversionoftheW(Hg )–M relationforBandAsupergiants,based V onCCDspectracollectedwithinourgroup,isreproducedinFig.4.Thesampleshown containsobjectsfromthefollowinggalaxies:NGC300[9],MilkyWay[40],LMCand SMC[60],M33andM31[50],[51].Ithasbeensubdivided,somewhatarbitrarily,into threeseparateclassesaccordingtothestellarspectraltyperange:earlyB(B0–B4,full symbols),B8–A0(opensymbols)andA1–A9(crosses). The slope of the empirical relationship in Fig.4 becomes shallower for the later spectral types, as indicated by the regressions corresponding to the B8–A0 (dashed line)andA1–A9(dottedline)classes.Thistrendwithspectraltypeiswell-knownfrom previouswork,withamaximumW(Hg )atagivenM aroundtypeF0forsupergiants V [37].Contrarytothecalibrationby[28],thenewdiagramispopulateduptoverybright magnitudes,M ≃−9.TherelationshipdefinedbytheB8–A0subgroupisrathertight, V withastandarddeviationofabout0.3mag(bottompanelofFig.4),andisgivenby M =−9.56(±0.15)+[1.01(±0.07)]W(Hg ). (2) V 10 FabioBresolin Fig.4.(Top)TheW(Hg)–M relationshipforB–AsupergiantsinNGC300,MilkyWay,Magel- V lanicClouds,M31andM33.Thesamplehasbeendividedintothreeclasses:B0–B4(fullsym- bols), B8–A0 (open) and A1–A9 (crosses). The regression lines for the latter two are shown. (Bottom)ResidualplotfromtheregressionsforB8–A0(opensymbols)andA1–A9supergiants (crossed).Thestandarddeviationisshownbydashedanddottedlines,respectively The scatter for the later A-type supergiants is 50% larger. A further subdivision of thisbroadclass mightrevealtightercorrelations,butcurrentlythisis preventedby thesmallnumberofobjectsavailable.Wenotetheratherlargediscrepancyoftheonly A0 Ia supergiantplotted for the SMC (AV 475) from the regression line, with an Hg linetoostrongforitsmagnitude.A metallicityeffectcannotbeexcludedatthisstage to explain this discrepancy.The measurementsof W(Hg ) in SMC supergiantsby [5], combined with M ’s obtained from magnitudes and spectral types in the catalog by V [6], are in generalagreementwith those shownin Fig.4, althoughthey show a larger scatter.Thismightbe,atleastpartly,relatedtothenecessityofredefiningthespectral typeclassificationatlowmetallicity,asshownby[47]. To conclude,byrestrictingthe analysisto a narrowrangein spectraltypes(B8 to A0) the scatter aboutthe meanW(Hg )–M relationis on the orderof0.3mag,which V

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.