ebook img

Black Holes, Geons, and Singularities in Metric-Affine Gravity PDF

196 Pages·2017·3.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Black Holes, Geons, and Singularities in Metric-Affine Gravity

Black Holes, Geons, and Singularities in Metric-Affine Gravity Phd Thesis by Antonio S´anchez Puente Under the supervision of Gonzalo Olmo Alba Programa de Doctorado en F´ısica Diciembre de 2016 A mis padres y hermanos i List of Publications This PhD thesis is based on the following publications: • Classical resolution of black hole singularities via wormholes. [1] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Eur. Phys. J., C76(3):143, 2016 • Classical resolution of black hole singularities in arbitrary dimension. [2] D.Bazeia,L.Losano,GonzaloJ.Olmo,D.Rubiera-Garcia,andA.Sanchez- Puente Phys. Rev., D92(4):044018, 2015 • Geodesic completeness in a wormhole spacetime with horizons. [3] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Phys. Rev.,D92(4):044047, 2015 • Impactofcurvaturedivergencesonphysicalobserversinawormholespace–time with horizons.[4] Gonzalo J. Olmo, D. Rubiera-Garcia, and A. Sanchez-Puente Class. Quant. Grav., 33(11):115007, 2016 ii Contents iii Contents Notation vii Resumen en Espan˜ol ix 1 Introduction: General Relativity and the Schwarzschild Geom- etry 1 1.1 Einstein Equivalence Principle . . . . . . . . . . . . . . . . . . . 6 1.1.1 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Description of Physical Observers . . . . . . . . . . . . . . 10 1.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . 12 1.3.1 GeodesicsofaSphericallySymmetricandStaticSpace-time 15 1.3.2 TrajectoryofInfallingRadialLightRaysintheSchwarzschild Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Geodesic Congruences In The Schwarzschild Geometry . . . . . . 20 1.4.1 Evolution of a Geodesic Congruence . . . . . . . . . . . . 20 1.4.2 Congruence Around A Time-like Radial Geodesic For A Spherically Symmetric And Static Space-time . . . . . . . 23 1.4.3 EvolutionofthecongruencenearthesingularityofaSchwarzschild black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Charged Black Holes in GR . . . . . . . . . . . . . . . . . . . . . 26 1.5.1 Spherically Symmetric Electrovacuum Field . . . . . . . . 26 1.5.2 The Reissner-Nordstr¨om Metric and its Geometry . . . . 27 2 Introduction: Singularities and Quadratic Gravity 31 2.1 Defining a Singular Space-time . . . . . . . . . . . . . . . . . . . 31 2.2 Extension of Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 34 iv Contents 2.2.1 Conjugated Points . . . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Singularity Theorems . . . . . . . . . . . . . . . . . . . . 39 2.3 Extension of Geodesics for Discontinuous Metrics . . . . . . . . . 42 2.3.1 Two Dimensional Study . . . . . . . . . . . . . . . . . . . 44 2.4 Quadratic Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.1 Linearised GR . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.2 Fourth Order Derivatives and Ghosts in Quadratic Gravity 53 3 Metric-Affine Gravity 57 3.1 Connections and Curvature . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . 59 3.1.2 Curvature Tensors . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Metric-Affine Formalism . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.1 General Lagrangian . . . . . . . . . . . . . . . . . . . . . 68 3.2.2 Role of Torsion in Metric-Affine Formalism . . . . . . . . 73 3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3.1 Analogy with Bravais Crystals . . . . . . . . . . . . . . . 74 4 Geonic Wormhole 77 4.1 General Method for Solving a Space-time with a f(R,Q) Action and Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.1 Spherically Symmetric Electrovacuum Field . . . . . . . . 80 4.1.2 Charged Black Hole for a Generic L =f(R,Q) . . . . . 81 G 4.1.3 Solutions for Quadratic Gravity . . . . . . . . . . . . . . . 83 4.2 Geometry of Solutions for Quadratic Gravity . . . . . . . . . . . 87 4.2.1 Large r limit . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 r →r limit . . . . . . . . . . . . . . . . . . . . . . . . . . 89 c 4.2.3 Coordinate Choices. . . . . . . . . . . . . . . . . . . . . . 91 4.2.4 Beyond r , Geonic Wormhole . . . . . . . . . . . . . . . . 93 c 4.2.5 Horizons and Conformal Diagrams of the Geonic Wormhole 95 4.2.6 Euclidean Embeddings . . . . . . . . . . . . . . . . . . . . 99 5 Geodesics 103 5.1 Geodesics of the Geonic Wormhole . . . . . . . . . . . . . . . . . 103 5.1.1 Radial Null Geodesics . . . . . . . . . . . . . . . . . . . . 106 5.1.2 Null Geodesics with L(cid:54)=0 . . . . . . . . . . . . . . . . . . 107 5.1.3 Radial Time-like Geodesics . . . . . . . . . . . . . . . . . 112 5.1.4 Time-like Geodesics with L(cid:54)=0 . . . . . . . . . . . . . . . 113 5.2 Extension of Geodesics . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents v 5.3 Congruences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Waves 123 6.1 Scalar Waves and Regularity . . . . . . . . . . . . . . . . . . . . 123 6.2 Transmission Through The Wormhole Throat . . . . . . . . . . . 128 7 Wormholes in d-Dimensions 137 7.1 Born-Infeld Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1.1 Born-Infeld Model for Electromagnetism . . . . . . . . . . 137 7.1.2 Born-Infeld inspired Gravity . . . . . . . . . . . . . . . . 138 7.2 Charged Black Holes in an Arbitrary Number of Dimensions. . . 139 7.2.1 Electrovacuum Stress-Energy Tensor in d-Dimensions . . 140 7.2.2 SolutionforSphericallySymmetricandStaticElectrovac- uum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 Conclusions 153 Agradecimientos 159 vi

Description:
1.4.3 Evolution of the congruence near the singularity of a Schwarzschild black hole . 24. 1.5 Charged Black Holes in GR
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.