Article Black hole accretion in gamma ray bursts AgnieszkaJaniuk1*,MichalBejger2,PetraSukova1,andSzymonCharzynski1,3 1 CenterforTheoreticalPhysics,PolishAcademyofSciences,Al.Lotnikow32/46,02-668Warsaw,Poland; [email protected] 2 NicolausCopernicusAstronomicalCenter,PolishAcademyofSciences,ul.Bartycka18,00-716Warsaw, Poland;[email protected] 2 ChairofMathematicalMethodsinPhysics,UniversityofWarsaw,ul.Pasteura5,02-093Warsaw,Poland * Correspondence:[email protected] 7 AcademicEditor:name 1 Received:date;Accepted:date;Published:date 0 2 Abstract: We study the structure and evolution of the hyperaccreting disks and outflows in the n gamma ray bursts central engines. The torus around a stellar mass black hole is composed of a free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of J matterpowerstherelativisticjets,responsibleforthegammaraypromptemission. Thesignificant 6 2 numberdensityofneutronsinthediskandoutflowingmaterialwillcausesubsequentformationof heaviernuclei.Westudytheprocessofnucleosynthesisanditspossibleobservationalconsequences. ] E We also apply our scenario to the recent observation of the gravitational wave signal, detected on H September14th, 2015bythetwoAdvancedLIGOdetectors, andrelatedtoaninspiralandmerger . ofabinaryblackholesystem. AgammarayburstthatcouldpossiblyberelatedwiththeGW150914 h p eventwasobservedbytheFermisatellite. Ithadadurationofabout1secondandappearedabout - 0.4 seconds after the gravitational-wave signal. We propose that a collapsing massive star and a o r blackholeinaclosebinarycouldleadtotheevent. Thegammarayburstwaspoweredbyaweak t s neutrinofluxproducedinthestarremnant’smatter.Lowspinandkickvelocityofthemergedblack a [ holearereproducedinoursimulations.Coincidentgravitational-waveemissionoriginatesfromthe mergerofthecollapsedcoreandthecompanionblackhole. 1 v 3 Keywords: blackholephysics;accretion,accretiondisks;gravitationalwaves;neutrinos 5 7 7 0 . 1. Introduction 1 0 Gamma-ray bursts (GRBs) are energetic, transient events observed in the sky at high energies. 7 1 Their known cosmological origin requires a physical process that causes them to be a cosmic : explosion of great power. Proposed mechanisms involve the creation of a black hole (BH) in a v i cataclysmic event. This may either result from the collapse of a massive rotating star, or via the X mergerofcompactobjects’binary,e.g. neutronstars(NSs)oraBHandaneutronstar. Theso-called r a ‘centralengine’ofthisprocessiscomposedofahotanddenseaccretiondiskwithahyper-Eddington accretionrate(uptoafew M(cid:12)s−1)nearaspinningBH. InthehyperaccretingdisksthatarepresentaroundtheBHsinthecentralengine, thedensities and temperatures are so high, that the equation of state (EOS) can no longer be assumed to be of an ideal gas. The pressure and chemical balance is required by the nuclear reactions that take part betweenthefreeprotons,neutrons,andelectron-positronpairsabundantintheplasma. Thecharged particles must satisfy the total neutrality condition. In the β reactions, neutrinos are produced in threeflavorsandaresubjecttoabsorptionandscatteringprocesses. Thepartiallytrappedneutrinos contribute to the pressure in the plasma, together with nucleons, electron-positron pairs, radiation, andsynthesizedheavierparticles(Helium). Galaxies2016,xx,x;doi:10.3390/—— www.mdpi.com/journal/galaxies Galaxies2016,xx,x 2of11 Numerical computations of the structure and evolution of the accretion flows in the gamma ray bursts engine were historically first carried out with the use of steady-state, and later with the time-dependent models. These models were axially and vertically averaged, and used the classical α-parameterprescriptionfortheviscosity(Pophametal.1999;DiMatteoetal.2002;Kohrietal.2002, 2005; Chen&Beloborodov2007; Reynosoetal. 2006; Janiuketal. 2004; 2007; 2010). Morerecently, accretion flows are described by fully relativistic MHD computations (e.g., Barkov & Komissarov 2011;Janiuketal. 2013). Thismethodhasalsobeenappliedrecentlytodescribethecentralengineof aputativegammarayburstwhichcouldbeassociatedwiththeeventGW150914(Janiuketal. 2017). Herewereportonthiswork,andinaddition,wealsopresentnewresultsonthenucleosynthesisof heavyelementsintheaccretionflowinthisengine. 2. AccretionflowintheGRBengine 2.1. Equationofstate In the EOS, contribution to the pressure comes from free nuclei and e+ −e− pairs, helium, radiationandtrappedneutrinos: P = P +P +P +P , nucl He rad ν whereP includesfreeneutrons,protons,andtheelectron-positrons: nucl Pnucl = Pe−+Pe++Pn+Pp with √ 2 2(m c2)4 (cid:20) 1 (cid:21) P = i β5/2 F (η,β )+ β F (η,β ) . i 3π2 (h¯c)3 i 3/2 i i 2 i 5/2 i i Here, F are the Fermi-Dirac integrals of the order k, and η , η and η are the reduced chemical k e p n potentials, η = µ /kT is the degeneracy parameter, µ denoting the standard chemical potential. i i i Reducedchemicalpotentialofpositronsis ηe+ = −ηe−2/βe. Relativityparametersaredefinedas β = kT/mc2. ThetermP ,describingthepressureofradiation,scaleswiththetemperatureasT4, i i rad andisaddedheretogetherwiththepressureofneutrinos,P ,whichiscomputedfromthetwo-stream ν approximation (see details in Janiuk et al. 2007). The disk is fully opaque to photons, however the radiationpressureisstillbyseveralordersofmagnitudesmallerthanthepressureofneutrinos. This EOS is computed numerically by solving the balance of nuclear reactions (Yuan 2005; Janiuk et al. 2007;Janiuk&Yuan2010;seealsoLattimer&Swesty1991;Setiawanetal. 2004). 2.2. NeutrinocoolingoftheaccretionflowinGRBs Inthehotanddensetorus,withtemperatureof∼1011 Kanddensity> 1010 gcm−3,neutrinos are efficiently produced. The main reactions that lead to their emission are the electron/positron capture on nucleons, as well as the neutron decay. Their nuclear equilibrium is described by the followingreactions: p+e− → n+ν e p+ν¯ → n+e+ e p+e−+ν¯ → n e n+e+ → p+ν¯ e n → p+e−+ν¯ e n+ν → p+e−, e Galaxies2016,xx,x 3of11 and the forward and backward reaction rates are equal. The reaction rates are given by the appropriateintegrals(Reddy,Prakash&Lattimer1998;seealsoAppendixAinJaniuketal. 2007). Otherneutrinoemissionprocessesare: electron-positronpairannihilation,bremsstrahlungand plasmondecay: e−+e+ → ν +ν¯ i i n+n → n+n+ν +ν¯ i i γ˜ → ν +ν¯ . e e Wecalculatetheirratesnumerically,withproperintegralsoverthedistributionfunctionofrelativistic, partiallydegeneratespecies. The neutrino cooling rate is finally given by the two-stream approximation, and includes the scatteringandabsorptiveopticaldepthsforneutrinosofallthreeflavors(DiMatteoetal. 2002): Q− = 87σT4 ∑ 1 × 1 [ergs−1cm−3]. ν 34 i=e,µ,τ τa,˚2i+τs + √13 + 3τa1,˚i H Theneutrinocoolingisself-consistenltycomputedfromthebalanceofthenuclearreactions,listedin Section2.2,whoseratesgovernthevaluesoftheabsorptiveopticaldepthsforelectron(allreactions) and muon or tau neutrinos (pair annihilation and bremsstrahlung reactions). Also, the neutrino scatteringopticaldepthiscomputed,usingthevaluesofprotonandneutronnumberdensities,and Cabbiboangleofsin2θ = 0.23(seeYuan2005,Janiuketal. 2007). Theemissivityisaveragedover C thediskheight,insteadoftheintegrationovertheneutrinosphere,whoseshapeisrathercomplex. 2.3. GRMHDscheme OursimulationsoftheaccretionflowdynamicsintheGRBcentralenginewereperformedwith a 2D code HARM (High Accuracy Relativistic Magnetohydrodynamics; Gammie et al. 2003). Our versionofthecodewasextendedtoincludethemicrophysics,describedinthepreviousSection. The codeprovidesasolverforthecontinuityandenergy-momentumconservationequations: (ρuµ) =0 ;µ Tµ =0 ν;µ P = Kργ = (γ−1)u where: Tµν = Tµν +Tµν gaz EM Tµν = ρhuµuν+pgµν = (ρ+u+p)uµuν+pgµν gaz Tµν = b2uµuν+ 1b2gµν−bµbν; bµ = u ∗Fµν EM 2 ν whereuµisthefour-velocityofgas,uistheinternalenergydensity,bµ = 1εµνρσu F isthemagnetic 2 ν ρσ four-vector, and F is the electromagnetic stress tensor. The metric tensor is denoted by gµν. Within theforce-freeapproximation,wehaveE = u Fµν =0. ν µ HARM-2D uses a conservative numerical scheme to obtain solutions of equations of the followingtype: ∂ U(P) = −∂ Fi(P)+S(P), t i where U denotes a vector of “conserved” variables (momentum, energy density, number density, taken in the coordinate frame), P is a vector of ’primitive’ variables (rest mass density, internal Galaxies2016,xx,x 4of11 energy), Fi are the fluxes, and S is a vector of source terms. In contrast to non-relativistic MHD, where P → U and U → P haveaclosed-formsolution, inrelativisticMHD, U(P) isacomplicated, nonlinear relation. Inversion P(U) is calculated therefore numerically, at every time step. The inverse transformation requires a solution to 5 non-linear equations, done here by means of a multi-dimensionalNewton-Raphsonroutine(see,e.g.,Nobleetal. 2006fordetails). Theprocedureissimple,ifthepressure-densityrelationisadiabatic.However,forageneralEOS, onemustalsocomputedp/dw,dp/dv2 and p(W,v2,D),wherew = p+u+ρdenotestheenthalpy, √ W = γ2w, D = −gρut, and v2 = gµνuµuν. In our scheme, we have tabulated (p,u)(ρ,T) values and then interpolate over this table. The Jacobian ∂U/∂P is computed numerically. The conserved variablesarethenevolvedintime. HARM-2D has been MPI-parallelized for the hydro-evolution, and also implemented with the shared memory hyperthreading for the EOS-table interpolation. Our 2D simulations typically run up to t=2000-3000 M (within a couple weeks of computations on the local cluster, or a few days on Cray XC40 with 1k nodes). The computations are performed in the polar coordinate system, with resolutionof256x256pointsintherandθdirections. 2.4. Examplesimulationresults Parameters used in our computations are: BH mass, with a fiducial value of M = 10M(cid:12), BH spin a = 0.6−0.98, and accretion disk mass Md ≈ 1M(cid:12), which gives the scaling for the density in physical units, needed for the EOS computations. To describe the rotationally-supported torus aroundaspinningBHweusetheinitialconditiongivenbytheequilibriumsolution,firstdeveloped analytically by Fishbone & Moncrief (1976) and Abramowicz et al. (1978). We adopt the polar coordinate system, r−θ, and use the Kerr-Schild coordinates to avoid the coordinate singularity ontheBHhorizon. Initially,apoloidalconfigurationofthefieldisassumed,withthevectorpotential A = (ρ/ρ ), and initial normalization of P /P = 50. Magnetic turbulences develop within φ max gas mag the dense matter torus and the field is advected with the infalling gas under the BH horizon. For a rapidly-spinningBH,theopenmagneticfieldlinesformalongtherotationaxis,andthemagnetically driven jets can be produced. Energy extracted from the rotating BH through the Blandford-Znajek process (Blandford & Znajek 1977) gives then a substantial contribution to the jet luminosity. In addition, annihilation of neutrino-antineutrino pairs produced in the torus is yet another source of powertothejets.InFigure1,weshowtheresultofanexemplarysimulation,whichshowsasnapshot takenfromevolvedrun,withthedistributionofmagneticfieldlines,magneticandgaspressureratio, andneutrinoemissivity,intheregionclosetoablackhole. Figure 1. Magnetisation β = Pgas/Pmag and magnetic field lines topology (left), and neutrino emissivity distribution (right) in the evolved accretion flow. Snapshots taken at time t = 2000M. Blackholespinisa=0.98. Galaxies2016,xx,x 5of11 3. NucleosynthesisofheavyelementsintheGRBengine In the astrophysical plasma, thermonuclear fusion occurs due to the capture and release of particles(n,p,α,γ).Reactionsequenceproducesfurtherisotopes.Thenuclearreactionsmayproceed with one (decays, electron-positron capture, photodissociacion), two (encounters), or three (triple alphareactions)nuclei. Therefore,thechangeofabundanceofthei-thisotopeisingeneralgivenby: Y˙ = ∑Niλ Y +∑Ni ρN YY +∑ Ni ρ2N2YY Y i j j j j,k A j k j,k,l A j k l j j,k j,k,l Abundances of the isotopes are calculated under the assumption of nucleon number and charge conservation for a given density, temperature and electron fraction (T ≤ 1MeV). Integrated cross-sectionsdependingontemperaturekT aredeterminedwiththeMaxwell-BoltzmannorPlanck statistics,andthebackgroundscreeninganddegeneracyofnucleonsmustbetakenintoaccount. The setofresultingnon-lineardifferentialequationsissolvedusingtheEulermethod(Wallersteinetal. 1997). Inourcomputations,weusedthethermonuclearreactionnetworkcode,http://webnucleo.org,and wecomputedthenuclearstatisticalequilibriaestablishedforthefusionreactions,forwhichthedata were taken from the JINA reaclib online database (Hix & Meyer 2006). This network is appropriate fortemperaturesbelow1MeV,whichisthecaseattheouterradiiofaccretiondisksinGRBengines. Themassfractionoftheisotopesissolvedforconvergedprofilesofdensity,temperatureandelectron fractioninthedisk. Figure 2. Volume integrated abundance distribution of elements synthesized in the accretion disk, basedonthe2Dsimulation. Parameters: disktoBHmassratioofM /M =0.25,BHspina=0.9. d BH Abundanceswerecalculatedfromthedensity,temperature,andelectronfractionprofiles,asevolved tothetimet=2000M(solidline)andt=3000M(dashedline),whilethelong-dashedlineshowsthe distributionattimet=0. Wefindthatthefreenucleiarepresentmostlybelow100-200gravitationalradii,andtheplasma there is rather neutron rich. Then, most abundant heavy elements formed in the accretion tori in GRBsareNickel, IronandCobalt, aswellasArgonium, Titatnium, Cuprum, Zinc, Silicon, Sulphur, Clorium,Manganium,Titatnium,andVanadium. As a consequence of the heavy element formation, the enhanced emission in the lower energy bands, i.e., ultraviolet or optical, due to the decay of species, may accompany the GRB (the ’macronova’; e.g., Li & Paczynski 1998). Also, the radio flares, occurring months to years after the GRBcanbeobserved(Piranetal. 2012). Furthermore,certainisotopesdecayshouldbedetectablevia emissionlines. FortheNuSTARsatellite,sensitiveinthe5−80keVrange,it’sinprinciplepossibleto detectthephotonsfromTi,Co,Mn,Cu,Zn,Ga,Crunstableisotopesdecays. Additionally,theEPIC Galaxies2016,xx,x 6of11 detectoronboardtheXMM-Newton,couldbeabletoseelinesbelow15keV,e.g.,45Ti,57Mn,or57Co (Janiuk2014). InFigure3,weplotanexampleresultofthenucleosynthesiscomputations,showing thevolumeintegratedabundancedistributionofelements,inthefunctionoftheirmassnumber. The input was taken from the simulation of the GRB central engine, as designed to model the putative GRBthatcouldpossiblybeassociatedwithGW150914(seenextSection). 4. GravitationalwavesourceGW150914 Data from Fermi Gamma-ray Burst Monitor (GBM) satellite suggested that the recently registeredgravitationalwaveeventGW150914(Abbottetal. 2016),acoalescingbinaryBHsystem,is potentiallyrelatedtoaGRB.Theelectromagneticradiationinhighenergy(above50keV)originated fromaweaktransientsourceandlastedforabout1second(Connaughtonetal. 2016). Itslocalization isbroadlyconsistentwiththeskylocationofGW150914. We speculate here on the possible scenario for the formation of a GRB accompanied by the gravitational wave (GW) event. Even though the presence of the GRB was recently questioned by other instruments measurements (e.g., Greiner et al. 2016), we envisage the possibility of a GRB coincidentwiththeGWeventfromtheBHmergertobeworthexploring,inthecontextofthefuture observations. Our model invokes coalescence of a collapsing star’s nucleus that forms a BH, with its companionBHinabinarysystem(Janiuketal. 2013,2017). Wefindthattherecoilvelocityacquired bythefinalBHthroughtheGWemissionallowsittotakeonlyasmallfractionofmatterfromthehost star, providedspecificconfigurationofthebinaryspinvectorswiththeorbitalangularmomentum. TheGRBisproducedonthecostofaccretionofthisremnantmatterontothefinalBH.Themoderate spin of this BH accounts for the GRB jet to be powered by a weak neutrino emission rather than theBlandford-Znajekmechanism,andhenceagreeswiththelowpowerobservedintheFermiGRB signal. Thesemi-analyticaltreatmentoftheBHcorecollapseandthestar’senvelopespin-up(seeJaniuk et al. 2008, for details) is followed by the general-relativistic simulations of the binary BH merger. Then, the GRB central engine evolution is carried numerically, to find the energy output from the magnetized,neutrino-cooledtorusthatpowerstheelectromagneticburst. 4.1. MergerofbinaryBHs TheGW150914eventwasinterpretedtobeamergeroftwoBHsofthemassesof36+−54 M(cid:12) and 29+−44 (Abbott et al. 2016). The final BH parameters were estimated to be of 62+−44 M(cid:12) and 0.67+−00..0057 foritsmassandspin. Probabilitiesthattheanglesbetweenspinsandthenormaltotheorbitalplane are between 45◦ and 135◦ are about 0.8 for each component BH. Spin magnitudes are constrained tobesmallerthan0.7and0.8at90%probability. Assumptionofastrictco-alignmentofspinswith theorbitalangularmomentumresultsinanupperlimitof0.2and0.3forthespins. Distancetothe source was that of 410+160 Mpc, corresponding to a redshift of about z = 0.09 (assuming standard −180 cosmology). Galaxies2016,xx,x 7of11 Figure3. Visualizationofthespacetimecurvaturejustaftertheblackholemerger,describedbythe Weylscalar ψ , whichshowstheoutgoingradiationforasymptoticallyflatspacetime(left), andan 4 exemplaryGWsignalthatcanbedetectedintheinstrument,shownbythetimedependenceofthe realpartofthel=2,m=2componentsofψ (right). 4 We made several runs for BH mass and range of spins, constrained from the Advanced LIGO data. InFigure3, weplottheexampleresultsfromtherunwithBHmassratioof0.82, andaligned spinsof0.2and0.3. ThewaveformisplottedusingtheWeylscalarψ 1. ThefinalBHspinobtained 4 inthissimulationwas0.68. TheserunswereperformedwiththeEinsteinToolkitcomputationalpackage(Loeffleretal2012). The numerical methods used here are based on finite difference computations on a gridded mesh and follow the inspiral, merger and ringdown phases of the binary black hole evolution, using the techniqueoftheadaptivemeshrefinement. TheCartesiangridcoversthevolumeof48×48×48M. In AMR we use 7 levels of refinement, and the resolution ranges from ∆x = 2.0M for the coarsest grid to ∆x = 0.03125M for the finest grid. From the simulation runs, we constrained not only the spin of the merger black hole (it is then used to be a parameter in the GRB engine model), but also thevelocityofthegravitationalrecoil. Thisturnedouttobeontheorderof∼ 700km/s. Following Kocsisetal. (2012), wearguethatitislikelythataccretionoftheaccumulatedmatterontothefinal BHistriggeredwhileitmovestowardsthecircumbinarydiskafterthemerger. 4.2. WeakGRBpoweredbyneutrinoemission TheFermiGRBcoincidentwiththeGW150914eventhadadurationofabout1secandappeared about 0.4 seconds after the GW signal. Within the limit of uncertainty of the Advanced LIGO and Fermi detectors’ capabilities it could also be associated spatially. The GRB fluence in the range 1 keV-10 MeV, is of 2.8×10−7 erg cm−2. The implied source luminosity in gamma rays equals to 1.8+1.5×1049erg/s. −1.0 We modeled the GRB engine, constrained by the post-merger conditions. Using the code HARM-2D, with the numerical EOS and neutrino cooling implemented into MHD evolution, we estimated the neutrino and Blandford-Znajek luminosities available to power the GRB jet in this source.Inparticular,themassoftheaccretingtorus,createdfromthecircumbinarymatter,wastuned to produce adequately low neutrino luminosity for a weak GRB. Example parameters for the BH massof M = 62M(cid:12),theBHspinofa = 0.7,anddiskmass Md = 15M(cid:12) areconsistentwittheweak GRBluminosity. Assuminglowefficienciesofconversionbetweenneutrinoannihilation, andweak conversion between the jet kinetic and radiative power, this scenario is able to meet quantitatively thelimitsputbytheFermidata. Thediskmassisherejustanorderofmagnitudeestimate. Wefirst 1 Curvatureofspacetimeisdescribedbycurvaturetensor-theRiemmantensor(20independentcomponents),whichcan bedecomposedintosumofRiccitensor(10independentcomponents)andWeyltensor(10independentcomponents). ForvacuumsolutionsofEinsteinequationsRiccitensorvanishes,socurvatureisdescribedbyWeyltensoronly. Inthe Newman-PenroseformalismcomponentsofWeyltensorareencodedasfivecomplexWeylscalarsΨ0,... ,Ψ4. Theseare differentcomponentsofcurvaturetensor,whichhavedifferentphysicalinterpretation.Ψ4describestheoutgoingradiation foranasymptoticallyflatspacetime. Galaxies2016,xx,x 8of11 checked,thatamuchlargermass,ontheorderofthemassofthemergedblackhole,istoolargetobe consistentwiththeobservedlimitationsforluminosity. Ontheotherhand,thesupernovaexplosion whichmighthavelefta30Solarmassblackhole,shouldhaveoriginatedfromatleast80Solarmass star on zero-age main sequence, in a low-metallicity environment (Abbott et al. 2016b, Spera et al. 2015). Evenifasignificantamountofthestar’smasswasejectedduringtheevolutionandexplosion, someremnantofthisorderisplausible. Figure4. PoweravailableintheGRBenginethroughtheneutrinoemission(right),andthroughthe magneticfieldadvectedundertheBHhorizon(left). The luminosity L , emitted in neutrinos is simply equal to their volume integrated emissivity. ν TocomputetheenergyfluxthroughthehorizonoftheBHandtheBlandford-Znajekluminosity,L , BZ weneedtheelectromagneticpartofthestresstensor, b2 Tµν = b2uµuν+ gµν−bµbν, (1) EM 2 where the four-vector bµ with bt ≡ g Biuµ and bi ≡ (Bi +uibt)/ut. We then evaluate the radial iµ energyfluxasthepoweroftheBlandford-Znajekprocess: L ≡ E˙ =2π(cid:90) π dθ(cid:112)−gF (2) BZ E 0 where F ≡ −Tr. This can be subdivided into a matter F(MA) and electromagnetic F(EM) part, E t E E althoughintheforce-freelimitthematterpartvanishes(McKinney&Gammie2004). In Figure 4, left panel, we plot the values of L as it varies with time for various simulations, BZ depending on the black hole spin. In the right panel, we show the corresponding evolution of the neutrinoluminosity.Themaximumoftheneutrinoluminosityobtainedinoursimulationsisreached about0.4secondsafteranequilibriumtorus, prescribedbyourinitialconditions, hadformed. This maytentativelygivethelowerlimitforthetimescalewhenthejetappearsaftertheBHmerger. The Blandford-Znajekluminosityisontheorderof1050−1051ergs/s,andonlyoccasionallynon-zerofor low spins (the jet is powered by magnetic field only episodically). We find therefore, that the GRB luminosity inferred from our simulations can be reconciled with the observational upper limits, for moderatespinsofthefinalBH(a =0.6−0.8). The connection of our computation to the particular event GW150914 and the corresponding Fermi GRB is arguable because of several facts. At first, the flare produced by our simulation is longerthanthereportedveryshortdurationoftheGRB(1s). However,theobservedburstwasclose to the sensitivity limit of the instrument, so it is likely that it could observe just the very top of the flareandlefttherestoftheburstundetected. Moreover,ifourlineofsightisoffsetwithrespecttothe jet axis and we can see only the edge of the jet, the detailed shape of the flare would be affected by thebehaviourofthepropagatingjet. Thetimedelaybetweentheburstandgravitationalsignalcan Galaxies2016,xx,x 9of11 besignificantlylonger,ifthereisamassivestarremnant,throughwhichthejethastopropagate. The state of the remnant matter after the second BH collapse is very uncertain and needs to be studied in details in future works. However, we can speculate that the collapse and subsequent orbiting of the two BHs is violent enough to destroy the star, expel part of the matter away and form a dead circumbinarydiscoftheremnantmatter,inwhichtheaccretionhasstopped,aroundtheBHbinary. Thenafterthemergerthenewbornblackholecanreceiveasubstantialkicktowardsthecircumbinary disc (see our BH merger simulations in Section 4.1), can meet the matter in fraction of second and producetheburst. Inthatcase, thereisonlylittlematerialleftalongtheaxis, throughwhichthejet hastopropagate, andsothetimedelaycanbequiteshort, ontheorderofasecond. However, this speculative scenario needs both more theoretical modeling and mainly more future observations of coincidentgravitationalandelectromagneticsignals,whicharewellabovetheinstrumentallimits. 5. Conclusions • We have carried out numerical GR MHD simulations of the magnetized torus accreting onto BHintheGRBcentralengine. TheEOSisnolongerassumedtobeofanidealgas,butaccounts forthepropermicrophysicsandneutrinocoolingoftheGRBengine. • Theneutrinoemissionandabsorptionprocessesaccountforanadditionalpressurecomponent intheplasma,andthespeciesarepartiallydegenerate. Theresultingdensityandtemperature, as well as the electron fraction, are then taken into account when determining the nuclear equilibriumconditions. • We determine the abundances of heavy elements (above Helium, up to the mass number of ∼ 100), which are synthesized in the accretion disk in GRB engine, and in the winds that are magnetically launched from its surface. The observational signatures of radioactive decay of some of the unstable isotopes can be, for instance, the emission lines seen in the X-rays (in principle,intheNuSTARrange),andalsointhefaintemissioninlowerenergybandcontinuum (i.e. ’kilonova’or’macronova’scenario). • We compute and compare the efficiencies of the GRB jet powered through the neutrino annihilation,andtheBlandfrod-Znajekmechanism. Wefindthattheconstraintsofamoderate BH spin and a small disk mass to the BH mass ratio, are in tentative agreement with the AdvancedLIGOandFermidata,ifthelatterwasreallycoincidentwiththeGWevent. • A definite answer and a test for our scenario will be possible if further searches for the GW eventswillprovidemoredata,alsofortheirelectromagneticcounterparts,inbothgammarays andlowerenergies. Weclaim,thateventhoughtheobservationsarestillsubjecttodebate,thepossibleGRB-BBHmerger coincidence is worth to investigate. The timescales obtained in our scenario are possibly more plausible for a lonng gamma ray burst scenario than for a short one (see also Perna et al. 2016; Loeb2016),unlesstheFermiburstitselfwasmuchlonger,butbelowthedetctionlimit. Ontheother hand, the model proposed by Zhang (2016) can satisfy the duration and delay timsecales, but the intepretaionofachargedblackholeanditsobservationalsignaturesalsoneedsfurtherinvestigations. Acknowledgments: This work was supported in part by the grants no. DEC-2012/05/E/ST9/03914 and UMO-2014/14/M/ST9/00707fromthePolishNationalScienceCenter. Wealsoacknowledgesupportfromthe InterdisciplinaryCenterforMathematicalModelingoftheWarsawUniversity,throughthecomputationalgrant G53-5. References 1. Abbott,B.P.,etal. ObservationofGravitationalWavesfromaBinaryBlackHoleMerger. Phys. Rev. Lett. 2016a,116,061102 2. Abbott,B.P.,etal.AstrophysicalImplicationsoftheBinaryBlack-holeMergerGW150914.ApJL2016b,818, L22 3. Abramowicz,M.;Jaroszynski,M.;Sikora,M.Relativistic,accretingdisks.A&A1978,63,221 Galaxies2016,xx,x 10of11 4. Barkov,M.V.;Baushev,A.N.Accretionofamassivemagnetizedtorusonarotatingblackhole. NewAstr. 2011,16,46 5. Barkov,M.V.,Komissarov,S.S.Closebinaryprogenitorsofgamma-raybursts.MNRAS2010,401,1644 6. Blandford, R.D., Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. MNRAS 1977 179,433 7. Chen,W.X.;Beloborodov,A.M.Neutrino-cooledAccretionDisksaroundSpinningBlackHoles. ApJ2007, 657,383 8. Connaughton,V.,etal. FermiGBMObservationsofLIGOGravitational-waveEventGW150914. ApJLett. 2016,826,6 9. DiMatteo, T.; Perna, R.; Narayan, R.. NeutrinoTrappingandAccretionModelsforGamma-RayBursts. ApJ2002,579,706 10. Fishbone,L.G.;Moncrief,V.RelativisticfluiddisksinorbitaroundKerrblackholes.ApJ1976,207,962 11. Gammie, C. F.; McKinney, J.C.; Tóth, G. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics.ApJ2003,589,444 12. Greiner,J;Burgess,J.M.;Savchenko,V.;Yu,H.-F.OntheFermi-GBMEvent0.4safterGW150914.ApJLett. 2016,827,38 13. Hix,W.R.,Meyer,B.S.,Thermonuclearkineticsinastrophysics.NuclPhys.,2006777,188 14. Janiuk, A.; Bejger, M.; Charzynski, S.; Sukova, P. On the possible gamma-ray burst-gravitational wave associationinGW150914.NewAstr.2017,51,7 15. Janiuk,A.Nucleosynthesisofheavyelementsingammarayburstengines.A&A2014,568,105 16. Janiuk, A.; Mioduszewski, P.; Moscibrodzka, M. Accretion and Outflow from a Magnetized, Neutrino CooledTorusaroundtheGamma-RayBurstCentralEngine.ApJ2013,776,105 17. Janiuk,A.;Charzynski,S.;Bejger,M.Longgammarayburstsfrombinaryblackholes.A&A2013,560,25 18. Janiuk,A.; Proga,D.; Moderski,R.OntheDurationofLongGRBs: EffectsofBlackHoleSpin. ApJ2008, 687,433 19. Janiuk,A.;Yuan,Y.F.Theroleofblackholespinandmagneticfieldthreadingtheunstableneutrinodiskin gammaraybursts.A&A,2010,509,55 20. Janiuk, A.; Yuan, Y.F., Perna, R.; Di Matteo, T. Instabilities in the Time-Dependent Neutrino Disk in Gamma-RayBursts.ApJ2007,664,1011 21. Janiuk, A.; Perna, R., DiMatteo, T.; Czerny, B.Evolutionofaneutrino-cooleddiscingamma-raybursts. MNRAS,2004,355,950 22. Kocsis,B.;Haiman,Z.;Loeb,A.Gaspile-up,gapoverflowandType1.5migrationincircumbinarydiscs: generaltheory.MNRAS2012,427,2660 23. Kohri, K.; Mineshige, S. Can Neutrino-cooled Accretion Disks Be an Origin of Gamma-Ray Bursts? ApJ 2002,577,311 24. Kohri,K.;Narayan,R.;Piran,T.Neutrino-dominatedAccretionandSupernovae.ApJ2005,629,341 25. Löffler, F.; et al. The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics.Class.QuantumGrav.2012,29,115001 26. Li,L.X.,Paczynski,B.P.TransientEventsfromNeutronStarMergers,ApJ1998,507,59 27. Loeb,A.ElectromagneticCounterpartstoBlackHoleMergersDetectedbyLIGO.ApJL2016,819,21 28. McKinney,J.C.;Gammie,C.F.AMeasurementoftheElectromagneticLuminosityofaKerrBlackHole.ApJ 2004,611,977 29. Noble, S.C.; Gammie, C.F.; McKinney, J.C.; Del Zanna, L. Primitive Variable Solvers for Conservative GeneralRelativisticMagnetohydrodynamics.ApJ2006,641,626 30. Perna,R.;Lazzati,D.;Giacomazzo,B.;ShortGamma-RayBurstsfromtheMergerofTwoBlackHoles.ApJL 2016,821,18 31. Popham,R.;WoosleyS.E.;Fryer,C.HyperaccretingBlackHolesandGamma-RayBursts.ApJ1999,518,356 32. Reynoso,M.M.;Romero,G.E.;Sampayo,O.A.Precessionofneutrino-cooledaccretiondisksingamma-ray burstengines.A&A2006,454,11 33. Spera, M.; Mapelli, M.; &Bressan, A.ThemassspectrumofcompactremnantsfromthePARSECstellar evolutiontracks.MNRAS2015,451,4086 34. Yuan,Y.-F.Electron-positroncaptureratesandasteadystateequilibriumconditionforanelectron-positron plasmawithnucleons.Phys.Rev.D2005,72,013007