ebook img

Black hole mass measurement using molecular gas kinematics: what ALMA can do PDF

1.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Black hole mass measurement using molecular gas kinematics: what ALMA can do

Mon.Not.R.Astron.Soc.000,1–19(2002) Printed23January2017 (MNLATEXstylefilev2.2) Black hole mass measurement using molecular gas kinematics: What ALMA can do 7 1 Ilsang Yoon1,2⋆ 0 2 1NationalRadioAstronomyObservatory,520EdgemontRoad,Charlottesville,VA22903,USA 2LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNetherlands n a J Accepted1988December15.Received1988December14;inoriginalform1988October11 0 2 ] ABSTRACT A Westudythelimitsofspatialandvelocityresolutionofradiointerferometrytoinferthemass G ofsupermassiveblackhole(SMBH)ingalacticcentreusingthekinematicsofcircumnuclear moleculargas,byconsideringtheshapesofgalaxysurfacebrightnessprofile,signal-to-noise . h ratios(S/N)ofposition-velocitydiagram(PVD)andsystematicerrorsduetospatialandve- p locitystructureofthemoleculargas.WearguethatforfixedgalaxystellarmassandSMBH - mass,thespatialandvelocityscalethatneedstoberesolvedincreasesanddecreasesrespec- o tivelywithdecreasingSérsic indexofthe galaxysurfacebrightnessprofile.We validateour r t argumentsusingsimulatedPVDsforvaryingbeamsizeandvelocitychannelwidth.Further- s a more,we consider the systematic effects to the inferenceof the SMBH mass by simulating [ PVDsincludingspatialandvelocitystructureofthemoleculargas,whichdemonstratesthat their impacts are not significant for the PVD with good S/N unless the spatial and velocity 1 scaleassociatedwiththesystematiceffectsarecomparabletoorlargerthantheangularres- v olutionandvelocitychannelwidthofthePVD frompurecircularmotion.Also,we caution 3 8 thatabiasingalaxysurfacebrightnessprofileowingtothepoorresolutionofgalaxyphoto- 6 metricimage can largelybiasthe SMBH mass byan orderofmagnitude.Thisstudy shows 5 thepromiseandthelimitofALMAobservationtomeasuretheSMBHmassusingmolecular 0 gaskinematicsandprovidesausefultechnicaljustificationforALMAproposalwithscience . goalofmeasuringSMBHmass. 1 0 Keywords: blackholephysics–methods:observational–ISM:kinematicsanddynamics– 7 galaxies:nuclei 1 : v i X r 1 INTRODUCTION Measuring the dynamical mass of SMBH for wide range of a blackholemassandhostgalaxytypeisrequiredtomakearobust Supermassiveblackholes(SMBH)ingalacticcentresinfluencethe inferenceoftheco-evolutionbetweenSMBHandhostgalaxyand formationandevolutionofthehostgalaxies(Richstoneetal.1998; alsoimportanttocalibrateotherempiricalmethods(e.g.,X-raylu- Kormendy&Ho2013)assuggestedbywell-knownempiricalre- minosity) for indirect mass measurement in order to increase the lationsbetweentheSMBHmassandhostgalaxyproperties(e.g., samplesizeof SMBHs.However, dynamical measurement of the Magorrianetal. 1998; Ferrarese&Merritt 2000; Gebhardtetal. SMBHmass ischallenging due totherequirement of high angu- 2000; Tremaineetal. 2002; Marconi&Hunt 2003; Häring&Rix larandvelocityresolution(Ferrarese&Ford2005).Exceptforthe 2004; Gültekinetal. 2009). Therefore understanding the forma- rarepopulationofgalaxieswithnuclearmaser(e.g.,Miyoshietal. tionandevolution of theSMBHisan integralpart of thecurrent 1995), stellar kinematics (mostly in early-type galaxies; e.g., galaxy formation theory (Silk&Mamon 2012). In observation, a Kormendy 1988; Boweretal. 2001; McConnelletal. 2011) and firststeptowardtheunderstandingoftheSMBHisademographic ionisedgaskinematics(inspiralandsomeearly-typegalaxies;e.g., studyforwiderangeofblackholemasses,howeveritisfarfrom Ferrarese,Ford&Jaffe 1996; Sarzietal. 2001; Barthetal. 2001) complete: the number of SMBHs with dynamical mass measure- havebeenusedtomeasurethedynamicalmass.Asaresult,most mentiscurrently70-80primarilyduetothedifficultyofachieving of theSMBHmass measurements havebeen obtained for asam- therequireddepthandresolution(Shankaretal.2016)andthede- pleofearly-typegalaxiesandspiralgalaxieswithprominentbulge tectionofSMBHswithlow(e.g.,denBroketal.2015;Sethetal. becausetheyhaveawelldevelopeddynamicallyrelaxedstellarsys- 2010, for MBH< 106M⊙) and high (e.g., McConnelletal. 2011, temandpowerfulenergysourceionisingthegas. DRAforFMBTH>1 0 10-M-⊙ ) dyDnamRicalmAassFhasTbeen r a-rel-yr e poDrted.RAFT -- DRAFT -- DRAFT -- Forcomprehensiveunderstandingoftheconnectionbetween theSMBHanditshostgalaxy,itisimportanttoexpandthemea- ⋆ E-mail:[email protected] surement of SMBH mass tothe regimeof small bulgeless galax- 2 IlsangYoon ies hosting lower mass SMBH. A recent study based on a large ofthegasdensityprofileandtheprofileshape,andothercompli- compilationofSMBHsshowsthattheempiricalrelationbetween cated velocity structures including inflow/outflow, random veloc- SMBHmassandstellarvelocitydispersionknownasM σ re- itymotionanddiscwarpmaycontaminatetheobservedmolecular − lation(e.g.,Tremaineetal.2002)hasadifferentnormalizationfor gas kinematics and affect our inference of the SMBH mass. We early-andlate-typegalaxies(McConnell&Ma2013).Inaddition, considertheseeffectsbysimulatingtheposition-velocitydiagrams there are strong evidences of the low luminosity AGN in bulge- (hereafter PVD) for a range of observing parameters and proper- less galaxies or dwarf galaxies hosting low mass SMBH (e.g., ties of the galaxy and the circum nuclear molecular gas. In par- Filippenko&Ho 2003; Reinesetal. 2011; McAlpineetal. 2011; ticular,thelimitsofthemeasurableSMBHmassgiventhesesys- ArayaSalvoetal.2012)whoseinferredmassesarelargelyuncer- tematiceffectsandtheresolutionofinterferometryhavenotbeen tainwithoutaccuratedynamicalmassmeasurement.Furthermore, discussedindetailusingrealisticsimulationsof theobserved gas alargenumberofgalaxiespresumablyhostingdustobscuredAGN kinematics,whichwillbeusefulfortheSMBHmassmeasurement (e.g., Mateosetal. 2013; Satyapaletal. 2014) has been revealed usingALMAobservations.Inaddition,itwillalsoserveasause- by red mid-IR colour (Sternetal. 2012). For those low mass or ful guideline for the technical justification of ALMA proposal to dustobscuredgalaxies,itmaybeevenmoredifficulttoapplythe observemolecular gaskinematics ingalaxiesfor differentgalaxy currentmethodsusingstellarandionisedgaskinematicsiftheydo surfacebrightnessprofilesandrealisticobservingconditions. nothaveawell-developedbulgeforreliableradialvelocitydisper- Inthiswork,westudytheparameterspaceoftheangularand sionmeasurementorhavedustobscuringtheionisedgasandalso velocityresolutionofradiointerferometryforrangesofthegalaxy affectingthegalaxyimageanalysisformassmodeling. types and the structure of circum nuclear molecular gas in order Recentlythehighangularandvelocityresolutionradiointer- to characterise how the information of molecular gas kinematics ferometry enables to make a use of the observation of molecular canbebestutilisedfortheSMBHmassmeasurement.InSection gaskinematicsformeasuringthedynamicalmassofSMBH(e.g., 2,weprovideasimpleargumenttoderiverelevantspatialandve- Davisetal.2013a;Onishietal.2015;Barthetal.2016).Molecu- locityresolutionforgivengalaxysurfacebrightnessprofileshape largasasakinematictraceroftherotationvelocityingalacticcen- and discuss the systematic effects due to the spatial and velocity tre has advantages; in principle it is possible in any galaxy type structureofthemoleculargasandtheeffectofpoorresolutionof with associated molecular gas if it exists, and the high angular galaxyimagetodeterminethesurfacebrightnessprofileshapeand resolutions routinelyachievable bynew (sub)-millimetreinterfer- itsimpacttotheinferenceofSMBHmass.InSection3,wesim- ometry(e.g.theAtacamaLargeMillimetre/sub-millimetreArray; ulateobservedPVDsandmeasuretherotationvelocitytoconfirm ALMA) mean it may be possible to probe larger volumes of the ourargumentsandtesttheimpactofsystematicerrorsinthePVD universethaneverbefore,enablingacompletemasslimitedcensus analysis.InSection4,wediscussthespatialresolutionandvelocity ofSMBH(Davis2014). channel width tomeasure theSMBH massas aconvenient guid- Withincreasingimportanceandpotentialofthemoleculargas anceforALMAproposal.InSection5wesummarisetheresults. kinematicsforSMBHmassmeasurement,afigureofmeritofthe Inthiswork,weusetheconcordanceLCDMcosmologicalmodel: moleculargaskinematicshasbeendiscussedinDavis(2014)which Ωm = 0.3, ΩΛ = 0.7 and H0 = 100h kms−1Mpc−1 where shows that the difference of rotation velocity with and without h=0.7. SMBHcanbedetectedbytheobservationofmoleculargaskine- maticsoutsidetheblackholesphereofinfluenceusingthesimple argumentbasedonanassumedgalaxyrotationvelocityatdesired angularresolutionoftheinterferometryandthattherequiredangu- 2 IMPACTOFSUPERMASSIVEBLACKHOLETOTHE larresolutionbecomeslargerwithdecreasingconcentration(mea- ROTATIONVELOCITY suredbylogarithmicslopewithin0.1′′radius)ofthegalaxysurface To measure the SMBH mass using gas kinematics, one needs to brightnessprofile. accuratelymeasuretherotationvelocityatthegalacticcentreand Although some useful formulae and discussions using decomposeintotwocomponents: onefromthepointmassdueto galaxy samples with velocity measurement from ATLAS3D sur- theSMBHandtheotherfromtheextendedmatterdistributiondue vey (Krajnovic´ 2013) have been provided in Davis (2014), their tothegalaxystellarcomponent.Thetechniqueisnotformallyvalid arguments are based on a single molecular gas parcel rotating inthecaseofdynamicallyhot,warpedorinflowing/outflowinggas around SMBH with assumed rotation velocity (i.e., 100 km/s) at (Davis2014).HoweverlikeinDavis(2014),inthissection,weas- thedesiredangularradius,withoutconsideringobservationaleffect sumethatthemotionofcircumnucleargasispurelycircularand (e.g. beam smearing), systematic motions (e.g., non-circular mo- onlygovernedbytheSMBHandgalaxystellarmass,andtheaddi- tion)andspatialdistributionof moleculargas.Inaddition,unlike tionalsystematiceffectswillbediscussedlater. ATLAS3D survey,detailkinematicinformationisnotavailablefor For a flat gas disc sharing the same inclination (i) as the mostofgalaxies,whichisinconvenientforadoptingsimplerelation galaxy,rotationvelocityofagasparcelatradiusris inDavis(2014)todeterminetherelevantphysicalscaleforagiven galaxytoresolvethegaskinematicsfortheSMBHmassmeasure- GM V(r) = V(r) 2+ BH sin(i) (1) ment.ItisusefultogeneraliseandexpandtheworkinDavis(2014) rot r gal r tothewiderangeofobservingandgalaxyparameterspacetopro- vide aconvenient and useful guideline for estimatingtheangular whereV(r)galisacircularvelocityofthegalaxyduetothegalaxy andvelocityresolutionoftheproposedinterferometryobservation stellarmassdistributionandMBHistheSMBHmassinthegalaxy withoutrelyingonapriorknowledgeofgalaxyrotationvelocity. centre.V(r) = GM(<r) whereM(<r)istheenclosedmass Indeed,moleculargaskinematicsingalacticcentreiscompli- atradiusr angadl estqimatedr byconvertinggalaxysurfacebrightness DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- cated.ItisgovernedbytheSMBHandgalaxystellarmassdistri- distribution to stellar mass distribution, using a mass-to-light ra- butiondeterminedbygalaxysurfacebrightness profileshapethat tio(M/L)attheobservingband.RotationvelocityV(r) isthen rot varieswithdifferentgalaxytypes.Alsosignal-to-noiseratio(S/N) measuredfromthePVD. SMBHmass measurementusingALMA 3 High-resolutionPVDisrequiredtoaccuratelymeasurethero- tationvelocityandALMAcaneasilyachieveasub-arcsecresolu- tion which resolves the black hole sphere of influence (SOI) for m(Doasvtisof20la1r4g)e,wSMhoBseHrsadwiuitshisMcBomHm>onl4y×defi1n0e8dMa⊙s and i > 30◦ 103 MMgBaHl==11.0.0··1100171[[MM⊙⊙]] i=60◦ r = GMBH (2) Distance=15.29[Mpc] SOI σ∗2 s] whereσ∗ isthestellarvelocitydispersion.Davis(2014)findsthat km/ 102 [ tmheasrseiqsuairpepdroaxnigmualaterlyretswolouttiiomnestoladregteerctthtahnereffecbtyocfablcluaclaktinhgolea ocity Vdiff SOI el maximum angular radius where the velocity difference with and V withoutSMBHisdetectedbyafactorof5timeslargerthantheve- 101 Total locitychannelwidth,usingatypicalgalaxyrotationvelocity(i.e., Star BH V(r)gal = 100 km/s)measured bytheATLAS3D survey atanas- n=1 reqv n=2 sumed angular radius resolved by Combined Array for Research n=3 inMillimeter-waveAstronomy(CARMA).However,asalsomen- 100 n=140−3 10−2 10−1 100 101 102 tionedintheintroduction,estimatinggalaxyrotationvelocityasa Radius[arcsec] functionofradiususingmoreeasilyavailablephotometricinforma- tionismoreusefulandconvenienttodeterminetheangularresolu- Figure1.Rotation velocities ofgalaxies withM∗ = 1011M⊙ contain- tionandvelocitychannelwidthfordetectingSMBHingalaxiesfor ingcentralSMBHwithMBH =107M⊙.DifferentcolourindicatesSérsic awiderangeofmorphologywithoutpriorknowledgeofthegalaxy indexofthegalaxyandKeplerianrotationduetotheSMBHisshownby kinematics. theblackdottedline.Theradius,wherethegalaxyrotationandtheSMBH Inpractice,observedrotationvelocityV(r)obsisdifferentfrom rotationvelocityareequal(reqv)foreachgalaxysurfacebrightnessprofile, V(r) inequation(1)duetotheuncertaintiesofpositionandve- isindicatedbythearrowwiththesamecolourasthecorrespondingrota- rot tioncurve.VelocitydifferenceV betweenthetotal(galaxy+SMBH)and locitymeasurementsandthecomplicatedvelocitystructureinthe diff galaxyrotationvelocity atr isalsoshownbythearrowwiththesame gas.However,inthissection,weassumeV(r) =V(r) byne- eqv obs rot colourscheme. glectingcomplicatedvelocitystructureandsimplifyingtheuncer- taintiesinPVDbyconsideringonlyinterferometrybeamsizeand velocitychannelwidthandweconsiderothersystematiceffectsby profileres givesagood approximation withmuchlesserror than simulatingPVDsinSection3.4. theuncertainty inre fromthefittingprocessaslongasrb re ≪ (Trujilloetal.2004).Sointhiswork,weuseequation(4)forcore- Sérsicgalaxymodel. 2.1 RotationVelocity To compute the enclosed mass within r, we integrate I(r) up to r being normalised by the total luminosity ∞I(r)dr and WecomputeV(r) usingM andV(r) inequation(1).Tocom- 0 rot BH gal multiplythebolometricluminosityandmass-to-ligRhtratio.Weuse puteV(r) ,weadoptSérsicmodelsforgalaxysurfacebrightness gal a fiducial mass-to-light ratio, M/L = 1.0 and adjust an abso- profiletoestimatetheenclosedmassataradiusr.Surfacebright- lute magnitude parameter to obtain galaxy stellar mass that we nessprofileofSérsicmodel(Sersic1968)varieswithashapepa- want to control. Given galaxy stellar mass M∗ and Sérsic index rameternandproducesaprofilecontinuouslychangingfromdisc n,weassignthehalf-lightradiusofthegalaxyusingtherelationin toellipticalgalaxies.ItisalsopossibletoextendSérsicmodel to Shenetal.(2003): incorporateacore-deficitofellipticalgalaxiesbyusingcore-Sérsic msuorfdaecle(eb.gri.g,hGtnraehssampreotfialle.2is00m3)e.aAsulrthedoufgrhomintphreachtiicgeh,trheesoglaultaixoyn res =0.1(cid:16)MM⊙∗(cid:17)0.14(cid:16)1+ 3.98×M10∗10M⊙(cid:17)0.25 ,ifn<2.5 (5) galaxy image with additional modeling of the details of the pro- kpc 2.88×10−6(cid:16)MM⊙∗(cid:17)0.56 ,ifn>2.5 filesuchasnuclearstarcluster(e.g.,Emsellem,Monnet&Bacon IfgalaxystellarmassM∗andSérsicindexnaregiven,theenclosed 1994),weuseSérsicparametricmodel inthisstudybecause itis stellarmassM∗(<r)is flexibletodescribeawiderangeofgalaxysurfacebrightnesspro- filesverywellandthuseffectivetoshowtheimpactofgalaxysur- rI(r)dr γ(2n,x) facebrightnessprofileshapeontheSMBHmassmeasurement. M∗(<r)=M∗ R∞0 I(r)dr =M∗ Γ(2n) (6) 0 SurfacebrightnessprofileofSérsicmodelis R where x = b ( r )1/n. For n > 0.36, b is approximated as I(r)=I(0)exp[ bn(r/res)1/n] (3) follows(Ciottin&rBesertin1999). n − withI(0)beingthecentralintensity,res thehalf-lightradius,and b 2n 1+ 4 + 46 + 131 2194697 +O(n−5). ntheshapeparameter. n≈ −3 405n 25515n2 1148175n3−30690717750n4 Surfacebrightnessprofileofcore-Sérsicmodelis (7) I(r)=I [(rb)γu(r r)+eb(rb/re)1/n−b(r/re)1/nu(r r )] (4) Figure 1 shows the rotation velocity of a galaxy with incli- b r b− − b nationi = 60◦ and M∗ = 1011M⊙ containing 107M⊙ SMBH, withbeingu(r a)theHeavisidestepfunction,incaseofsharp fordifferentsurfacebrightnessprofileshapescharacterisedbySér- DRAFT -−- DRAFT -- DRAFT -- DRAFT -- DRAFT -- transitionatr (Trujilloetal.2004).Althoughthisisdifferentfrom sic index n. In x-axis, we use angular size at a given luminos- b theoriginalcore-Sérsicmodelprofile(Grahametal.2003),replac- itydistance of the galaxy (roughly at a distance of Virgocluster, ingbwithb andhalf-lightradiusr withthatoftheouterSérsic 15 Mpc) instead of physical size for easy comparison to the n e ≈ 4 IlsangYoon angular resolution of ALMA. Each colour in Figure 1 represents gionsmallerthantheFWHMofHSTWFC3(0.15′′ 1)andJWST theSérsicindexrangingfrom1to4.Rotationvelocityshownby NIRCam(0.068′′ 2) in J-band are shown by light and dark grey the solid lines are decomposed into the rotation velocity due to area to show the limit of angular resolution beyond which the the SMBH and the galaxy stellar mass distribution. Dotted lines galaxy surface brightness profile can be accurately measured us- and dot-dashed lines are the rotation velocity due to the SMBH inghighresolutionnear-infraredimage.Althoughthecurrentstate- mass and galaxy stellar mass respectively. We also annotate the of-the-art resolution image for SMBH mass measurement using angular radius r where the rotation velocity due to the SMBH HST/ACSI-bandimagehasslightlysmallerFWHM( 0.1′′),the eqv ≈ andduetothegalaxystellarmassdistributionbecomeequal(i.e., importantquestioniswhethertheveryinnerregionwherethero- M∗γΓ(2(2nn,x)) = MBH) and the velocity difference Vdiff at reqv be- tationvelocityisdominatedbytheSMBH,isresolvedbothbythe tween the total rotation velocity and the rotation velocity due to photometricPSFandtheinterferometrebeamornot,andtherefore the galaxy stellar mass. If the beam sizeislarger than r or the theactualsizeofFWHMisnotrelevantforthediscussioninthis eqv velocitychannel widthislargerthan V for thegiven beamsize section. diff resolving r , the velocity difference V is not resolved. So r InFigure2,r forallgalaxyprofilesislargerthanr and eqv diff eqv eqv SOI and Vdiff determines the required beam size and velocity channel all colour solid lines except for the galaxy with n = 4, M∗ = width∆V (definedas∆V = 31VdifffordetectingVdiffat3σ)ofthe 1011M⊙ and MBH> 106M⊙ are larger than rmax by a factor of radiointerferometry. few for galaxy with n = 4 and by more than an order of mag- Figure1indicatesthatatfixedgalaxystellarmass,theimpact nitude for galaxy withn = 1, and this deviation becomes larger of Keplerian motion due to the SMBH extends toa larger radius for thelower SMBH mass. Thebest agreement between r and max asmsgaalllearxSyésrusrifcaicnedbexri)g.hFtonresesxpamropfillee,btheecormoteastiolenssvecloonccietyntdrauteedto(tih.ee. rfoeqrvMisBsHe>en1f0o7rMth⊙ewgahliacxhyiswsiitmhiMlar∗to=th1e0g1a1lMax⊙iesanindDnav=is3(20∼144) SMBHat0.5′′ scaleis5timessmallerthanthatduetothegalaxy usedforderivingr .However,r wasdeterminedfor5σstatis- max max stellarmassifthegalaxysurfacebrightnessprofilefollowstheel- ticalsignificance(Davis2014)andthusr canbelargerbylinear max liptical galaxy’s (n = 4 shown by red curve) while the rotation factor of the inverse of significance level in case of small veloc- velocityduetotheSMBHissameastherotationvelocitydueto ityerror(i.e.,channel width)comparedwiththerotationvelocity the galaxy stellar mass at the same 0.5′′ angular scale if the sur- (seeequation(9)inDavis(2014)),ifloweringthesignificancelevel. facebrightnessprofileisexponential(n=1shownbybluecurve). Asthegalaxysurfacebrightnessprofilebecomeslessconcentrated, Thisimpliesthat theeffect of SMBH for fixedmassM can be therequiredbeamsizefordetectingSMBHbecomeslargeratfixed BH detectedbylargerangularresolutionasthegalaxysurfacebright- M andthedetectableSMBHmassbecomessmalleratfixedbeam BH nessprofilebecomeslessconcentratedwhichisconsistentwiththe size.Thisisanadvantagefordetectinglowermassblackholere- finding in Davis (2014). If lowering the SMBH mass, the dotted sidinginasmallbulgelessgalaxy. linemoves downwards and thus, for fixedangular resolution, the Inthesamemanner,wealsoshowthevelocitychannelwidth reqv oflargerSérsicindexgalaxystartstobeunresolvedfirst.This ∆V (= 13Vdiff)fordifferentSMBHmass,foragalaxywithM∗ = impliesthattheeffectofSMBHforthegivengalaxystellarmass 1010M⊙ (Figure 3(a)) and M∗ = 1011M⊙ (Figure 3(b)). Ob- andangular resolution, canbemoreeasilydetected forthelower servedrotationvelocitydepends ongalaxyinclination(i)andwe black hole mass if the galaxy surface brightness profile becomes assumei = 60◦ inFigure3.Therequiredvelocitychannelwidth less concentrated. This will be discussed further in the following for detecting SMBH becomes smaller at fixed M and the de- BH section. tectable SMBH mass becomes larger at fixed velocity channel width,asgalaxysurfacebrightnessprofileislessconcentrated.This isadisadvantageforthesmallbulgelessgalaxy.Howevertherange 2.2 SpatialandVelocityResolution ofvariationofthevelocitychannelwidthfordifferentgalaxySérsic Theradiusr defined inDavis(2014) wheretheKeplerianmo- indexiswithinafactoroffewthatismuchsmallerthanthevaria- max tionduetoSMBHshowsastatisticallysignificantdeviationfrom tionofangularresolution(i.e.,orderofmagnitude)andALMAhas therotationvelocityduetothegalaxystellarmassdistribution,is sufficientvelocityresolution(6 1km/s)tocovertherangeofthis largerthanthedefinitionoftheblackholesphereofinfluencer channelwidthinFigure3.Sothepracticalbenefitisthespatialres- SOI (equation(2)).UsinggalaxysamplesintheATLAS3D,Davis(2014) olution. However wenote that smallvelocity channel widthdoes findsthatr =1.92r at5σstatisticalsignificancelevel. notimprovethesignificanceofthedetectionifvelocityuncertainty max SOI ForgivenM wecomparethreedifferentradii,r ,r and includingsystematicandrandommotionislargerthanthevelocity BH SOI max r forthesamestellarmassgalaxieswithdifferentsurfacebright- channelwidthasalsonotedbyDavis(2014). eqv nessprofiles.Blackholer iscomputed bycombining equation SOI (2) and the relation between the SMBH mass and the stellar ve- locitydispersioninMcConnell&Ma(2013).Figure2showsthese 2.3 EffectsofSpatialandVelocityStructureofMolecular Gas radii(i.e.,angularsizesforgivengalaxydistance)fortherangeof SMBH masses, for a galaxy with M∗ = 1010M⊙ (Figure 2(a)) Theaboveargumentregardingthespatialandvelocityresolutionis andM∗ = 1011M⊙ (Figure2(b)).SolidblacklineisrSOI,dashed fortherotatingmoleculargasfollowingthegravitationalpotential blacklineisrmaxandcolouredsolidlinesarereqvfordifferentSérsic from the central SMBH and the galaxy stellar mass. In a realis- indices(n=1,2,3and4).Thefollowingrelationprovidesacon- ticsituation,weneedtounderstand how significanttheeffectsof venientwaytodeterminereqvforagivenratiobetweentheSMBH spatialandvelocitystructureofmoleculargasaretotheobserved massandthegalaxystellarmass rotationvelocity.Itisnottrivialtoquantifyhow thesesystematic DRAMBFHT= γ ( 2n-,x-) . DRAFT -- DR(8)AFT -- DRAFT -- DRAFT -- M∗ Γ(2n) 1 http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/c07_ir0 wherex=bn(rers)1/nandbnisestimatedbyequation(7).There- 2 http://www.stsci.edu/jwst/instruments/nircam/PSFs/ SMBHmass measurementusingALMA 5 109 109 RSOI JWSTF150W RSOI JWSTF150W Rmax Rmax Reqv,n=1 Reqv,n=1 108 Reqv,n=2 HSTF150W 108 Reqv,n=2 HSTF150W Reqv,n=3 Reqv,n=3 Reqv,n=4 Reqv,n=4 107 107 ]⊙ ]⊙ M M [H106 [H106 B B M M 105 105 104 Mgal=1.0·1010[M⊙] 104 Mgal=1.0·1011[M⊙] Distance=15.29[Mpc] Distance=15.29[Mpc] 103 10−3 10−2 10−1 100 101 102 103 10−3 10−2 10−1 100 101 102 Radius[arcsec] Radius[arcsec] (a) M∗=1010M⊙ (b) M∗=1011M⊙ Figure2. Relation between theSMBH massand thethree different angular scales: rSOI,rmax andreqv foragiven galaxy stellar massM∗.ForrSOI,we combineequation(2)andtherecentcompilation ofM −σrelation (McConnell&Ma2013).Forr ,weusethebestfitrelation betweenr andr max SOI max (r =1.92r )inDavis(2014).Forr differentcoloursindicategalaxysurfacebrightnessprofilescharacterisedbydifferentSérsicindexn. max SOI eqv 109 109 n1.0 n1.0 n2.0 n2.0 n3.0 n3.0 108 n4.0 108 n4.0 107 107 ]⊙ ]⊙ M M [H106 [H106 B B M M 105 Mgal=1.0·1010[M⊙] 105 Mgal=1.0·1011[M⊙] i=60◦ i=60◦ 104 104 10130−1 100 101 102 10130−1 100 101 102 ∆V (Vdiff/3)[km/s] ∆V (Vdiff/3)[km/s] (a) M∗=1010M⊙ (b) M∗=1011M⊙ Figure3.SameasFigure2,butforthevelocitychannelwidth∆V. effects influence the detection of SMBH mass using analytic ar- velocitytracersatthecentreandthePVDanalysiswillnotprobe guments.Howeverwewillquantitativelydiscusstheireffectshere theregionwiththelargeststatisticalsignificanceinvelocityspace and show their significance using simulations of PVD in Section for detecting SMBH. In addition, for the same background noise 3.4. and the same amount of total flux from the molecular gas, if the gas profile shape in central region is homogeneous across many First,weconsiderthesystematiceffectduetothespatialdis- synthesised beams, a peak flux at the centre where the impact of tribution of the molecular gas. Recent ALMA observations have SMBHmassisobservedthemostbecomesrelativelylowandthe revealed detail structure of molecular gas at a 10-100 pc scale. signatureofSMBHwillbelesssignificantthanthatforthemolec- Mostofthemshowdisclikemorphologywithandwithoutholeat ulargaswithmoreconcentratedprofile,whichimpliesthatthegas thecentre(e.g.Izumietal.2013;Combesetal.2014;Onishietal. discprofileshapemightaffecttheuncertaintyofrotationvelocity 2015; Xuetal. 2015). If the gas distribution is continuous and measurement and the resulting SMBH mass. Since the proposed smooth, the central region of PVD is sampled well and the im- DRAFT -- DRAFT -- DRAFsenTsitiv it y-re-qu ir emDentoRfALAMAFisdTefine d p-er-be am D,theflRuxvAari-FT -- pact of SMBH to the rotation velocity, if significant, can be de- ationduetothespatialgeometryofgasdiscwithinALMAbeam tected.However,ifthemoleculargasdistributionhasaholeatthe may impact modeling gas kinematics given that the geometry of centreandthesizeoftheholeislargerthanr ,therewillbeno eqv 6 IlsangYoon circum nuclear molecular gas is not known a priori. Also if the bution (not by the SMBH) and the difference between the rota- geometryofmoleculargasdiscbecomesclosertotheface-on,the tionvelocitiesdue toslightlydifferent surface brightness profiles projectedlineofsightvelocitydecreasesandsmallervelocitychan- of the galaxy can not be discriminated. The core-Sérsic galaxy nelwidthisrequiredtoresolvethevelocitydifferencebetweenthe has M∗ = 1011M⊙ and MBH = 106M⊙, and follows the sur- pure galaxy rotation and the galaxy-SMBH rotation. In contrast, face brightness profile with Sérsic index n = 3 and core radius ifthe galaxyisedge onand thebeam sizeistoolargetoresolve r = 0.01r (r r inequation(4)).Weconsidertwodifferent b e b e ≪ the kinematic structure along the minor axis, the velocity profile coreprofiles: nearly flatcore using γ = 0.1 and power law core issmearingduetothevelocitycomponentsmigratedfromthemi- usingγ = 0.5,(seeequation(4)),representingthetypicalvalues noraxis(Barthetal.2016).Anotherpotentialproblemmightbea forellipticalgalaxiesseeninTrujilloetal.(2004). warp in the gas disc. Warp is prominent in HI distribution (e.g., Figure4(a)and4(b)showstherotationvelocitiesduetodiffer- García-Ruiz,Sancisi&Kuijken2002)butalsoseeninthenuclear entgalaxysurfacebrightnessprofilesandSMBHmassesandtheir molecular gas disc (Sofue&Rubin 2001). It introduces a bias in residualsfromthetruerotationvelocity.AsinFigure2,theregion theinclinationcorrectionandunderestimatestherotationvelocity smallerthanthePSFFWHMforHSTWFC3andJWSTNIRCam depending onthelocationofthemajoraxis(Verganietal.2003), isshownbylightanddarkgreyarearespectively.Thehighestangu- whichcanbemitigatedbymodelingfull3Ddatacube. larresolutionofALMArangesfrom0.006′′at675GHzto0.037′′ Second, we consider the systematic effect due to the veloc- at110GHz.Weassumea0.01′′beamsizeasatypicalALMAres- ity structure of molecular gas. In real, the velocity structure in olution for the most extended array configuration and show it by molecular gasismorecomplicatedthanthepurecircularmotion. verticaldashedlineinFigure4. This velocity structure which we call non-circular motion in this IntheupperpanelofFigure4(a)and4(b),weshowthreedif- workincludesthegasinflowduetoangular momentumloss(e.g. ferentrotationvelocities.First,theredlineshowsthetruerotation Combesetal.2014)andthegasoutflow duetostrongstellarand velocityofthecore-Sérsicgalaxywithnearlyflatcore(γ = 0.1, AGNfeedback(e.g.García-Burilloetal.2014),bothofwhichhave Figure4(a))andpowerlawcore(γ =0.5,Figure4(b)).Second,the beenobservedbyALMA.Forasetofmoleculargasparcelswithin blacklineshowstherotationvelocityofthegalaxythatfollowsthe radiobeamalongthelineofsight atacertainprojecteddistance, surfacebrightnessprofilewiththesamenasthecore-Sérsicgalaxy thisbulkmotion(infloworoutflow)contributestothelineofsight andthesameSMBHmassbutwithoutthecore.Last,theblueline velocity of the gas parcels positively or negatively depending on shows the galaxy rotation velocity that shows a better agreement wherethegasparcelsarelocated.Thiswillcauseavelocityspread with the true rotation velocity (red) for the scale larger than the inPVDandatagivenradius,makethePVDthickeralongtheve- ALMAangularresolution,byusingverysmall(orno)adjustment locityaxis.Asaresult,thesignature ofKeplerian rotationowing oftheSérsicindexandmass-to-lightratiowhileusinganorderof totheSMBH willnot besignificant. Althoughthedriving mech- magnitudedifferentSMBHmass.Indetail,thebluelineinFigure anismsaredifferent,bothinflowandoutflowhavethesameeffect 4(a)showsthecasewherethegalaxyhas5%smallerSérsicindex tothePVDswiththeonlydifferenceinthevelocitysign.Inaddi- (n= 2.85)and3%largermass-to-lightratio(M/L = 1.03)than tion,thereisarandommotioninthecircumnuclearmoleculargas thetruevaluesbuthasa10timessmallerSMBHmass(105M⊙). whichalsointroducesadispersioninthevelocityaxisinPVD. ThebluelineinFigure4(b)showsthecasewherethegalaxyhasthe sameSérsicindex(n=3.0)andmass-to-lightratio(M/L=1.0) as the model galaxy shown by the black line, but has a 12 times 2.4 GalaxySurfaceBrightnessProfileBias moremassiveSMBH(1.2 107M⊙). × TomeasuretheSMBHmassusingrotationvelocityofthecircum InthelowerpanelofFigure4(a)and4(b),weshowtheresid- nuclear molecular gas,thesurfacebrightness profileat thegalac- ualvelocitiesfromthetruerotationvelocity(redcurvesintheup- ticcoreneedstobeaccuratelydetermined(e.g.,Ferrarese&Ford per panels), for the model galaxies in the upper panels using the 2005),whichrequireshighangularresolutiontoresolver .How- same colour. For both cases of the biased galaxy surface bright- eqv ever,theangularresolutionofgalaxyimagemightnotbesufficient ness profile with largely biased SMBH mass that shows a better for distant galaxies toaccurately characterise thecore luminosity agreementwiththetruerotationvelocity,thevelocitydifferenceat profilewhileradiointerferometrystillhasasufficientresolutionto angularscalelargerthantheassumedALMAresolution(0.01′′)is resolver . smallerthanthetypicalvelocitychannelwidthadoptedformeasur- eqv Detail analysis of the high resolution HST images of early- ingSMBHmassusingmoleculargaskinematics(e.g.,10km/sin type galaxies reveals that the galaxy core surface brightness pro- Davisetal.(2013a))andtheirvelocityresidualatthespatialscale files deviate from the Sérsic model fit and have a flat core resolvedbyHSTandALMAissmallerthanthevelocityresiduals or a power law slope (e.g., Trujilloetal. 2004) although Sér- ofthegalaxywiththesameglobalSérsicindexasthecore-Sérsic sic model is a good fit to the overall profile in general (e.g., galaxy(bluelines). Caon,Capaccioli&D’Onofrio1993;Graham2001).Ifthegalaxy Therotationvelocityofthetruecore-Sérsicgalaxy(redline) coreprofileisnotresolved,thestellarmassdistributionatthegalac- andthesameSérsicgalaxyprofilewithoutcore(blackline)arein- ticcentreissystematicallybiasedandasaresult,thederivedrota- distinguishableatthescaleofHSTandJWSTresolution( 0.1′′) ≈ tionvelocityisalsobiased.Thisbiasintroducesalargesystematic witha1-2 km/s velocity difference as seen in thelower panel of errorintheSMBHmassmeasurement.InSection3.5,weillustrate Figure4(a)and4(b)asshownbyblackline.Thereforeifthecore howthebiasinthegalaxysurfacebrightnessprofilecanimpactthe ofthegalaxysurfacebrightnessprofileisnotresolved,theSérsic SMBHmassmeasurement. galaxyprofileswiththeunresolved core(blacklinesintheupper In Figure 4, we show the rotation velocity of a galaxy with panels of Figure 4) may be the best determination of the galaxy SMBH using core-Sérsic galaxy surface brightness profile with stellarmassdistribution.Howevertherotationvelocityofthisbi- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- corebeingunresolvedbyputtingthisgalaxyatlargedistancesuch ased profile is not a good match to the true rotation velocity of that at a scale of the HST and JWST seeing, the galaxy rotation thecore-SérsicgalaxyatangularscalesimilartotheALMAbeam velocity is largely dominated by the galaxy stellar mass distri- (0.01′′)andthebluelinewithslightlyadjustedgalaxyparameters SMBHmass measurementusingALMA 7 10−5 10−4 10−3 10−2 10−1 100 101 10−5 10−4 10−3 10−2 10−1 100 101 103 103 Distance=222.29[Mpc] Distance=222.29[Mpc] i=60.0◦ i=60.0◦ ALMA M∗=1.0·1011M⊙ ALMA M∗=1.0·1011M⊙ JWSTF150W JWSTF150W s] HSTF150W s] HSTF150W m/ m/ k k y[ 102 y[ 102 ocit ocit el el V V Total:Core-Sersic(true),n=3.0γ=0.1 Total:Core-Sersic(true),n=3.0γ=0.5 BH:MBH=1.0·106[M⊙] BH:MBH=1.0·106[M⊙] Total:n=3.0MBH=1.0·106[M⊙] Total:n=3.0MBH=1.0·106[M⊙] 101 Total:n=2.85MBH=1.0·105[M⊙] 101 Total:n=3.0MBH=1.2·107[M⊙] 40 HSTF150W 40 HSTF150W m/s] 2300 ALMA JWSTF150W m/s] 2300 ALMA JWSTF150W k 10 k 10 y[ 0 y[ 0 ocit −−2100 ocit −−2100 el −30 el −30 V −−5400 10−nn5==32..085MMBBH1H=0=1.1−0.0·41·0160[5M[M⊙⊙]]10−3 10−2 10−1 100 101 V −−5400 10−nn5==33..00MMBBHH1==011..−20··4110076[[MM⊙⊙]]10−3 10−2 10−1 100 101 Radius[arcsec] Radius[arcsec] (a) nearlyflatcore (b) powerlawcore Figure4.RotationvelocityofagalaxywithM∗ = 1011M⊙ containing 106M⊙ SMBH.Thesurfacebrightnessprofileofthegalaxyisthecore-Sérsic profilewithrb =0.01reandn=3inequation(4).Panel(a):thegalaxyhasanearlyflatcore(γ =0.1).Theredlineshowsthetotalrotationvelocityof thetruegalaxymodelincludingSMBH.TheblacklineshowstherotationvelocityofthesamegalaxywiththesameSérsicindexandthesameSMBHmass butwithoutthecore.ThebluelineistherotationvelocityoftheSérsic(withoutcore)modelgalaxywith5%smallerSérsicindex(i.e.,n = 2.85)and3% largermass-to-lightratio(i.e.,M/L=1.03)thanthegalaxyshownbytheblackline,howeverwitha10timessmallerSMBHmass(105M⊙)thanthetrue value(106M⊙).Panel(b):thegalaxyhasacorewithpowerlawprofile(γ=0.5).TheredandblacklineindicatesthesamecaseinPanel(a).Bluelineisthe rotationvelocityoftheSérsic(withoutcore)modelgalaxywiththesameSérsicindex(i.e.,n=3.0)andmass-to-lightratio(i.e.,M/L=1.0)asthegalaxy shownbytheblackline,howeverwitha12timesmoremassiveSMBHmass(1.2×107M⊙)thanthetruevalue(106M⊙). (nand M/L) but withorder of magnitude different BH massisa 3 DETECTINGTHEIMPACTOFSMBH bettermatchtothetruerotationcurveattheangularresolutionof Wehavediscussedtherequiredangularandvelocityresolutionto ALMA. This results in a biased SMBH mass in model fitting as measuretheimpactofSMBHbasedontherotationvelocitywith- demonstratedinSection3.5. out considering theobservational measurement processes. Wear- guethat,ifthegalaxystellarmass,surfacebrightnessprofileshape and inclination are known, there is a required spatial resolution correspondingtor andvelocitychannelwidthcorrespondingto eqv 1V todetect theSMBHmassthatoneaimstomeasure. Inthis 3 diff section,weconfirmthisargumentandshowhowtheangularreso- Lowering ALMA resolution less than 0.01′′ in thisexample lutionandvelocitychannelwidthaffecttheSMBHmassdetection will remove the bias, however achieving 0.01′′ resolution is very bysimulatingPVDswithmodelrotationvelocityincludingtheob- difficult(ifnot feasible) inpracticefor manyof galaxiesbecause servational measurement processes. Thenweincorporatethesys- ofalongintegrationtime.Sofornearbygalaxies,ALMAhassuf- tematiceffectsinthePVDsimulationtotesthowsignificanttheir ficient spatial resolution to resolve r and thus even though the eqv impactsaretothemeasurementofrotationvelocityforseveralrep- galaxyrotationvelocityisbiasedduetotheunresolvedgalaxycore resentativecases. in the photometric image, ALMA can distinguish the difference betweenslightlydifferentgalaxyrotationvelocities.However,for distant galaxies, the ALMA spatial resolution becomes poor and cannotdifferentiatethevelocitiesduetothebiasedgalaxysurface 3.1 SimulationsofPosition-VelocityDiagram brightnessprofiles.ThisimpliesthatatthecurrentbestALMAres- WeuseKinMS(Davisetal.2013b)tosimulatePVD.KinMS3 is olution,itisdifficulttobreakthedegeneracybetweendifferentro- publicly available IDL code tosimulate gas kinematics by incor- tationvelocitiesduetothebiasedcoresurfacebrightnessprofiles poratingtheobservationaleffects:beamsizeandvelocitychannel notresolvedbyHSTorJWST,ifthegalaxyisatadistancesimilar widthandthepropertiesofmoleculargas:userdefinedgasdensity orlargerthan 200Mpc.Inprinciple,toavoidabiasoftheSMBH ≈ profile,randomvelocitydispersion,bulkmotions(inflow/outflow), massowingtothebiasedgalaxysurfacebrightnessprofile,theres- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- olutionofgalaxyimageshouldbesimilartotheALMAbeamsize andideally,thebothneedstobecomparabletor assumingthata eqv sufficientvelocityresolutionisachievedbyALMA. 3 https://github.com/TimothyADavis/KinMS 8 IlsangYoon warp and blobs inthe molecular gas. Although ithas been origi- Wecaution thatthevelocitydeterminedbytracingtheouter nallydeveloped tomodel thegaskinematicsinellipticalgalaxies envelope of PVD is biased toward the material along the line of inATLAS3Dsurvey(Davisetal.2013b),itisalsodirectlyapplica- sight and does not very well trace the Keplerian rise in the PVD bletotheanalysisofmoleculargaskinematicsfortheSMBHmass seeninFigure5.Someoftheissuesdiscussedinthissectioncanbe measurement(Davisetal.2013a;Onishietal.2015).Fordetailin- removedbyfittingthe2DPVDintensitymapitselfortheentire3D formationofthecode,werefertoDavisetal.(2013b). datacube.Thedetailedcomparisonoftheperformanceofdifferent InPVDsimulation,wegeneratethenoiseasfollows.Wesam- methodsisbeyondthescopeofthiswork.However,wenotethat plethespatialdistributionofmoleculargasusingafinitenumber ourapproachtracingtheouterenvelopeofPVDisconservativeand ofrandomsamplesandmakePVD.Aftersamplingthedistribution thereforeensuresthatmoresophisticatedfittingmethodsprovidea 100 timesusing different random numbers, weestimatethestan- betterconstrainttotheSMBHmass. dard deviation of the ensemble PVDs from the ‘noise-less’ PVD For illustration, we select a typical example of SMBH and generatedfromthedensitydistributionsampledbyalargenumber hostgalaxy.TheassumedSMBHmass(108M⊙)andgalaxystel- (106) of random samples. Then thesignal-to-noise ratio(S/N)of lar mass (1011M⊙) are not in the extreme range (e.g., dynami- PVDisdefinedbythepeaksignalinthePVDandthestandardde- cally measured 1010M⊙ SMBH in 1011M⊙ galaxy reported by viationoftheensemblePVDs.Wevarythenumberofrandomsam- vandenBoschetal.2012).IntheupperrightpanelofFigure5,we ples(N )toobtainarangeofS/Ninthiswork.HoweverS/N areabletodetectasignatureoftheSMBHasrevealedbythehigh samp does not onlydepend onthenumber of random samplesbut also velocitytipofblackcontouratthecentreindicativeoftheKeple- onthebeamsize,velocitychannelwidthandpixelresolution;the rianrotation.Iflookingattheresidualrotationvelocityshownby largerthevalues,thelargertheS/Nforthesamenumberofrandom the blue line in the lower right panel of Figure 5, the maximum samples.Wefindthatformostofourexperimentsinthiswork,ap- deviationatthecentreismuchlargerthan3σvelocityuncertainty proximately10000randomsamplesgivesagoodS/Nrangingfrom andthedeviationislargerthan1σrangefortheentirerangeofthe 60to100.However,wenotethattherealnoiseinPVDisoriginated spatialscale.Inthiscase,itisrelativelyeasytoclaimadetectionof by the spatially correlated interferometer noise and thus depends theSMBHmass.HoweverforgivenM andgalaxystellarmass, BH onthespatialscaleoftheobservation.Thisrequiresamorecom- the significance of this deviation will be smaller with increasing plicatedsimulationofthePVDusingrealisticarrayconfiguration, beamsizeandvelocitychannel widthoftheradiointerferometry. whichisbeyondthescopeofthecurrentwork. SinceitisalreadyobviousthattheSMBHwithlargeenoughmass Figure 5 shows the simulation of a 1011M⊙ galaxy with willbeeasilydetectedasshowninthisexample, wewilltestthe n = 3 and i = 60◦ containing 108M⊙ SMBH, at 15 Mpc caseof thelowest detectable SMBH masses for thegiven galaxy ≈ distance.Therequiredbeamsize(r )andvelocitychannelwidth parametersinferredfromFigure2and3. eqv (1V ) for this galaxy is 0.5′′ and 12 km/s based on the discus- 3 diff sioninSection2.2.Molecular gasdistributionaround theSMBH 3.2 EffectofNoise issimplyassumed tobeanexponential discwith1′′ scaleradius andsameinclinationangleasthegalaxy.ThepeakS/Nis 100 Beforeweinvestigatetheimpact ofsystematiceffect tothePVD ≈ using10000randomsamples. analysis, we discuss the effect of noise first. We take a fiducial Thetopleftpanelshowsthevelocityintegratedfluxdistribu- galaxy with M∗ = 1011M⊙ including the SMBH with MBH = tion(i.e.moment0map)with0.3′′beam.Thetoprightpanelshows 107M⊙ ofwhichsurfacebrightnessfollowsaSérsicprofilewith PVDofthegalaxyusing0.3′′beamsizeand10km/svelocitychan- n = 3 and i = 60◦. Then we assume that the gas surface den- nelwidth.Weuseslightlysmallerbeamsizeandvelocitychannel sity distribution is an exponential disc with 1′′ scale radius and widththantherequiredvalues(0.5′′ and12km/s),forthepurpose sample the density distribution using a finite number of random of clear demonstration of the impact of SMBH. Yellow contours samplesasdiscussedabove.Forthisgalaxy,theminimumrequired on top of the background black contours are the PVD due to the beamsizeandvelocitychannelwidthis0.15′′ and8km/srespec- galaxystellarmasswithouttheSMBHandthebackground black tivelyinferredfromFigure2and3.Forthisbeamsizeandchan- contours are the PVD for the entire system (galaxy and SMBH). nel width, wemake PVDswith4 different signal-to-noise ratios; Thelowerleftpanelshowstheinputrotationvelocitytogenerate S/N=10,30,60and120determinedby150,1400,6000and24000 thePVDshowingthecontributionfromtheSMBHandthegalaxy randomsamplesrespectively.NotethatS/Nisroughlyproportional stellarmassdistribution.Thelowerrightpanelshowstherotation to N asexpectedfromstatistics. samp velocityofthegalaxywithandwithoutSMBHmeasuredfromthe pFigure6showstherotationvelocityofthegalaxywithSMBH PVD and the difference of the two velocities using blue line en- (black), without SMBH (red) and the residual velocity between closedby3σand1σlevelvelocityuncertainty(definedby3 and the two (blue). For each S/N, we generate 100 ensemble PVDs × 1 velocitychannelwidth)asshownbythedashedanddottedline. and each solid line with error bars is the mean of this ensemble × Rotationvelocitiesarederivedfromtheyellowandblackcon- measurementswiththestandarddeviationsoftheensemblePVDs. tours by using ‘envelop-tracing’ methods (Sofue&Rubin 2001), WhenS/Nislow(S/N=10),boththeblackandredlinehaslarge which makes use of the terminal velocity in PVD along the ma- errorsandthustheresidualvelocityislargelyuncertain;thestan- jor axis. The terminal velocity is defined by a velocity at which dard deviation in the central region is larger than 3∆V. As S/N the intensitybecomes equal toI = (ηI )2+I2 on PVD, increases,theuncertaintyoftherotationvelocitymeasurementbe- t max lc whereImaxandIlcarethemaximumipntensityandintensitycorre- comessmaller.WhenS/N=60,itbecomesmuchsmallerthan∆V spondingtothelowestcontourlevel.Usingη =0.5,thisdefinesa intheouterregionandcomparabletothe∆V inthecentre.This velocityat50%leveloftheintensityprofileatafixedpositionfor noise simulation confirms our intuition that the rotation velocity sufficientlylargesignal-to-noiseratiooravelocityalongthelow- differencewithandwithoutSMBHbecomeslesssignificantasS/N DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- estcontourlevelifthesignal-to-noiseratioissmall(Sofue&Rubin decreases and itwill increase the uncertainty of the SMBH mass 2001).Thiswillcapturethecircularvelocitythatliesattheouter measurement. envelopeofPVD. Inthefollowingexperimentstoinvestigatetherequiredspatial SMBHmass measurementusingALMA 9 Figure5.PVDsimulationwithS/N=100foragalaxywithM∗ = 1011M⊙ i = 60◦,n= 3andMBH = 108M⊙.Weassumeasimpleexponentialdisc withscaleradiusof1′′forthemoleculargassharingthesameinclinationanglewiththegalaxy.0.3′′beamsizeand10km/svelocitychannelwidthisused togeneratethisPVD.ThetopleftpanelshowstheintegratedlineintensitymapandthetoprightpanelshowsthesimulatedPVDforthegalaxystellarmass (yellow)ontopofthePVDoftheentiresystem(black:galaxyandSMBH).ThelowerleftpanelshowstheinputrotationvelocitytogeneratethisPVDand thelowerrightpanelshowstherotationvelocitiesmeasuredfromthePVD(blackfortheentiresystemandredforthegalaxywithoutSMBH)andtheresidual ofthetworotationvelocities(blueline).Dashedanddottedlineis3and1σsignificancefortheresidualrotationvelocity,definedby3×and1×velocity channelwidth. andvelocityresolution(Section3.3)andtodemonstratetheimpact largerthan3∆V.Althoughthe1.0r beamsize(redline)shows eqv ofsystematiceffectstothePVDanalysis(Section3.4),weensure smallermaximumresidualthanthatforthe0.5r beamsize,the eqv thatPVDhasareasonablygoodS/N(S/N 60)bychoosingthe residualisstillsignificant;largerthanorsimilarto3∆V.However ≈ appropriate number of random samples for given beam size and as the beam size increases (i.e., > 2r ), the maximum residual eqv velocitychannelwidthforeachexperiment. decreasesandthesignificanceoftheresidualrotationvelocitydoes notstronglyindicatearotationvelocityduetotheSMBH. EachpanelinFigure8showsthecasewheredifferentveloc- 3.3 SpatialandVelocityResolution itychannelwidthshavebeenusedtogeneratethePVDofthesame WesimulatePVDsofthesamegalaxy(i.e.,agalaxywithM∗ = galaxyfor thefixed1.0reqv beamsize. LikeinFigure7,theerror 1011M⊙,MBH=107M⊙andi=60◦)inFigure6forfourdiffer- bar has been determined bythe standard deviation of therealisa- tionof100ensemblePVDs.Theresidualvelocitiesforeachpanel entSérsicindices(n=1,2,3and4)andinvestigateasignificance arescaledbythevelocitychannelwidthbeingused.Thevelocity ofthedifferencebetweentherotationvelocityofthegalaxywith andwithoutSMBH,usingdifferentbeamsizesandvelocitychan- channelwidth∆V hasbeenadjustedwithrespecttotherequired nelwidths. velocity channel width for each panel (∆V0 = 13Vdiff). Similarly to Figure 7, as the velocity channel width increases from 0.5 to EachpanelinFigure7showstheresidualrotationvelocityof thegalaxywiththecorrespondingSérsicindex,fordifferentbeam 2.0∆V0,theresidualvelocitybecomeslesssignificant.Wefindthat sizes.Thevelocitychannelwidth∆V isfixedto 1V .Beamsize thechoiceof∆V 1.0∆V0 showsasignificant(> 3σ)velocity 3 diff differenceformost≈typesofgalaxiesthatwesimulatedinthiswork. variesfrom0.5to2.0r (asshownbydifferent colours) forthe eqv fixedvelocitychannelwidthusedineachpanel.Ineachpanel,the In summary, regarding the effect of spatial resolution, if the widthof ∆V and3∆V areshown by thedottedand dashed line radio interferometry beam size is smaller than or similar to r , eqv respectivelytoshowthe1σand3σsignificanceoftheresidualro- thePVDisclearlyresolvedandtheexcessoftherotationvelocity tationvelocity.Errorbarhasbeendeterminedbythestandardde- due to the SMBH is detected above 3σ level when the velocity viationoftherealisationof100ensemblePVDs. channelwidthresolves 1V .Thenregardingtheeffectofvelocity DRAFThTere si du-al-ve lo cDitywRith0A.5r FbeaTmsi ze s-ho-w n byDtheRblueAFresTolut io n,-if-th e vDelociRt3ycdihfAfanneFlwiTdth is s-ma-lle r thDan 1RV ,AtheFT -- eqv 3 diff symbolalwaysshowsasignificantdifferenceatthecentralregion effect of SMBH is detected above 3σ level if the scale of r is eqv in all panels of Figure 7; the maximum residual is significantly resolvedbytheinterferometrybeam. 10 IlsangYoon (a) S/N=10 (b) S/N=30 (c) S/N=60 (d)S/N=120 Figure6.RotationvelocitiesandtheirresidualsofthesimulatedgalaxywithM∗ =1011M⊙andMBH =107M⊙measuredusing0.15′′beamand8km/s velocitychannelwidth.Eachpanelshowsthesamegalaxywithdifferentsignal-to-noiseratio,S/N=10,30,60and120.Theblackandredsolidlineshow therotationvelocityofthegalaxywithandwithoutSMBHandthebluelineisthedifference ofthetworotationvelocities. Rotationvelocity(solidline) andassociatederrorbarhasbeendeterminedbymeanandstandarddeviationoftherealisationof100ensemblePVDs.Thevelocityuncertaintiesduetothe velocitychannelwidthcorrespondingto1and3σsignificance, 1V andV areshownbythedottedanddashedline. 3 diff diff 3.4 SystematicEffects PVDandtheycanbeappliedtoothergalaxieswithdifferentnand SMBHmasses. For investigating the systematic effects, we note that one of thedisadvantagesofusingPVDisthatdiscinclination,kinematic Intheprevioussection,wediscussedthespatialandvelocityreso- positionangleandcentroidparametersareneededtobewellcon- lutionforthePVDanalysisusingrotationvelocityofpurecircular strained(Barthetal.2016).Usingmoresophisticatedmethodsin- motionwithoutsystematiceffectandconfirmedourargumentthat cludingfitting3Ddatacubemightbemorereliableandcanresolve r andV settherequiredbeamsizeandvelocitychannelwidth. eqv diff someoftheissuesrelatedwiththegasdiscgeometry.However,we Inthissection, wedemonstrate theimpact of possible systematic alsonotethatfittingPVD,ontheotherhand,hasbenefitedfromthe effectstothePVDanalysis:spatialstructure(i.e.,gasdensitydistri- bettersensitivitytothecentralvelocityupturnandmaygivebetter bution)andvelocitystructure(i.e.,inflow/outflow,randommotion constraintsonM thanfitting3Ddatacube(Barthetal.2016). andwarp)asdiscussedinSection2.3.Wedonotperformanexten- BH sivesearchintheparameter space forallthesesystematiceffects andonlyshowthePVDsimulationswithS/N 60ofagalaxywith ≈ M∗ =1011M⊙thatfollowsaSérsicprofilewithn=3andhosts 3.4.1 Geometryofmoleculargasdistribution 107M⊙ SMBH,usingtherequiredangularresolution(0.15′′)and velocitychannelwidth(8km/s).Weshowtheresultsofsimulations Weconsider threedifferenttypesofdensityprofilesofmolecular DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- using selective parameters for each effect. However our findings gas:thesameexponential discprofileastheprevioussimulations anddiscussionsregardingthesesystematiceffectsarevalidforthe butwithdifferentscaleradius,thesame1′′scaleradiusexponential given angular resolution and velocity channel widthof simulated disc but with different inclination angles and the density profile

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.