Black Holes, Geons, and Singularities in Metric-Affine Gravity Phd Thesis by Antonio S´anchez Puente Under the supervision of Gonzalo Olmo Alba Programa de Doctorado en F´ısica Diciembre de 2016 A mis padres y hermanos i List of Publications This PhD thesis is based on the following publications: • Classical resolution of black hole singularities via wormholes. [1] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Eur. Phys. J., C76(3):143, 2016 • Classical resolution of black hole singularities in arbitrary dimension. [2] D.Bazeia,L.Losano,GonzaloJ.Olmo,D.Rubiera-Garcia,andA.Sanchez- Puente Phys. Rev., D92(4):044018, 2015 • Geodesic completeness in a wormhole spacetime with horizons. [3] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Phys. Rev.,D92(4):044047, 2015 • Impactofcurvaturedivergencesonphysicalobserversinawormholespace–time with horizons.[4] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Class. Quant. Grav., 33(11):115007, 2016 ii Contents iii Contents Notation vii Resumen en Espan˜ol ix 1 Introduction: General Relativity and the Schwarzschild Geom- etry 1 1.1 Einstein Equivalence Principle . . . . . . . . . . . . . . . . . . . 6 1.1.1 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Description of Physical Observers . . . . . . . . . . . . . . 10 1.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . 12 1.3.1 GeodesicsofaSphericallySymmetricandStaticSpace-time 15 1.3.2 TrajectoryofInfallingRadialLightRaysintheSchwarzschild Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Geodesic Congruences In The Schwarzschild Geometry . . . . . . 20 1.4.1 Evolution of a Geodesic Congruence . . . . . . . . . . . . 20 1.4.2 Congruence Around A Time-like Radial Geodesic For A Spherically Symmetric And Static Space-time . . . . . . . 23 1.4.3 EvolutionofthecongruencenearthesingularityofaSchwarzschild black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Charged Black Holes in GR . . . . . . . . . . . . . . . . . . . . . 26 1.5.1 Spherically Symmetric Electrovacuum Field . . . . . . . . 26 1.5.2 The Reissner-Nordstr¨om Metric and its Geometry . . . . 27 2 Introduction: Singularities and Quadratic Gravity 31 2.1 Defining a Singular Space-time . . . . . . . . . . . . . . . . . . . 31 2.2 Extension of Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 34 iv Contents 2.2.1 Conjugated Points . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Singularity Theorems . . . . . . . . . . . . . . . . . . . . 39 2.3 Extension of Geodesics for Discontinuous Metrics . . . . . . . . . 42 2.3.1 Two Dimensional Study . . . . . . . . . . . . . . . . . . . 44 2.4 Quadratic Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.1 Linearised GR . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.2 Fourth Order Derivatives and Ghosts in Quadratic Gravity 53 3 Metric-Affine Gravity 57 3.1 Connections and Curvature . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . 59 3.1.2 Curvature Tensors . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Metric-Affine Formalism . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1 General Lagrangian . . . . . . . . . . . . . . . . . . . . . 68 3.2.2 Role of Torsion in Metric-Affine Formalism . . . . . . . . 73 3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3.1 Analogy with Bravais Crystals . . . . . . . . . . . . . . . 74 4 Geonic Wormhole 77 4.1 General Method for Solving a Space-time with a f(R,Q) Action and Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.1 Spherically Symmetric Electrovacuum Field . . . . . . . . 80 4.1.2 Charged Black Hole for a Generic L =f(R,Q) . . . . . 81 G 4.1.3 Solutions for Quadratic Gravity . . . . . . . . . . . . . . . 83 4.2 Geometry of Solutions for Quadratic Gravity . . . . . . . . . . . 87 4.2.1 Large r limit . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 r →r limit . . . . . . . . . . . . . . . . . . . . . . . . . . 89 c 4.2.3 Coordinate Choices. . . . . . . . . . . . . . . . . . . . . . 91 4.2.4 Beyond r , Geonic Wormhole . . . . . . . . . . . . . . . . 93 c 4.2.5 Horizons and Conformal Diagrams of the Geonic Wormhole 95 4.2.6 Euclidean Embeddings . . . . . . . . . . . . . . . . . . . . 99 5 Geodesics 103 5.1 Geodesics of the Geonic Wormhole . . . . . . . . . . . . . . . . . 103 5.1.1 Radial Null Geodesics . . . . . . . . . . . . . . . . . . . . 106 5.1.2 Null Geodesics with L(cid:54)=0 . . . . . . . . . . . . . . . . . . 107 5.1.3 Radial Time-like Geodesics . . . . . . . . . . . . . . . . . 112 5.1.4 Time-like Geodesics with L(cid:54)=0 . . . . . . . . . . . . . . . 113 5.2 Extension of Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents v 5.3 Congruences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Waves 123 6.1 Scalar Waves and Regularity . . . . . . . . . . . . . . . . . . . . 123 6.2 Transmission Through The Wormhole Throat . . . . . . . . . . . 128 7 Wormholes in d-Dimensions 137 7.1 Born-Infeld Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.1 Born-Infeld Model for Electromagnetism . . . . . . . . . . 137 7.1.2 Born-Infeld inspired Gravity . . . . . . . . . . . . . . . . 138 7.2 Charged Black Holes in an Arbitrary Number of Dimensions. . . 139 7.2.1 Electrovacuum Stress-Energy Tensor in d-Dimensions . . 140 7.2.2 SolutionforSphericallySymmetricandStaticElectrovac- uum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 Conclusions 153 Agradecimientos 159 vi
Description: