ebook img

Bitterfeld amber is not Baltic amber PDF

12 Pages·2015·3.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bitterfeld amber is not Baltic amber

ReviewofPalaeobotanyandPalynology225(2016)21–32 ContentslistsavailableatScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo BitterfeldamberisnotBalticamber:Threegeochemicaltestsandfurther constraints on the botanical affinities of succinite AlexanderP.Wolfea,⁎,RyanC.McKellarb,RalfTappertc,RanaN.S.Sodhid,KarlisMuehlenbachsc aDepartmentofBiologicalSciences,UniversityofAlberta,Edmonton,ABT6G2E9,Canada bRoyalSaskatchewanMuseum,2445AlbertSt.,Regina,SKS4P4W7,Canada cDepartmentofEarthandAtmosphericSciences,UniversityofAlberta,Edmonton,ABT6G2E3,Canada dDepartmentofChemicalEngineeringandAppliedChemistry,UniversityofToronto,Toronto,ONM5S3E5,Canada a r t i c l e i n f o a b s t r a c t Articlehistory: BalticandBitterfeldambersareimportantdepositsofpolymerizedconiferresinthatarewidelyrecognizedfor Received10October2014 theirexquisitefossilinclusions,especiallyinsects.Becauseofover-archingsimilaritieswithrespecttovisualap- Receivedinrevisedform12November2015 pearance,organicgeochemistry,arthropodassemblages,andproximitytoforestsofthePaleogeneNorthSea Accepted16November2015 margin,thesetwoambershavenotyetbeendifferentiateddefinitively,leadingtoongoingdebateastowhether Availableonline23November2015 ornotthey(andtheirrespectiveinclusions)aretrulyequivalent.Wecombinemicro-Fouriertransforminfrared spectroscopy(FTIR),timeofflight-secondaryionmassspectrometry(ToF-SIMS),andstableisotopes(δ13Candδ2H) Keywords: toestablishthatBalticandBitterfeldambersdifferconsistentlyintheirgeochemicalproperties,andthuscapturedis- Amber Baltic tinctdepositionalepisodesinspace,butnotnecessarilyintime.Balticamberhasmoresuccinicacid,succinicanhy- Bitterfeld dride,andcommunicacidrelativetoBitterfeldamber,butlessdehydroabieticacid.Althoughbothambersproduce FTIR overlappingδ13Cvalues,supportingasimilarageofformation,δ2Hismarkedlydepleted(by~20‰)inBalticamber ToF-SIMS relativetoBitterfeldamber.Thehydrogenisotopicresultsconferpaleolatitudinaldifferencesinamberprovenance, Stableisotopegeochemistry thatis,acleardifferentiationbetweensourcesoriginatingfromthenorthern(Baltic)andsouthern(Bitterfeld) marginsofthePaleogeneNorthSea.Weconcludethatthetwodepositsaregeologicallydistinctinorigin,butthat similaritiesintheirrespectivefaunalrecordsarisebecausetheyarebroadlycoevalintime.Wealsopresentnew ToF-SIMSresultsthatimplyonlyresinsfrommodernconifersofthefamiliesPinaceaeandSciadopityaceaebegin tosatisfytheexpandedgeochemicalprofilespresentedforBalticandBitterfeldambers. ©2015ElsevierB.V.Allrightsreserved. 1.Introduction (Millsetal.,1984;MosiniandSamperi,1985;Wolfeetal.,2009; Dolezychetal.,2011). Balticamberistheworld'sbestknowndepositoffossilplantresin, Bitterfeldamberoriginatesfromamuchmorerestrictedgeographi- and by far the single largest repository of fossil insects of any age calarea,thesiltsandsands,or“Bernsteinschluff”,oftheCottbusForma- (WeitschatandWichard,2002,2010).Unlikeinsitufossilresinsthat tion nearthetownof Bitterfeld in UpperSaxony (Sachsen-Anhalt; aredirectlyassociatedwithlignite,coal,orotherplant-richstrata,Baltic hence the synonym Saxonian amber). Although once assigned a amberisasecondarydepositfoundmainlyinglauconiticmarinesedi- Mioceneage(BarthelandHetzer,1982),morerecentgeochronological mentsofmiddleEoceneage(LutetianStage;41.3–47.8Ma),deposited efforts(Knuthetal.,2002)placethesesedimentsinthelateOligocene alongthepaleo-NorthSeamargin.Theblueearth(orBlaueErde)in (Chattian;23.0–28.1Ma).AswithBalticamber,Bitterfeldamberis whichBalticamberisprincipallyhostedoccursinRussia(Kaliningrad a secondary deposit that preserves an exceptional record of fossil Oblast),Poland,andGermany,butdetritalBalticamber,redeposited arthropods.BitterfeldamberwasactivelyminedatthesiteofGoitzsche byQuaternaryglacialandfluvialprocesses,reachesScandinavia,the between1975–1993,yieldingagemqualityresourceandthousandsof Balticrepublics,andtheBritishisles.Balticamberhasbeenexploited arthropodinclusions(Dunlop,2010).Carefulgeologicalmappingof formillennia,andiswidelydisseminatedinEuropeanarchaeological the Bitterfeld amber complex shows that amber is concentrated contexts(Becketal.,1965).ThebotanicaloriginofBalticamberis in low-energy lagoonal facies associated with a deltaic system atopicofintensescrutinyandlongstandingdebate,forwhichthe dischargingintotheNorthSeafromthesouth(Wimmeretal.,2006; only firm conclusion is that source trees were extinct conifers Fuhrmann,2008). BitterfeldamberissimilartoBalticamberwithrespecttohardness andvisual appearance(Fig. 1), the ubiquitous presenceof succinic ⁎ Correspondingauthor.Tel.:+15878791142;fax:+17804929457. acid(botharereferredtoassuccinites;AndersonandBotto,1993),sev- E-mailaddress:[email protected](A.P.Wolfe). eralelementsoftheirrespectivearthropodassemblages,andthe http://dx.doi.org/10.1016/j.revpalbo.2015.11.002 0034-6667/©2015ElsevierB.V.Allrightsreserved. 22 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 generalizedgeographyofEuropeanamberdistribution.Forthisrea- son,somehavearguedthattheyarenecessarilycoeval,Bitterfeld amber being merely a younger redeposited fraction of primary EoceneBalticamber.Inthismodel,bothambersshareacommon botanicalorigin.Thisviewissupportedbysimilaritiesbetweenthefau- nalinclusionsofbothdepositswithrespecttoArachnida(harvestmen: DunlopandMitov,2009;spiders:Wunderlich,1993,2004),Coleoptera (dermestids: Háva and Alekseev, 2015); Diptera (acalyptrates: vonTschirnhaus andHoffeins,2009;anthomyzids: Roháček,2013; ceratopogonids:Szadziewski,1993;SontagandSzadziewski,2001; limoniids: Kopeć and Kania, 2013; nymphomyiids: Wagner et al., 2000),andHymenoptera(apoidbees:Engel,2001;andwasps:Ohl andBennett,2009).Indeed,theviewpointthatBalticandBitterfeld ambershaveanidenticalprovenanceisheldstrongly,andhasbeen particularlywellarticulatedbyWeitschat(2008,pp.94),whosetrans- latedstatementreads: “NorthernEuropeanamberproductionbeganduringwarmcondi- tionsoftheearlyEocene,andterminatedbytheendofthemiddle Eocene.Thecoolingtrendoverthisintervalresultedinirreversible changesinthefloraandfaunaofnorthernEurope:tropicaland subtropicalelementswereprogressivelyreplacedbyboreal‘arcto- Tertiary’assemblages.Theamberforestsrecordedthistransition, giventhatBalticandBitterfelddepositsbothcontaintaxabelonging totropicalaswellasborealecotypes,attimestheverysamespecies. Thecaseisespeciallyconvincingwithregardtospiders,suggesting thatBalticandBitterfeldambersbothoriginatedfromasingleforest ecosysteminwesternScandinavia,whichpersistedforupto10 millionyearsunderasustainedwarmclimateregime.” Morerecently,evenstrongerstatementstothesameeffecthave beenissuedfromthepaleoentomologicalcommunity(Szwedoand Sontag,2013,pp.380): “Atpresent,thereisnodoubtthatamberfromBitterfeld(Saxonian amber)iscontemporaneouswithBalticamber,i.e.thatitoriginated intheEoceneandthatitbelongstotheBalticambergroup.” However,abalancedandthoroughreviewofthesubject(Dunlop, 2010)leavesunresolvedthequestionastowhetherBalticandBitterfeld ambersaretrulyidenticalinageandorigin.Argumentsbasedonstra- tigraphy(Knuthetal.,2002)andorganicgeochemistry(Yamamoto etal.,2006)challengetheviewthatBalticandBitterfeldambersare equivalent, as do paleobiological studies that nuance the rate and tempo of evolutionary processes among and between organismal groups(BarthelandHetzer,1982;DunlopandGiribet,2003;Schmidt andDörfeldt,2007;DlusskyandRasnitsyn,2009).Theresolutionof thisdilemmaconstitutestheimpetusforthepresentstudy,inthefoot- stepsofimportantyetinconclusiveregionalsymposiaonthisexact topic(Ganzelewskietal.,1997;Rascheretal.,2008).Wereportresults fromthreeparallelsuitesofgeochemicalanalysesthatbeardirectlyon thedifferencesandsimilaritiesbetweenBalticandBitterfeldambers, andconcludethattheyarecompositionallydistinctfromeachother anddonotsharethesamegeographicalprovenance,whileremaining largelycontemporaneousintheirageofformation. 2.Materialsandmethods Samples of Baltic and Bitterfeld ambers have been collected, Fig.1.PhotographsofBaltic(A–F)andBitterfeld(G–N)amberspecimens.Polished(A–B) purchased,andobtainedthroughexchangewithcolleagues.Asizeable andunpolished(C)clearBalticambers(“honey”),thelatterwithsurfacedesiccation collectionofBalticamberspecimensfromGermany,Lithuania,Poland, cracks.(D)Internalzonationbetweenclearandpartiallyopaque“butterscotch”ambers. Russia,andsouthernSwedenwasamassedduringpreviousinvestiga- (E–F)Outerandinternalviewsofcompletelyopaque“bone”amberwithmultiplegener- ationsofflowlines,orschlaube.(G–L)Bitterfeldamberrangingfromclearyellowtodark tions(Wolfeetal.,2009).Balticamberspecimensweresub-sampled reddish-brown.Thedarknearlyspecimen(M)isclassifiedas“glessite”,thenamegivento from this collection for the geochemical analyses described below. thisvariant,whichoccursinbothBalticandBitterfelddeposits.(M–N)Bitterfeldbone Bitterfeldamberspecimensincludesamplesconfirmedtooriginate amber. fromtheGoitzschemineandofferedforstudybyAlexanderSchmidt A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 23 (UniversityofGöttingen).Forbothambers,weanalyzedintriplicatethe representativeofreplicatedanalyses;allfeaturesillustratedanddiscussed fourmostcommoncolorvariants(“honey”,“butterscotch”,“bone”,and inthetextaremanifestedreproducibly. “glessite”;Fig.1),whichrangefromclearyellowtodarkred,withvari- Carbon(δ13C)andhydrogen(δ2H)stableisotopicratiosfrom ousdegreesofopacity. amberprovideusefulancillaryinformationforunderstandingthe Fouriertransforminfrared(FTIR)spectroscopyhasbeenamainstay genesisofamberdeposits,inpartbecauselittleisotopicexchangeoc- inamberchemicalfingerprintingforhalfacentury(Becketal.,1964; cursbetweenpolymerizedresinsandtheirsurroundingenvironment Langenheim and Beck, 1965). FTIR remains an important tool in afterburial(Murrayetal.,1989;NissenbaumandYakir,1995).Thisis amber research, in part because new technologies coupled to IR becausetheisoprene(C H )buildingblocksofterpenoidcyclichydro- 5 8 microscopesobviatetheneedforanembeddingmedium(typically carbons are especially recalcitrant towards diagenetic isotopic ex- KBr,whichishygroscopic),facilitatingtheanalysisofmuchsmaller changewithrespecttobothCandH.Inthepresentstudy,δ13Cwas specimens(e.g.,mg-scale;Tappertetal.,2011;Seyfullahetal.,2015). measuredfrom77Balticamberspecimensandanadditional68speci- We conducted FTIR micro-spectroscopy on untreated amber flakes mensofBitterfeldamber.δ2Hwasmeasuredfrom34and33specimens chippedfromfreshsurfacesfreeofinclusions.WealsoobtainedFTIR ofBalticandBitterfeldamber,respectively.Allsampleswerefragments spectrafrommonomethylsuccinate(99%,Sigma-Aldrich)andthree fromfreshlybrokensurfacescleanedwithdistilledwaterandair-dried, diterpeneresinacidsthatareimportantconstituentsofEuropeanPaleo- butnotchemicallyorthermallypretreatedinanyotherway.Samplesof geneambers:abieticacid,dehydroabieticacid,andcommunicacid.The 2–7mgwerecombustedat800°Cfor12hinvacuum-sealedquartz latterwereisolatedfromnaturalpinaceousresinstoN95%purityatthe glasswithCuO(1g)astheoxygensource.EvolvedCO wasmeasured 2 CanSynInc.Laboratory,Toronto(http://www.cansyn.com/index.html). directlyforδ13C,whereasH OwasreducedtoH withZn(100mg) 2 2 Allspecimensweremountedoninfrared-transparentNaCldiscsandkept priortoδ2Hanalysis.Bothgasesweremeasuredisotopicallywitha tothicknesses≤10μminordertominimizeoversaturation.Absorption FinniganMAT-252dual-inletisotope-ratiomassspectrometer.Results spectra were collected over the 700–4000 cm−1 (wavenumber) areexpressedinδnotationas‰relativetoViennaPeeDeeBelemnite interval (i.e., wavelengths of 2.5–14.0 μm) with a Thermo Nicolet (VPDB)forδ13CandViennaStandardMeanOceanWater(VSMOW) Nexus470FTIRspectrometerequippedwithaNicoletContinuumIR forδ2H.Analyticprecisionis±0.1‰forδ13Cand±3‰forδ2H. microscope.Spectralresolutionwas4cm−1andbeamsizewassetbe- tween50and100μm.Noadditionalmanipulations,suchascontinuum 3.Resultsanddiscussion removalorsmoothing,wereappliedtothespectra.Furtherdetailsof ourFTIRmethodologyhavebeenpresentedelsewhere(Wolfeetal., 3.1.Micro-FTIR 2009;Tappertetal.,2011). Timeofflight-secondaryionmassspectrometry(ToF-SIMS)isan TheFTIRspectraofBalticamberareverysimilartoeachother,irre- emergingtechnologyingeobiology,largelybecauseitisamenabletoor- spectiveofthecolororexternaltextureofthespecimeninquestion ganicmoleculesfromavarietyofgeologicalcontexts,andfurthermore (Fig.2A–B).Thisremarkablestabilityhasbeennotedrepeatedlysince highlyeffectiveincapturingabroadrangeofionizedproductswith thepioneeringinvestigationsofBecketal.(1965),andsuggeststhat extremelyhighmassresolution(ThielandSjövall,2011).InToF-SIMS all Baltic amber (sensu stricto) shares a common botanical origin analysis,samplesarebombardedwithahighenergyprimaryion (Wolfeetal.,2009).Thecharacteristicfeatureofthesespectraisthe stream, producing secondary ions from the analyte surface that “Balticshoulder”situatedbetween1190–1280cm−1,andflankedbya enterthedetectorandconsequentlyformamassspectrum.Inapply- strongabsorbancepeakat1170cm−1.Thisfeaturereflectsthesucci- ingToF-SIMStoamber,specimenswerecutwithadiamondblade natecontentoftheamberspecifically,asitisstronglyexpressedin ultracryomicrotome(LeicaEMUC6)immediatelypriortotheirin- thespectrumofpuremonomethylsuccinate(Fig.2D).WhileBitterfeld troductionintotheloadlockwithnofurthersamplepreparation. amberalsodisplaysthisspectroscopicfeature,inkeepingwithprior Threefragmentsofeachambertypewereanalyzedintriplicate.In FTIRanalysesofEuropeansuccinites(Kosmowska-Ceranowicz,1999), ordertobetterconstraintheionfragmentationpatternsobservedin itsexpressionisfarmoresubdued.Furthermore,theensembleofFTIR amber,wealsoobtainedduplicateToF-SIMSspectrafrommonomethyl spectrafromBitterfeldamberismorevariablethanthoseobtained succinate,abieticacid,dehydroabieticacid,andcommunicacid.These fromBalticamber,potentiallyreflectinggreatervariabilitywithregards standardsweredissolvedinchloroform,driedunderUVandO for toeitherbotanicalaffinityordiagenetichistory. 3 severalminutes,thenspin-coatedontoSiwafersimmediatelyprior Thespectroscopicdifferencebetweenconsensusspectraderivedfrom toanalysis.WealsoreportexploratoryToF-SIMSanalysesofmodern bothambers(Fig.2C)indicatesthreeregionswhereBalticamberhas resinsfromexemplarspeciesofthedominantresin-producingconifer consistentlystrongerabsorbancerelativetoBitterfeldamber:(a)thecar- families:Araucariaceae(Agathisaustralis),Cupressaceae(Metasequoia bonyl(C=O)bandassociatedwithCOOHandhencetotalcarboxylic glyptostroboides),Pinaceae(Pinuscontorta),Podocarpaceae(Podocarpus acids(1700–1800cm−1);(b)thesuccinateband(1170–1280cm−1); totara), and Sciadopityacae (Sciadopitys verticillata). These materials and(c)theout-of-planearomaticC–Hband(870–900m−1).Thelatter originate from our extensive collection (Wolfe et al., 2009; Tappert featureissupportedbythesecondaryC–Hbandat3080cm−1,which etal.,2011)andwerepreparedforToF-SIMSinmuchthesamewayas isalsobetterdevelopedinBalticamber.Ofthethreediterpeneresin amberspecimens.Itisimportantnottousechloroformatanystageof acidsanalyzed,thesetwoaromaticC–Hbandsonlyfigurestronglyin preparation of amber and resin samples, as this induces a range of the spectrum of communic acid. The bands from the abietic and artefactsowingtopartialsolubilityinthissolvent.ToF-SIMSspectra dehydroabieticacidstandardsthatarebestexpressedinamberspeci- wereobtainedwithanION-TOFGmbHToF-SIMSIVequippedwithabis- mensarethoseassociatedwithC–HinCH andCH (1380–1400cm−1 2 3 muth(Bi)liquidmetaliongun.TheBi++clusterwasusedastheprimary and1440–1460cm−1,Fig.2),butthesedonotcontributetoanypro- 3 ionbeamoperatedinhighmassresolutionbunchedmode(Sodhi,2004). nouncedspectroscopicdifferencesbetweenBalticandBitterfeldamber. Theionbeamwasrasteredoveranareaof500×500μmfor60–120sin FromthesynthesisofFTIRresults,weareabletosurmisethatBaltic ordertoremainbelowstaticlimits.Chargeneutralizationwasachieved amber, on the whole, contains more succinate relative to Bitterfeld usinglowenergy(b20eV)electronssuppliedbytheinstrument'spulsed amber,andlikelymorecommunicacid. electronfloodgun.Althoughbothpositiveandnegativepolarityspectra wereobtained,wereportonlyresultsobtainedinnegativemode,which 3.2.ToF-SIMS have proven more interpretable in pilot studies (Sodhi et al., 2013, 2014).ThereproducibilityofToF-SIMSspectrawasexcellentforbotham- BuildingonresultsfrompreliminarystudiesaddressingtheToF- bers,resins,andstandards.TheIllustratedToF-SIMSspectraareentirely SIMS spectra of ambers obtained in negative polarity (Sodhi et al., 24 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 Fig.2.FTIRspectraof(A)Baltic(red)and(B)Bitterfeldamber(blue)specimens.Illustratedspectrafrombothambershavebeencombinedwithadditionalmeasurements(n=8ineach case)toyieldconsensusspectra(boldlines),averagedfromindividualspectrarescaledtoacommonrangeof0–1relativeabsorbanceunits.(C)ThedifferencebetweenBalticand Bitterfeldconsensusspectraisshownwithshadedareasindicatingonestandarddeviationfromthemean.(D)FTIRspectraobtainedfrompurifiedmonomethylsuccinateandditerpene resinacids.Verticalgraybarsindicatesalientspectroscopicfeaturesdiscussedinthetext. 2013),wefocusontwomassintervalsofparticularinterest:the“succi- massspectrainthesuccinateregiondeviatebyb0.02ufromthethe- nateregion”(70–120u;Fig.3)andthe“diterpeneresinacidregion” oreticalmonoisotopicmassesof[M–H]−ionsproducedbytheiden- (250–350u;Fig.4).Theseareaddressedsequentiallybelow.Realized tifiedparentmolecules,andbyb0.05uinthediterpeneresinacid A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 25 Fig.3.NegativepolarityToF-SIMSspectraofthe70–120uregionfor(A)Balticamber,(B)Bitterfeldamber,and(C)monomethylsuccinate.Theentirerangeisshowntotheleft,alongside expansionsoftheshadedregionsthatincludepeaksinthe72.8–73.2u,98.8–99.2u,and116.8–117.2uranges,primarilyassociatedwithionsfromtheillustratedparentmolecules.Black arrowsindicatethetheoreticalmonoisotopicmassofnegativeionsofpropanoic(=propionic)acid,immediatelyadjacentpeaksattributedtoC6H−,showningray. region.Suchlevelsofaccuracyandprecisionareconsistentwith providenoconclusiveevidenceforthepresenceofnativepropanoic thosereportedincurrentgeobiological applicationsofToF-SIMS acidinamber.Moreover,theToF-SIMSpeaksobtainedinthe73ure- (Leefmannetal.,2013). gionarenotascleanandunimodalasthoseattributedtosuccinicacid Negativeionsthatoriginatefromsuccinicacid(C H O−)producea (117u)andsuccinicanhydride(99u),oftenyieldingasecondpeakat 4 5 4 clear[M–H]−peakat117uinToF-SIMSspectrafrombothBalticand slightlylowermass(Fig.3).Theexceptionalresolutionaffordedby Bitterfeld ambers (Fig. 3A–B). This peak is much stronger in Baltic ToF-SIMSallowscleardifferentiationofpeaksoccurringat73.02uand amber relative to Bitterfeld amber, consistent with a greater total 74.04u,forwhichonlythelattercanbeattributedtopropanoicacid. succinate content and the results from FTIR. Not surprisingly, the The73.02upeakisattributedtoC H−,forwhichtheparentmolecule 6 117upeakisevenmorepronouncedinthemassspectrumofpure maybehexatriyne.Becausethispeakisbetterexpressedintheambers monomethylsuccinate(Fig.3C).Relatedpeaksarethoseassociated relativetothemonomethylsuccinatestandard,itisprovisionallyasso- withdehydration anddecarboxylation of succinic acid,namelythe ciatedwithphotodissociationduringresinpolymerization.However, ionsoccurringat[(M–H)–H O]−=99uand[(M–H)–CO ]−=73u, untilfurtherstudyisconducted,werestrictallsubsequentconsider- 2 2 whichreflecttheparentmoleculessuccinicanhydrideandpropanoic ationstothe73.04upeakproducedbythe[M–H]−ionofpropanoic (= propionic) acid, respectively. The acid anhydride is not well acid. expressedinthemonomethylsuccinatemassspectrum,implyingthat Despitethesecomplexities,therecognitionofthreedistinctpeaks itspresenceinamberrelatestoprocessesassociatedwithgeological associatedwithsuccinicacid,theacidanhydride,andsecondaryfrag- maturation.Thisisimportantbecausethesuccinicanhydridepeakis mentsofparentmoleculescontainingsuccinate,whichmayinclude greater in both ambers than that of succinic acid, and particularly an assortment of fenchyl and bornyl succinates known to occur in intenseinthecaseofBalticamber(Fig.3A).Wethusconsidersuccinic both Baltic and Bitterfeld ambers (Yamamoto et al., 2006), should anhydridetoreflectthedegreesofdehydrationduringmaturationof beconsideredapowerfuldiagnostictoolandanovelapplicationof thetwoambers. ToF-SIMS.Moreover,thesuccinateregionofamberToF-SIMSspectra Thecaseofpropanoicacidismorecomplicatedforseveralreasons. alsoincludespeaksat80,85and97u(Fig.3),whichcorrespondto AlthoughnegativeionsofthismoleculehavebeenidentifiedinBaltic the[M–H]−ionsC H O−,C H O−,andC H O−,respectively.While 5 4 4 5 2 5 5 2 amberbefore(Tonidandeletal.,2009),innaturepropanoicacidresults the85upeakexistsinbothambers,andlikelyrepresentsvinylacetate, from microbially-assisted decarboxylation of succinic acid esters the80and97upeaksaremuchbetterexpressedintheBitterfeldmate- (e.g.,Whiteley,1953).Becausepropanoicacidisequallywellrepresent- rial.Althoughtheparentmoleculesforthesepeaksremainelusive,they edinthemassspectraofmonomethylsuccinateasinthoseofamber nonethelessassistindifferentiatingtheambersgeochemically. samples,weinferthatitoriginatesfromsecondaryfragmentationof Withrespecttothediterpeneresinacids,theavailabilityofpurified ionizedsuccinicacidduringToF-SIMSanalysis,suchthatourresults crystallinestandardsofkeychemicalspeciesprovesinvaluablewith 26 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 Fig.4.NegativepolarityToF-SIMSspectraofthe250–350uregion(left)andexpansionofthe295–305uregion(right)for(A)Balticamber,(B)Bitterfeldamber,(C)dehydroabietic acid,(D)abieticacid,and(E)communicacid.Structuresaregivenforparentmolecules,whereasblackarrowsindicatepeaksat317and333ucorrespondingtooxygenadditionsto the[M–H]−=301upeak.Shadedzones(leftpanels)indicatetheregionmagnifiedatright,inwhichshadedlinesindicatethemassesofprimarymolecularionsassociatedwithditerpene resinacids. respecttounderstandingtheirdistributioninamber(Fig.4).Further- molecular ions are commonly preserved in mass spectra (Dethlefs more,thetricyclicstructureofditerpeneresinacidsconfersconsider- etal.,1996;Diefendorfetal.,2012).NegativepolarityToF-SIMSspectra ablestabilityofthesemoleculestowardsfragmentation,implyingthat ofBalticandBitterfeldambersbothexhibitstrong[M–H]−peaksat299 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 27 Fig.5.StableisotopicratiosofBaltic(red)andBitterfeld(blue)ambers.Rawdata(AandC)andprobabilitydensityfunctions(BandD)areshownsequentiallyfortheδ13Candδ2H valuesobtainedfrombothmaterials.In(B),thedashedlinesandshadedareasaremeanand2S.D.rangesofvaluescompiledvaluesfromTappertetal.(2013)forcompilationsof Miocene–Oligoceneambers(fromGermancoal,Mexico,DominicanRepublic,MalaysiaandBorneo)comparedtoEoceneambers(fromWashingtonState,theCanadianHighArctic andkimberlite-hostedsediments,aswellasBalticamberbutexcludingBitterfeld).In(D),additionalaxeshavebeenaddedforinferredδ2Hplantwaterusingaconstantfractionationof −229‰betweenamberandenvironmentalwater(Wolfeetal.,2012),andaprovisionaltemperaturescalebasedonthemodernrelationshipbetweenδ2HandairtemperatureatKraków, Poland.Thedashedlinein(D)separatesmesothermalfromtropicalclimatesinKöppen–Geigerclassification. 28 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 and 301 u. The former corresponds to primary molecular ions of amber(Eocene)ashypothesized,itshouldproducemeanδ13Cvalues dehydroabieticacid(C H O ),whilethelattermaybeattributableto thatareabout2‰moredepletedrelativetoBalticamber,whichisnot 20 28 2 eitherabieticorcommunicacids(bothC H O ),oracombinationof observedintherawdata(Fig.5B).Thesimplestinterpretationofthe 20 30 2 both.Thepeaksobservedat303uareattributabletoC H O diter- closesimilaritybetweenBitterfeldandBalticamberδ13Cvaluesisthat 20 32 2 pene resin acids having a molecular mass of 304 u, for example they are equivalent in age, despite the compositional differences dihydroisopimaric acid, 8-abietenic acid, and 8(14)-abietenic acid borneoutoftheirorganicgeochemicalcharacterization. (Sodhietal.,2014).The301upeakalsoproducescorresponding Withrespecttoamberhydrogenstableisotopes(Fig.5C–D),thesit- [(M–H)+O]−and[(M–H)+O ]−peaksobservedinbothambers uationdiffersmarkedlyfromthecarbonresults,notingthatallδ2H 2 (i.e.,317and333u).Ofthediterpeneresinacidsconsideredhere, valueswereobtainedfromasub-setoftheexactsamesamplesanalyzed onlyabieticacidproducessecondarypeaksassociatedwithoxygen- forδ13C.Balticamber(meanδ2H=−277±22‰)isconsistentlymore ation, and thus it clearly represents an important component of depletedrelativetoBitterfeldamber(meanδ2H=−256±9‰).This bothambers.Ontheotherhand,the299upeakassociatedwith differenceishighlysignificant(Pb0.0001;t=5.28;d.f.=99).Because dehydroabieticacidisonaveragethree-foldstrongerinBitterfeld amber δ2H is ultimately modulated by the isotopic composition of amberrelativetoBalticamber,implyingconsiderablygreaterconcen- source waters accessed by trees at the time of resin biosynthesis trations of this diterpene resin acid. Although ToF-SIMS spectra of (McKellaretal.,2008;Wolfeetal.,2012),thisresultimpliesthat,onav- abieticandcommunicacidsareindistinguishablefromeachotherin erage,forestsresponsiblefortheformationofBalticamberexploited the295–305urange(Fig.4),wehavealreadyshown,onthebasisof watersthatwere20‰lighterthanthoseinvolvedinthegenesisof FTIR,thatcommunicacidismoreabundantinBalticamber. Bitterfeldamber.Themostparsimoniousinterpretationofthisdiffer- WhatemergesfromthecombinedFTIRandToF-SIMSresultsisa enceisthat,whereasthedrainagesourceforBitterfeldamberlaywell geochemicaldifferentiationbetweenBalticandBitterfeldambersthat tothesouthofthedeposit,thatofBalticamberwassituatedtothe isconsistentbetweenanalyticalplatforms:Balticamberhasagreater northinScandinavia.Suchascenarioisreadilyaccommodatedbythe apportionmentof succinic andcommunic acids, whereasBitterfeld paleogeography of regions bordering the Eocene North Sea basin ambercontainsmoredehydroabieticacid.Thelatterobservationis (Wimmeretal.,2009;Fig.6). entirelyconsistentwithpriorresultsobtainedoncomparablematerials Modernenvironmentsprovideadditionalcontextwithwhichthe usinggaschromatography–massspectrometry(GC–MS;Yamamoto δ2HdifferencebetweenBalticandBitterfeldamberscanbeappreciated. et al., 2006). Thus, from the perspective of organic geochemistry Forexample,inmodernPinusresinssampledbetweenScotlandand alone,BalticandBitterfeldambersappeartobecompositionallydistinct Cyprus,a20‰differenceinδ2Hcorrespondsto~7°oflatitude(Stern inanumberofsubtleyetreproducibleways.Inmakingthisstatement, etal.,2008).WithinthemodernisoscapeofcentralEurope,adifference weadvocatestronglytheadvantagesofFTIRandToF-SIMSasanalyses of20‰inleaf-waterδ2Hrepresentsapproximately800kmoflatitude conducted on amber in the solid state, thereby eliminating issues (Westetal.,2008).Bothoftheseexamplesareentirelyconsistents associatedwiththesematerialsbeingonlypartiallysolubleinorganic withtheenvisagedpaleogeographyatthetimeofamberformation solvents(Millsetal.,1984).Forthisreason,wedisagreewiththecom- (Fig.6).Weconcludefromtheamberδ2Hresultsthatforestsresponsi- mentofAndersonandBotto(1993,pp.1037)that,withrespectto blefortheproductionofBalticandBitterfeldambersaccessedsource glessitefromBitterfeld(e.g.,Fig.1J)andgenuineBalticamber:“theex- watersoriginatingfromfundamentallydifferentsectorsoftheEocene tentofsimilarityoftheseresinitesissuch,thatthevalidityofcontinued NorthSeadrainage:theScandinavianhighlandsinthefirstcase,and distinctionbetweenthemis,onchemicalgroundsatleast,unjustified.” theParatethyansectorofcentralEuropeinthesecond. Fromourperspective,werestrictthecompositionalsimilaritybetween AsperhapsthemostsalientgeochemicaldifferencebetweenBaltic BalticandBitterfeldamberstostatingthatbothclearlybelongtoClassIa andBitterfeldamber,thehydrogenisotopicmeasurementsmeritfur- resinites,i.e.,thosecontainingditerpenesbasedonlabdanoidskeletal ther discussion.First,wenotethattherange of results fromBaltic structuresinthepresenceofsuccinicacid,andarangeofassociated amberisconsiderablylargerthanthatobtainedfromBitterfeldamber alcoholsandesters(Andersonetal.,1992). (Fig.5C).ThissuggeststhattheclimateenveloperealizedduringBaltic amberformationwasbroader,andbyinferencelonger,thanthatasso- 3.3.Stableisotopes ciatedwithBitterfeldamber.Second,althoughBitterfeldamberpro- ducesamoreenrichedmeanδ2Hsignature,Balticambernonetheless The carbon stable isotopic compositions of Baltic and Bitterfeld producesnumerousmeasurementsthatareequallyenriched,resulting ambers are virtually identical, yielding means of δ13C = −23.6 ± 1.0‰and−23.9±1.7‰,respectively(Fig.5A).Inageneralsense,the δ13Cofamberreflectsthelocalizeddegreeoftreeecophysiological stressatthetimeofresinproduction,withgreaterstressresultingin lesseffectiveisotopicdiscriminationagainst13C(i.e.,higherδ13Cvalues; McKellar et al., 2011). When probability distribution functions are appliedtotheδ13CresultsfromBalticandBitterfeldambers(Fig.5B), aprincipalmodeisapparent,flankedbytwoshouldersthatpresumably reflectoccasionsofresinproductionunderalternatelyluxuriant(most depletedδ13Cvalues)andstressed(enriched)environmentalcondi- tionsthatdeviatefromthecentralmodesexpressedinbothdeposits. Thesesimilaritiesaresuchthatδ13Cvaluesdonotdifferentiatethe twoambers.Indeed,thepopulationsofBalticandBitterfeldambers δ13Cvaluesdonotyieldstatisticallysignificantdifferencesunderanun- pairedt-test(P=0.27;t=1.11;d.f.=109). Moreover,attheglobalscale,amberδ13Cisalsoinfluencedbyatmo- sphericcompositionwithrespecttoCO andO partialpressures,yield- 2 2 ingarobustseculartrendof~5‰towardsmoredepletedvaluesover the past 50 Ma that is superposed upon the localized influences Fig.6.AproposedpaleogeographicscenariofortheprovenanceofBalticandBitterfeld ambersduringthemiddleEocene.ShadedareasrepresenttheEocenelandmass,whereas discussedabove(Tappertetal.,2013).Thisimpliesthat,ifBitterfeld dashedlinesaremoderncoastlines,followingScoteseetal.(1989)andWimmeretal. amber were truly younger (e.g., Miocene–Oligocene) than Baltic (2009).Darkgrayregionsapproximatethelociofamberdeposition. A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 29 inasecondarymodeintheprobabilitydistributionofisotopicvalues Weawaitunbiased,abundance-weightedcensusesatsufficienttaxo- (Fig.5D).Thisobservationisinkeepingwiththeentomologicalrecord nomicresolutiontotestthishypothesis,acknowledgingthatseveral ofBalticamber,whichcontainsadmixturesoftaxawithalternately collectionsaresufficientlyrichtoundertakethisactivitysystematically. tropical and boreal ecological affinities (Larsson, 1978; Weitschat, Wefurtherexplorepaleoclimaticsignificanceofamberδ2Hresults 1997;WeitschatandWichard,2002;WeitschatandWichard,2010). byderivingprovisionaltemperatureestimatesasfollows.First,values However,ifourisotopicresultsarebroadlyrepresentativeofbothde- ofamberδ2Hwereconvertedtoδ2H usingaconstantfraction- plantwater posits,wepredictthatBitterfeldambershouldcontainagreateroverall ationof−229‰betweenamberandenvironmentalwater(Chikaraishi proportionofwarmstenothermousarthropodsrelativetoBalticamber. etal.,2004;Wolfeetal.,2012).Then,usinganappropriatemodern Fig.7.NegativepolarityToF-SIMSspectraspanningthesuccinateregion(70–120u)forBalticandBitterfeldambers(A–B)andmodernresinsrepresentativeofvariousconiferfamilies (C–G).Verticalshadinghighlightsdominantions,andarrowsindicateionsderivedfromsuccinicacidandsuccinicanhydridepeaks,asdiscussedinthetext.Duetobetween-sample differencesinabsoluteintensities,allspectrahavebeenrescaledtothemaximumpeakheightinthe70–120urange. 30 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 temperature–δ2HrelationshipfromcentralEurope,weareabletore- Botto,1993),thisisanimportantconfirmatoryresult.Indeed,conifers scaleδ2H asafirstapproximationofcorrespondingambient ofthefamilySciadopityaceaehavebeenproposedasapotentialsource plantwater temperatures.Weusethestrongrelationshipbetweenairtemperature forBalticamberbasedonextensivecomparativeanalysesofFTIRspec- andprecipitationδ2HatKraków,Poland(50.1°N,19.9°E),whichyields tra(Wolfeetal.,2009),whereasvariousPinaceaehavebeeninvokedin δ2H=2.6(temperature)–91.8(R2=0.59;n=406).Thisisamong thissameregardforwelloveracentury,largelyonthebasisoftheanat- themostintenselysampledEuropeanstationsintheGlobalNetwork omyofwoodyinclusions(GoeppertandMenge,1883;Dolezychetal., ofIsotopesinPrecipitation(GNIP)program(IAEA/WMO,2014).Results 2011).FossilsbelongingtobothfamiliesarepresentinBalticamber,al- usingotherdenselysampledstations,suchasLeipzig(R2=0.35; thoughpinaceouselementsappearmoreconspicuous(Weitschatand n=341)andBerlin(R2=0.32;n=273),yieldsimilarresultsbut Wichard,2002).AdditionalToF-SIMS[M–H]−peaksthatareconsistent- sufferfromlowercoefficientsofdeterminationbetweenδ2Hand lyexpressedinthesuccinateregionofmodernconiferresinsinclude temperature.Resultingδ2H andtemperatureestimatesare thoseat73u(C H O−,whichmustbedifferentiatedfromC H−as plantwater 3 5 2 6 portrayedasadditionalaxesontheamberδ2Hprobabilitydistributions discussedearlier),80u(C H O−),85u(C H O−),and97u(C H O−). 5 4 4 5 2 5 5 2 (Fig.5D).Inthismodel,themeantemperaturesassociatedwithBaltic Two peaks are specific to individual species: 79 u (C H O−) in 5 3 andBitterfeldambersare17°Cand25°C,respectively,flankingthe Sciadopitysverticillataand112u(C H O−)inAgathisaustralis.Further 6 8 2 18°Cthresholdofmeanannualtemperaturethatdistinguishestropical differentiationbetweenthemodernresinscanbegleanedfromthe and mesothermal climate regimes (Peel et al., 2007). While both diterpene resin acid region of their ToF-SIMS spectra (Table 1). ambers produce a large number of samples with tropical isotopic AlthoughweareonlybeginningtoexploitToF-SIMSasastrategyin signatures,asdiscussedabove,onlyBalticamberproducesvaluescon- resinchemotaxonomy,andclearlyadditionalanalysesaredesirable, sistentwithtemperaturesb15°C.Ofcourse,wedonotconsiderthese theinitialresultspresentedhereportendconsiderablepotentialfor reconstructionstobedefinitive;theyarepresentedasanexploratory thisapproach. tool grounded in the premise that the systematics of isotopes in The relationships between amber and modern resin ToF-SIMS precipitationduringthePaleogeneweremechanisticallysimilartothe spectra can be formalized by hierarchical cluster analysis of the modernworld,despitedifferencesinprecipitationquantity,ambient dominantrecurrentpeakslistedinTable1.Weappliedclusteringby temperature,andseasonality(Wolfeetal.,2012).Nonetheless,the centroidlinkagetomatricesofEuclideandistancesusingClusterand results appear realistic in the sense of their consistency with the TreeViewsoftwarepackages(Page,1996;deHoonetal.,2004).Raw paleoentomologicalrecord,particularlythatofBalticamber.Having data(i.e.,intensitiesnormalizedtoarangeof0–100)werenottrans- nowestablishedongeochemicalgroundsnumerousdistinctionsbe- formedinanyotherwaypriortoclustering.Whenpeaksrestrictedto tweenBalticandBitterfeldamber,thelargestremainingquestionper- thesuccinateregionareconsidered(Fig.8A),onlySciadopitysverticillata tainstothebotanicaloriginofthesedeposits. resinclusterswiththeambersamples,revealinganespeciallyclosesim- ilaritytotheBitterfeldmaterial.ResinsfromAgathis,Pinus,Metasequoia 4.ToF-SIMSspectraofmodernresinsandthebotanicaloriginof andPodocarpusformasecondhighordergrouping.Inasecondand succinites moreinclusiveanalysis,peaksrepresentingmolecularionsofditerpene resinacids(i.e.,299–303u)wereincludedinadditiontothosefromthe NegativepolarityToF-SIMSspectraofmodernconiferresinsassistin succinateregion,yieldingadendrogramwherePinusjoinsSciadopitysas elucidatingthebotanicalprovenanceofBalticandBitterfeldamber. themodernresinswiththehighestdegreeofsimilaritytotheambers Of the modern taxa analyzed, only Pinus contorta and Sciadopitys (Fig.8B).Collectively,theseanalyseseffectivelyeliminateconifersof verticillatapreservepronouncedpeaksassociatedwithnegativeions thefamiliesAraucariaceae,Cupressaceae,andPodocarpaceaeaspoten- fromsuccinicacidanditsacidanhydride(Fig.7).Assuccinicacidis tialsourcesforEuropeansuccinites,leavingeitherextinctpinaceousor thedefiningbiomarkerforsucciniteambervarietalsincludingboth sciadopityaceoustreesasthemostviablecandidatesourceplants.Al- Baltic and Bitterfeld ambers (i.e., Class Ia resinites, Anderson and though the clustering exercises (Fig. 8) illustrate the longstanding Table1 Relativeintensitiesofdominant[M–H]−peaksobservedinthesuccinateandditerpeneresinacidregionsofToF-SIMSspectrafrommonomethylsuccinate,BalticandBitterfeldambers, andvariousmodernconiferresins.Valuesarescaledtothemaximumpeakintensitywithineachregion. Succinateregion Relativeintensitiesofdominantpeaks(maximumpeakin70–120urange=100) Analyte n 73.04u S.D. 85.09u S.D. 97.04u S.D. 99.02u S.D. 117.03u S.D. Monomethylsuccinate 2 25.94 3.43 2.28 0.52 7.90 3.19 9.59 1.33 100.00 0.00 Balticamber 3 41.83 9.10 22.71 0.93 14.93 4.20 100.00 0.00 25.00 3.29 Bitterfeldamber 3 19.40 7.02 24.47 3.32 78.84 25.63 39.14 9.34 6.48 0.64 Agathisaustralisresin 3 73.06 0.03 79.81 17.63 27.79 6.52 14.24 6.21 5.58 1.56 Metasequoiaglyprostroboidesresin 3 25.07 5.66 100.00 0.00 18.06 3.12 7.50 1.11 1.72 0.20 Pinuscontortaresin 3 59.59 3.62 95.01 8.65 36.10 4.40 24.31 5.40 8.28 0.51 Podocarpustotararesin 3 25.15 2.23 100.00 0.00 17.03 6.03 11.72 3.74 1.99 0.54 Sciadopitysverticillataresin 3 24.46 2.53 20.14 8.02 46.19 13.10 26.83 8.64 18.12 9.51 Diterpeneregion Relativeintensitiesofdominantpeaks(maximumpeakin298–304urange=100) Analyte n 299.21u S.D. 300.17u S.D. 301.22u S.D. 302.22u S.D. 303.24u S.D. Monomethylsuccinate 2 5.19 0.58 1.84 0.69 100.00 0.00 9.10 0.05 4.17 1.21 Balticamber 3 35.76 9.12 8.79 0.53 100.00 0.00 28.42 3.96 46.34 14.30 Bitterfeldamber 3 98.83 2.03 26.52 2.37 94.63 5.83 29.20 2.70 56.50 3.29 Agathisaustralisresin 3 12.12 7.26 4.42 1.91 100.00 0.00 25.84 2.09 11.89 6.54 Metasequoiaglyprostroboidesresin 3 7.49 1.17 3.06 0.44 100.00 0.00 22.68 2.40 14.19 3.95 Pinuscontortaresin 3 90.75 9.46 25.24 1.25 88.02 20.74 21.68 3.37 50.87 7.69 Podocarpustotararesin 3 4.17 0.59 1.85 0.57 100.00 0.00 22.67 3.16 10.70 3.83 Sciadopitysverticillataresin 3 95.96 7.00 50.37 2.28 79.69 2.32 45.70 3.24 91.54 12.18

Description:
Baltic amber is the world's best known deposit of fossil plant resin, and by far the single (Mills et al., 1984; Mosini and Samperi, 1985; Wolfe et al., 2009;. Dolezych et al. Álava 14, 73–117. Langenheim, J.H., Beck, C.W., 1965.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.