ReviewofPalaeobotanyandPalynology225(2016)21–32 ContentslistsavailableatScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo BitterfeldamberisnotBalticamber:Threegeochemicaltestsandfurther constraints on the botanical affinities of succinite AlexanderP.Wolfea,⁎,RyanC.McKellarb,RalfTappertc,RanaN.S.Sodhid,KarlisMuehlenbachsc aDepartmentofBiologicalSciences,UniversityofAlberta,Edmonton,ABT6G2E9,Canada bRoyalSaskatchewanMuseum,2445AlbertSt.,Regina,SKS4P4W7,Canada cDepartmentofEarthandAtmosphericSciences,UniversityofAlberta,Edmonton,ABT6G2E3,Canada dDepartmentofChemicalEngineeringandAppliedChemistry,UniversityofToronto,Toronto,ONM5S3E5,Canada a r t i c l e i n f o a b s t r a c t Articlehistory: BalticandBitterfeldambersareimportantdepositsofpolymerizedconiferresinthatarewidelyrecognizedfor Received10October2014 theirexquisitefossilinclusions,especiallyinsects.Becauseofover-archingsimilaritieswithrespecttovisualap- Receivedinrevisedform12November2015 pearance,organicgeochemistry,arthropodassemblages,andproximitytoforestsofthePaleogeneNorthSea Accepted16November2015 margin,thesetwoambershavenotyetbeendifferentiateddefinitively,leadingtoongoingdebateastowhether Availableonline23November2015 ornotthey(andtheirrespectiveinclusions)aretrulyequivalent.Wecombinemicro-Fouriertransforminfrared spectroscopy(FTIR),timeofflight-secondaryionmassspectrometry(ToF-SIMS),andstableisotopes(δ13Candδ2H) Keywords: toestablishthatBalticandBitterfeldambersdifferconsistentlyintheirgeochemicalproperties,andthuscapturedis- Amber Baltic tinctdepositionalepisodesinspace,butnotnecessarilyintime.Balticamberhasmoresuccinicacid,succinicanhy- Bitterfeld dride,andcommunicacidrelativetoBitterfeldamber,butlessdehydroabieticacid.Althoughbothambersproduce FTIR overlappingδ13Cvalues,supportingasimilarageofformation,δ2Hismarkedlydepleted(by~20‰)inBalticamber ToF-SIMS relativetoBitterfeldamber.Thehydrogenisotopicresultsconferpaleolatitudinaldifferencesinamberprovenance, Stableisotopegeochemistry thatis,acleardifferentiationbetweensourcesoriginatingfromthenorthern(Baltic)andsouthern(Bitterfeld) marginsofthePaleogeneNorthSea.Weconcludethatthetwodepositsaregeologicallydistinctinorigin,butthat similaritiesintheirrespectivefaunalrecordsarisebecausetheyarebroadlycoevalintime.Wealsopresentnew ToF-SIMSresultsthatimplyonlyresinsfrommodernconifersofthefamiliesPinaceaeandSciadopityaceaebegin tosatisfytheexpandedgeochemicalprofilespresentedforBalticandBitterfeldambers. ©2015ElsevierB.V.Allrightsreserved. 1.Introduction (Millsetal.,1984;MosiniandSamperi,1985;Wolfeetal.,2009; Dolezychetal.,2011). Balticamberistheworld'sbestknowndepositoffossilplantresin, Bitterfeldamberoriginatesfromamuchmorerestrictedgeographi- and by far the single largest repository of fossil insects of any age calarea,thesiltsandsands,or“Bernsteinschluff”,oftheCottbusForma- (WeitschatandWichard,2002,2010).Unlikeinsitufossilresinsthat tion nearthetownof Bitterfeld in UpperSaxony (Sachsen-Anhalt; aredirectlyassociatedwithlignite,coal,orotherplant-richstrata,Baltic hence the synonym Saxonian amber). Although once assigned a amberisasecondarydepositfoundmainlyinglauconiticmarinesedi- Mioceneage(BarthelandHetzer,1982),morerecentgeochronological mentsofmiddleEoceneage(LutetianStage;41.3–47.8Ma),deposited efforts(Knuthetal.,2002)placethesesedimentsinthelateOligocene alongthepaleo-NorthSeamargin.Theblueearth(orBlaueErde)in (Chattian;23.0–28.1Ma).AswithBalticamber,Bitterfeldamberis whichBalticamberisprincipallyhostedoccursinRussia(Kaliningrad a secondary deposit that preserves an exceptional record of fossil Oblast),Poland,andGermany,butdetritalBalticamber,redeposited arthropods.BitterfeldamberwasactivelyminedatthesiteofGoitzsche byQuaternaryglacialandfluvialprocesses,reachesScandinavia,the between1975–1993,yieldingagemqualityresourceandthousandsof Balticrepublics,andtheBritishisles.Balticamberhasbeenexploited arthropodinclusions(Dunlop,2010).Carefulgeologicalmappingof formillennia,andiswidelydisseminatedinEuropeanarchaeological the Bitterfeld amber complex shows that amber is concentrated contexts(Becketal.,1965).ThebotanicaloriginofBalticamberis in low-energy lagoonal facies associated with a deltaic system atopicofintensescrutinyandlongstandingdebate,forwhichthe dischargingintotheNorthSeafromthesouth(Wimmeretal.,2006; only firm conclusion is that source trees were extinct conifers Fuhrmann,2008). BitterfeldamberissimilartoBalticamberwithrespecttohardness andvisual appearance(Fig. 1), the ubiquitous presenceof succinic ⁎ Correspondingauthor.Tel.:+15878791142;fax:+17804929457. acid(botharereferredtoassuccinites;AndersonandBotto,1993),sev- E-mailaddress:[email protected](A.P.Wolfe). eralelementsoftheirrespectivearthropodassemblages,andthe http://dx.doi.org/10.1016/j.revpalbo.2015.11.002 0034-6667/©2015ElsevierB.V.Allrightsreserved. 22 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 generalizedgeographyofEuropeanamberdistribution.Forthisrea- son,somehavearguedthattheyarenecessarilycoeval,Bitterfeld amber being merely a younger redeposited fraction of primary EoceneBalticamber.Inthismodel,bothambersshareacommon botanicalorigin.Thisviewissupportedbysimilaritiesbetweenthefau- nalinclusionsofbothdepositswithrespecttoArachnida(harvestmen: DunlopandMitov,2009;spiders:Wunderlich,1993,2004),Coleoptera (dermestids: Háva and Alekseev, 2015); Diptera (acalyptrates: vonTschirnhaus andHoffeins,2009;anthomyzids: Roháček,2013; ceratopogonids:Szadziewski,1993;SontagandSzadziewski,2001; limoniids: Kopeć and Kania, 2013; nymphomyiids: Wagner et al., 2000),andHymenoptera(apoidbees:Engel,2001;andwasps:Ohl andBennett,2009).Indeed,theviewpointthatBalticandBitterfeld ambershaveanidenticalprovenanceisheldstrongly,andhasbeen particularlywellarticulatedbyWeitschat(2008,pp.94),whosetrans- latedstatementreads: “NorthernEuropeanamberproductionbeganduringwarmcondi- tionsoftheearlyEocene,andterminatedbytheendofthemiddle Eocene.Thecoolingtrendoverthisintervalresultedinirreversible changesinthefloraandfaunaofnorthernEurope:tropicaland subtropicalelementswereprogressivelyreplacedbyboreal‘arcto- Tertiary’assemblages.Theamberforestsrecordedthistransition, giventhatBalticandBitterfelddepositsbothcontaintaxabelonging totropicalaswellasborealecotypes,attimestheverysamespecies. Thecaseisespeciallyconvincingwithregardtospiders,suggesting thatBalticandBitterfeldambersbothoriginatedfromasingleforest ecosysteminwesternScandinavia,whichpersistedforupto10 millionyearsunderasustainedwarmclimateregime.” Morerecently,evenstrongerstatementstothesameeffecthave beenissuedfromthepaleoentomologicalcommunity(Szwedoand Sontag,2013,pp.380): “Atpresent,thereisnodoubtthatamberfromBitterfeld(Saxonian amber)iscontemporaneouswithBalticamber,i.e.thatitoriginated intheEoceneandthatitbelongstotheBalticambergroup.” However,abalancedandthoroughreviewofthesubject(Dunlop, 2010)leavesunresolvedthequestionastowhetherBalticandBitterfeld ambersaretrulyidenticalinageandorigin.Argumentsbasedonstra- tigraphy(Knuthetal.,2002)andorganicgeochemistry(Yamamoto etal.,2006)challengetheviewthatBalticandBitterfeldambersare equivalent, as do paleobiological studies that nuance the rate and tempo of evolutionary processes among and between organismal groups(BarthelandHetzer,1982;DunlopandGiribet,2003;Schmidt andDörfeldt,2007;DlusskyandRasnitsyn,2009).Theresolutionof thisdilemmaconstitutestheimpetusforthepresentstudy,inthefoot- stepsofimportantyetinconclusiveregionalsymposiaonthisexact topic(Ganzelewskietal.,1997;Rascheretal.,2008).Wereportresults fromthreeparallelsuitesofgeochemicalanalysesthatbeardirectlyon thedifferencesandsimilaritiesbetweenBalticandBitterfeldambers, andconcludethattheyarecompositionallydistinctfromeachother anddonotsharethesamegeographicalprovenance,whileremaining largelycontemporaneousintheirageofformation. 2.Materialsandmethods Samples of Baltic and Bitterfeld ambers have been collected, Fig.1.PhotographsofBaltic(A–F)andBitterfeld(G–N)amberspecimens.Polished(A–B) purchased,andobtainedthroughexchangewithcolleagues.Asizeable andunpolished(C)clearBalticambers(“honey”),thelatterwithsurfacedesiccation collectionofBalticamberspecimensfromGermany,Lithuania,Poland, cracks.(D)Internalzonationbetweenclearandpartiallyopaque“butterscotch”ambers. Russia,andsouthernSwedenwasamassedduringpreviousinvestiga- (E–F)Outerandinternalviewsofcompletelyopaque“bone”amberwithmultiplegener- ationsofflowlines,orschlaube.(G–L)Bitterfeldamberrangingfromclearyellowtodark tions(Wolfeetal.,2009).Balticamberspecimensweresub-sampled reddish-brown.Thedarknearlyspecimen(M)isclassifiedas“glessite”,thenamegivento from this collection for the geochemical analyses described below. thisvariant,whichoccursinbothBalticandBitterfelddeposits.(M–N)Bitterfeldbone Bitterfeldamberspecimensincludesamplesconfirmedtooriginate amber. fromtheGoitzschemineandofferedforstudybyAlexanderSchmidt A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 23 (UniversityofGöttingen).Forbothambers,weanalyzedintriplicatethe representativeofreplicatedanalyses;allfeaturesillustratedanddiscussed fourmostcommoncolorvariants(“honey”,“butterscotch”,“bone”,and inthetextaremanifestedreproducibly. “glessite”;Fig.1),whichrangefromclearyellowtodarkred,withvari- Carbon(δ13C)andhydrogen(δ2H)stableisotopicratiosfrom ousdegreesofopacity. amberprovideusefulancillaryinformationforunderstandingthe Fouriertransforminfrared(FTIR)spectroscopyhasbeenamainstay genesisofamberdeposits,inpartbecauselittleisotopicexchangeoc- inamberchemicalfingerprintingforhalfacentury(Becketal.,1964; cursbetweenpolymerizedresinsandtheirsurroundingenvironment Langenheim and Beck, 1965). FTIR remains an important tool in afterburial(Murrayetal.,1989;NissenbaumandYakir,1995).Thisis amber research, in part because new technologies coupled to IR becausetheisoprene(C H )buildingblocksofterpenoidcyclichydro- 5 8 microscopesobviatetheneedforanembeddingmedium(typically carbons are especially recalcitrant towards diagenetic isotopic ex- KBr,whichishygroscopic),facilitatingtheanalysisofmuchsmaller changewithrespecttobothCandH.Inthepresentstudy,δ13Cwas specimens(e.g.,mg-scale;Tappertetal.,2011;Seyfullahetal.,2015). measuredfrom77Balticamberspecimensandanadditional68speci- We conducted FTIR micro-spectroscopy on untreated amber flakes mensofBitterfeldamber.δ2Hwasmeasuredfrom34and33specimens chippedfromfreshsurfacesfreeofinclusions.WealsoobtainedFTIR ofBalticandBitterfeldamber,respectively.Allsampleswerefragments spectrafrommonomethylsuccinate(99%,Sigma-Aldrich)andthree fromfreshlybrokensurfacescleanedwithdistilledwaterandair-dried, diterpeneresinacidsthatareimportantconstituentsofEuropeanPaleo- butnotchemicallyorthermallypretreatedinanyotherway.Samplesof geneambers:abieticacid,dehydroabieticacid,andcommunicacid.The 2–7mgwerecombustedat800°Cfor12hinvacuum-sealedquartz latterwereisolatedfromnaturalpinaceousresinstoN95%purityatthe glasswithCuO(1g)astheoxygensource.EvolvedCO wasmeasured 2 CanSynInc.Laboratory,Toronto(http://www.cansyn.com/index.html). directlyforδ13C,whereasH OwasreducedtoH withZn(100mg) 2 2 Allspecimensweremountedoninfrared-transparentNaCldiscsandkept priortoδ2Hanalysis.Bothgasesweremeasuredisotopicallywitha tothicknesses≤10μminordertominimizeoversaturation.Absorption FinniganMAT-252dual-inletisotope-ratiomassspectrometer.Results spectra were collected over the 700–4000 cm−1 (wavenumber) areexpressedinδnotationas‰relativetoViennaPeeDeeBelemnite interval (i.e., wavelengths of 2.5–14.0 μm) with a Thermo Nicolet (VPDB)forδ13CandViennaStandardMeanOceanWater(VSMOW) Nexus470FTIRspectrometerequippedwithaNicoletContinuumIR forδ2H.Analyticprecisionis±0.1‰forδ13Cand±3‰forδ2H. microscope.Spectralresolutionwas4cm−1andbeamsizewassetbe- tween50and100μm.Noadditionalmanipulations,suchascontinuum 3.Resultsanddiscussion removalorsmoothing,wereappliedtothespectra.Furtherdetailsof ourFTIRmethodologyhavebeenpresentedelsewhere(Wolfeetal., 3.1.Micro-FTIR 2009;Tappertetal.,2011). Timeofflight-secondaryionmassspectrometry(ToF-SIMS)isan TheFTIRspectraofBalticamberareverysimilartoeachother,irre- emergingtechnologyingeobiology,largelybecauseitisamenabletoor- spectiveofthecolororexternaltextureofthespecimeninquestion ganicmoleculesfromavarietyofgeologicalcontexts,andfurthermore (Fig.2A–B).Thisremarkablestabilityhasbeennotedrepeatedlysince highlyeffectiveincapturingabroadrangeofionizedproductswith thepioneeringinvestigationsofBecketal.(1965),andsuggeststhat extremelyhighmassresolution(ThielandSjövall,2011).InToF-SIMS all Baltic amber (sensu stricto) shares a common botanical origin analysis,samplesarebombardedwithahighenergyprimaryion (Wolfeetal.,2009).Thecharacteristicfeatureofthesespectraisthe stream, producing secondary ions from the analyte surface that “Balticshoulder”situatedbetween1190–1280cm−1,andflankedbya enterthedetectorandconsequentlyformamassspectrum.Inapply- strongabsorbancepeakat1170cm−1.Thisfeaturereflectsthesucci- ingToF-SIMStoamber,specimenswerecutwithadiamondblade natecontentoftheamberspecifically,asitisstronglyexpressedin ultracryomicrotome(LeicaEMUC6)immediatelypriortotheirin- thespectrumofpuremonomethylsuccinate(Fig.2D).WhileBitterfeld troductionintotheloadlockwithnofurthersamplepreparation. amberalsodisplaysthisspectroscopicfeature,inkeepingwithprior Threefragmentsofeachambertypewereanalyzedintriplicate.In FTIRanalysesofEuropeansuccinites(Kosmowska-Ceranowicz,1999), ordertobetterconstraintheionfragmentationpatternsobservedin itsexpressionisfarmoresubdued.Furthermore,theensembleofFTIR amber,wealsoobtainedduplicateToF-SIMSspectrafrommonomethyl spectrafromBitterfeldamberismorevariablethanthoseobtained succinate,abieticacid,dehydroabieticacid,andcommunicacid.These fromBalticamber,potentiallyreflectinggreatervariabilitywithregards standardsweredissolvedinchloroform,driedunderUVandO for toeitherbotanicalaffinityordiagenetichistory. 3 severalminutes,thenspin-coatedontoSiwafersimmediatelyprior Thespectroscopicdifferencebetweenconsensusspectraderivedfrom toanalysis.WealsoreportexploratoryToF-SIMSanalysesofmodern bothambers(Fig.2C)indicatesthreeregionswhereBalticamberhas resinsfromexemplarspeciesofthedominantresin-producingconifer consistentlystrongerabsorbancerelativetoBitterfeldamber:(a)thecar- families:Araucariaceae(Agathisaustralis),Cupressaceae(Metasequoia bonyl(C=O)bandassociatedwithCOOHandhencetotalcarboxylic glyptostroboides),Pinaceae(Pinuscontorta),Podocarpaceae(Podocarpus acids(1700–1800cm−1);(b)thesuccinateband(1170–1280cm−1); totara), and Sciadopityacae (Sciadopitys verticillata). These materials and(c)theout-of-planearomaticC–Hband(870–900m−1).Thelatter originate from our extensive collection (Wolfe et al., 2009; Tappert featureissupportedbythesecondaryC–Hbandat3080cm−1,which etal.,2011)andwerepreparedforToF-SIMSinmuchthesamewayas isalsobetterdevelopedinBalticamber.Ofthethreediterpeneresin amberspecimens.Itisimportantnottousechloroformatanystageof acidsanalyzed,thesetwoaromaticC–Hbandsonlyfigurestronglyin preparation of amber and resin samples, as this induces a range of the spectrum of communic acid. The bands from the abietic and artefactsowingtopartialsolubilityinthissolvent.ToF-SIMSspectra dehydroabieticacidstandardsthatarebestexpressedinamberspeci- wereobtainedwithanION-TOFGmbHToF-SIMSIVequippedwithabis- mensarethoseassociatedwithC–HinCH andCH (1380–1400cm−1 2 3 muth(Bi)liquidmetaliongun.TheBi++clusterwasusedastheprimary and1440–1460cm−1,Fig.2),butthesedonotcontributetoanypro- 3 ionbeamoperatedinhighmassresolutionbunchedmode(Sodhi,2004). nouncedspectroscopicdifferencesbetweenBalticandBitterfeldamber. Theionbeamwasrasteredoveranareaof500×500μmfor60–120sin FromthesynthesisofFTIRresults,weareabletosurmisethatBaltic ordertoremainbelowstaticlimits.Chargeneutralizationwasachieved amber, on the whole, contains more succinate relative to Bitterfeld usinglowenergy(b20eV)electronssuppliedbytheinstrument'spulsed amber,andlikelymorecommunicacid. electronfloodgun.Althoughbothpositiveandnegativepolarityspectra wereobtained,wereportonlyresultsobtainedinnegativemode,which 3.2.ToF-SIMS have proven more interpretable in pilot studies (Sodhi et al., 2013, 2014).ThereproducibilityofToF-SIMSspectrawasexcellentforbotham- BuildingonresultsfrompreliminarystudiesaddressingtheToF- bers,resins,andstandards.TheIllustratedToF-SIMSspectraareentirely SIMS spectra of ambers obtained in negative polarity (Sodhi et al., 24 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 Fig.2.FTIRspectraof(A)Baltic(red)and(B)Bitterfeldamber(blue)specimens.Illustratedspectrafrombothambershavebeencombinedwithadditionalmeasurements(n=8ineach case)toyieldconsensusspectra(boldlines),averagedfromindividualspectrarescaledtoacommonrangeof0–1relativeabsorbanceunits.(C)ThedifferencebetweenBalticand Bitterfeldconsensusspectraisshownwithshadedareasindicatingonestandarddeviationfromthemean.(D)FTIRspectraobtainedfrompurifiedmonomethylsuccinateandditerpene resinacids.Verticalgraybarsindicatesalientspectroscopicfeaturesdiscussedinthetext. 2013),wefocusontwomassintervalsofparticularinterest:the“succi- massspectrainthesuccinateregiondeviatebyb0.02ufromthethe- nateregion”(70–120u;Fig.3)andthe“diterpeneresinacidregion” oreticalmonoisotopicmassesof[M–H]−ionsproducedbytheiden- (250–350u;Fig.4).Theseareaddressedsequentiallybelow.Realized tifiedparentmolecules,andbyb0.05uinthediterpeneresinacid A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 25 Fig.3.NegativepolarityToF-SIMSspectraofthe70–120uregionfor(A)Balticamber,(B)Bitterfeldamber,and(C)monomethylsuccinate.Theentirerangeisshowntotheleft,alongside expansionsoftheshadedregionsthatincludepeaksinthe72.8–73.2u,98.8–99.2u,and116.8–117.2uranges,primarilyassociatedwithionsfromtheillustratedparentmolecules.Black arrowsindicatethetheoreticalmonoisotopicmassofnegativeionsofpropanoic(=propionic)acid,immediatelyadjacentpeaksattributedtoC6H−,showningray. region.Suchlevelsofaccuracyandprecisionareconsistentwith providenoconclusiveevidenceforthepresenceofnativepropanoic thosereportedincurrentgeobiological applicationsofToF-SIMS acidinamber.Moreover,theToF-SIMSpeaksobtainedinthe73ure- (Leefmannetal.,2013). gionarenotascleanandunimodalasthoseattributedtosuccinicacid Negativeionsthatoriginatefromsuccinicacid(C H O−)producea (117u)andsuccinicanhydride(99u),oftenyieldingasecondpeakat 4 5 4 clear[M–H]−peakat117uinToF-SIMSspectrafrombothBalticand slightlylowermass(Fig.3).Theexceptionalresolutionaffordedby Bitterfeld ambers (Fig. 3A–B). This peak is much stronger in Baltic ToF-SIMSallowscleardifferentiationofpeaksoccurringat73.02uand amber relative to Bitterfeld amber, consistent with a greater total 74.04u,forwhichonlythelattercanbeattributedtopropanoicacid. succinate content and the results from FTIR. Not surprisingly, the The73.02upeakisattributedtoC H−,forwhichtheparentmolecule 6 117upeakisevenmorepronouncedinthemassspectrumofpure maybehexatriyne.Becausethispeakisbetterexpressedintheambers monomethylsuccinate(Fig.3C).Relatedpeaksarethoseassociated relativetothemonomethylsuccinatestandard,itisprovisionallyasso- withdehydration anddecarboxylation of succinic acid,namelythe ciatedwithphotodissociationduringresinpolymerization.However, ionsoccurringat[(M–H)–H O]−=99uand[(M–H)–CO ]−=73u, untilfurtherstudyisconducted,werestrictallsubsequentconsider- 2 2 whichreflecttheparentmoleculessuccinicanhydrideandpropanoic ationstothe73.04upeakproducedbythe[M–H]−ionofpropanoic (= propionic) acid, respectively. The acid anhydride is not well acid. expressedinthemonomethylsuccinatemassspectrum,implyingthat Despitethesecomplexities,therecognitionofthreedistinctpeaks itspresenceinamberrelatestoprocessesassociatedwithgeological associatedwithsuccinicacid,theacidanhydride,andsecondaryfrag- maturation.Thisisimportantbecausethesuccinicanhydridepeakis mentsofparentmoleculescontainingsuccinate,whichmayinclude greater in both ambers than that of succinic acid, and particularly an assortment of fenchyl and bornyl succinates known to occur in intenseinthecaseofBalticamber(Fig.3A).Wethusconsidersuccinic both Baltic and Bitterfeld ambers (Yamamoto et al., 2006), should anhydridetoreflectthedegreesofdehydrationduringmaturationof beconsideredapowerfuldiagnostictoolandanovelapplicationof thetwoambers. ToF-SIMS.Moreover,thesuccinateregionofamberToF-SIMSspectra Thecaseofpropanoicacidismorecomplicatedforseveralreasons. alsoincludespeaksat80,85and97u(Fig.3),whichcorrespondto AlthoughnegativeionsofthismoleculehavebeenidentifiedinBaltic the[M–H]−ionsC H O−,C H O−,andC H O−,respectively.While 5 4 4 5 2 5 5 2 amberbefore(Tonidandeletal.,2009),innaturepropanoicacidresults the85upeakexistsinbothambers,andlikelyrepresentsvinylacetate, from microbially-assisted decarboxylation of succinic acid esters the80and97upeaksaremuchbetterexpressedintheBitterfeldmate- (e.g.,Whiteley,1953).Becausepropanoicacidisequallywellrepresent- rial.Althoughtheparentmoleculesforthesepeaksremainelusive,they edinthemassspectraofmonomethylsuccinateasinthoseofamber nonethelessassistindifferentiatingtheambersgeochemically. samples,weinferthatitoriginatesfromsecondaryfragmentationof Withrespecttothediterpeneresinacids,theavailabilityofpurified ionizedsuccinicacidduringToF-SIMSanalysis,suchthatourresults crystallinestandardsofkeychemicalspeciesprovesinvaluablewith 26 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 Fig.4.NegativepolarityToF-SIMSspectraofthe250–350uregion(left)andexpansionofthe295–305uregion(right)for(A)Balticamber,(B)Bitterfeldamber,(C)dehydroabietic acid,(D)abieticacid,and(E)communicacid.Structuresaregivenforparentmolecules,whereasblackarrowsindicatepeaksat317and333ucorrespondingtooxygenadditionsto the[M–H]−=301upeak.Shadedzones(leftpanels)indicatetheregionmagnifiedatright,inwhichshadedlinesindicatethemassesofprimarymolecularionsassociatedwithditerpene resinacids. respecttounderstandingtheirdistributioninamber(Fig.4).Further- molecular ions are commonly preserved in mass spectra (Dethlefs more,thetricyclicstructureofditerpeneresinacidsconfersconsider- etal.,1996;Diefendorfetal.,2012).NegativepolarityToF-SIMSspectra ablestabilityofthesemoleculestowardsfragmentation,implyingthat ofBalticandBitterfeldambersbothexhibitstrong[M–H]−peaksat299 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 27 Fig.5.StableisotopicratiosofBaltic(red)andBitterfeld(blue)ambers.Rawdata(AandC)andprobabilitydensityfunctions(BandD)areshownsequentiallyfortheδ13Candδ2H valuesobtainedfrombothmaterials.In(B),thedashedlinesandshadedareasaremeanand2S.D.rangesofvaluescompiledvaluesfromTappertetal.(2013)forcompilationsof Miocene–Oligoceneambers(fromGermancoal,Mexico,DominicanRepublic,MalaysiaandBorneo)comparedtoEoceneambers(fromWashingtonState,theCanadianHighArctic andkimberlite-hostedsediments,aswellasBalticamberbutexcludingBitterfeld).In(D),additionalaxeshavebeenaddedforinferredδ2Hplantwaterusingaconstantfractionationof −229‰betweenamberandenvironmentalwater(Wolfeetal.,2012),andaprovisionaltemperaturescalebasedonthemodernrelationshipbetweenδ2HandairtemperatureatKraków, Poland.Thedashedlinein(D)separatesmesothermalfromtropicalclimatesinKöppen–Geigerclassification. 28 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 and 301 u. The former corresponds to primary molecular ions of amber(Eocene)ashypothesized,itshouldproducemeanδ13Cvalues dehydroabieticacid(C H O ),whilethelattermaybeattributableto thatareabout2‰moredepletedrelativetoBalticamber,whichisnot 20 28 2 eitherabieticorcommunicacids(bothC H O ),oracombinationof observedintherawdata(Fig.5B).Thesimplestinterpretationofthe 20 30 2 both.Thepeaksobservedat303uareattributabletoC H O diter- closesimilaritybetweenBitterfeldandBalticamberδ13Cvaluesisthat 20 32 2 pene resin acids having a molecular mass of 304 u, for example they are equivalent in age, despite the compositional differences dihydroisopimaric acid, 8-abietenic acid, and 8(14)-abietenic acid borneoutoftheirorganicgeochemicalcharacterization. (Sodhietal.,2014).The301upeakalsoproducescorresponding Withrespecttoamberhydrogenstableisotopes(Fig.5C–D),thesit- [(M–H)+O]−and[(M–H)+O ]−peaksobservedinbothambers uationdiffersmarkedlyfromthecarbonresults,notingthatallδ2H 2 (i.e.,317and333u).Ofthediterpeneresinacidsconsideredhere, valueswereobtainedfromasub-setoftheexactsamesamplesanalyzed onlyabieticacidproducessecondarypeaksassociatedwithoxygen- forδ13C.Balticamber(meanδ2H=−277±22‰)isconsistentlymore ation, and thus it clearly represents an important component of depletedrelativetoBitterfeldamber(meanδ2H=−256±9‰).This bothambers.Ontheotherhand,the299upeakassociatedwith differenceishighlysignificant(Pb0.0001;t=5.28;d.f.=99).Because dehydroabieticacidisonaveragethree-foldstrongerinBitterfeld amber δ2H is ultimately modulated by the isotopic composition of amberrelativetoBalticamber,implyingconsiderablygreaterconcen- source waters accessed by trees at the time of resin biosynthesis trations of this diterpene resin acid. Although ToF-SIMS spectra of (McKellaretal.,2008;Wolfeetal.,2012),thisresultimpliesthat,onav- abieticandcommunicacidsareindistinguishablefromeachotherin erage,forestsresponsiblefortheformationofBalticamberexploited the295–305urange(Fig.4),wehavealreadyshown,onthebasisof watersthatwere20‰lighterthanthoseinvolvedinthegenesisof FTIR,thatcommunicacidismoreabundantinBalticamber. Bitterfeldamber.Themostparsimoniousinterpretationofthisdiffer- WhatemergesfromthecombinedFTIRandToF-SIMSresultsisa enceisthat,whereasthedrainagesourceforBitterfeldamberlaywell geochemicaldifferentiationbetweenBalticandBitterfeldambersthat tothesouthofthedeposit,thatofBalticamberwassituatedtothe isconsistentbetweenanalyticalplatforms:Balticamberhasagreater northinScandinavia.Suchascenarioisreadilyaccommodatedbythe apportionmentof succinic andcommunic acids, whereasBitterfeld paleogeography of regions bordering the Eocene North Sea basin ambercontainsmoredehydroabieticacid.Thelatterobservationis (Wimmeretal.,2009;Fig.6). entirelyconsistentwithpriorresultsobtainedoncomparablematerials Modernenvironmentsprovideadditionalcontextwithwhichthe usinggaschromatography–massspectrometry(GC–MS;Yamamoto δ2HdifferencebetweenBalticandBitterfeldamberscanbeappreciated. et al., 2006). Thus, from the perspective of organic geochemistry Forexample,inmodernPinusresinssampledbetweenScotlandand alone,BalticandBitterfeldambersappeartobecompositionallydistinct Cyprus,a20‰differenceinδ2Hcorrespondsto~7°oflatitude(Stern inanumberofsubtleyetreproducibleways.Inmakingthisstatement, etal.,2008).WithinthemodernisoscapeofcentralEurope,adifference weadvocatestronglytheadvantagesofFTIRandToF-SIMSasanalyses of20‰inleaf-waterδ2Hrepresentsapproximately800kmoflatitude conducted on amber in the solid state, thereby eliminating issues (Westetal.,2008).Bothoftheseexamplesareentirelyconsistents associatedwiththesematerialsbeingonlypartiallysolubleinorganic withtheenvisagedpaleogeographyatthetimeofamberformation solvents(Millsetal.,1984).Forthisreason,wedisagreewiththecom- (Fig.6).Weconcludefromtheamberδ2Hresultsthatforestsresponsi- mentofAndersonandBotto(1993,pp.1037)that,withrespectto blefortheproductionofBalticandBitterfeldambersaccessedsource glessitefromBitterfeld(e.g.,Fig.1J)andgenuineBalticamber:“theex- watersoriginatingfromfundamentallydifferentsectorsoftheEocene tentofsimilarityoftheseresinitesissuch,thatthevalidityofcontinued NorthSeadrainage:theScandinavianhighlandsinthefirstcase,and distinctionbetweenthemis,onchemicalgroundsatleast,unjustified.” theParatethyansectorofcentralEuropeinthesecond. Fromourperspective,werestrictthecompositionalsimilaritybetween AsperhapsthemostsalientgeochemicaldifferencebetweenBaltic BalticandBitterfeldamberstostatingthatbothclearlybelongtoClassIa andBitterfeldamber,thehydrogenisotopicmeasurementsmeritfur- resinites,i.e.,thosecontainingditerpenesbasedonlabdanoidskeletal ther discussion.First,wenotethattherange of results fromBaltic structuresinthepresenceofsuccinicacid,andarangeofassociated amberisconsiderablylargerthanthatobtainedfromBitterfeldamber alcoholsandesters(Andersonetal.,1992). (Fig.5C).ThissuggeststhattheclimateenveloperealizedduringBaltic amberformationwasbroader,andbyinferencelonger,thanthatasso- 3.3.Stableisotopes ciatedwithBitterfeldamber.Second,althoughBitterfeldamberpro- ducesamoreenrichedmeanδ2Hsignature,Balticambernonetheless The carbon stable isotopic compositions of Baltic and Bitterfeld producesnumerousmeasurementsthatareequallyenriched,resulting ambers are virtually identical, yielding means of δ13C = −23.6 ± 1.0‰and−23.9±1.7‰,respectively(Fig.5A).Inageneralsense,the δ13Cofamberreflectsthelocalizeddegreeoftreeecophysiological stressatthetimeofresinproduction,withgreaterstressresultingin lesseffectiveisotopicdiscriminationagainst13C(i.e.,higherδ13Cvalues; McKellar et al., 2011). When probability distribution functions are appliedtotheδ13CresultsfromBalticandBitterfeldambers(Fig.5B), aprincipalmodeisapparent,flankedbytwoshouldersthatpresumably reflectoccasionsofresinproductionunderalternatelyluxuriant(most depletedδ13Cvalues)andstressed(enriched)environmentalcondi- tionsthatdeviatefromthecentralmodesexpressedinbothdeposits. Thesesimilaritiesaresuchthatδ13Cvaluesdonotdifferentiatethe twoambers.Indeed,thepopulationsofBalticandBitterfeldambers δ13Cvaluesdonotyieldstatisticallysignificantdifferencesunderanun- pairedt-test(P=0.27;t=1.11;d.f.=109). Moreover,attheglobalscale,amberδ13Cisalsoinfluencedbyatmo- sphericcompositionwithrespecttoCO andO partialpressures,yield- 2 2 ingarobustseculartrendof~5‰towardsmoredepletedvaluesover the past 50 Ma that is superposed upon the localized influences Fig.6.AproposedpaleogeographicscenariofortheprovenanceofBalticandBitterfeld ambersduringthemiddleEocene.ShadedareasrepresenttheEocenelandmass,whereas discussedabove(Tappertetal.,2013).Thisimpliesthat,ifBitterfeld dashedlinesaremoderncoastlines,followingScoteseetal.(1989)andWimmeretal. amber were truly younger (e.g., Miocene–Oligocene) than Baltic (2009).Darkgrayregionsapproximatethelociofamberdeposition. A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 29 inasecondarymodeintheprobabilitydistributionofisotopicvalues Weawaitunbiased,abundance-weightedcensusesatsufficienttaxo- (Fig.5D).Thisobservationisinkeepingwiththeentomologicalrecord nomicresolutiontotestthishypothesis,acknowledgingthatseveral ofBalticamber,whichcontainsadmixturesoftaxawithalternately collectionsaresufficientlyrichtoundertakethisactivitysystematically. tropical and boreal ecological affinities (Larsson, 1978; Weitschat, Wefurtherexplorepaleoclimaticsignificanceofamberδ2Hresults 1997;WeitschatandWichard,2002;WeitschatandWichard,2010). byderivingprovisionaltemperatureestimatesasfollows.First,values However,ifourisotopicresultsarebroadlyrepresentativeofbothde- ofamberδ2Hwereconvertedtoδ2H usingaconstantfraction- plantwater posits,wepredictthatBitterfeldambershouldcontainagreateroverall ationof−229‰betweenamberandenvironmentalwater(Chikaraishi proportionofwarmstenothermousarthropodsrelativetoBalticamber. etal.,2004;Wolfeetal.,2012).Then,usinganappropriatemodern Fig.7.NegativepolarityToF-SIMSspectraspanningthesuccinateregion(70–120u)forBalticandBitterfeldambers(A–B)andmodernresinsrepresentativeofvariousconiferfamilies (C–G).Verticalshadinghighlightsdominantions,andarrowsindicateionsderivedfromsuccinicacidandsuccinicanhydridepeaks,asdiscussedinthetext.Duetobetween-sample differencesinabsoluteintensities,allspectrahavebeenrescaledtothemaximumpeakheightinthe70–120urange. 30 A.P.Wolfeetal./ReviewofPalaeobotanyandPalynology225(2016)21–32 temperature–δ2HrelationshipfromcentralEurope,weareabletore- Botto,1993),thisisanimportantconfirmatoryresult.Indeed,conifers scaleδ2H asafirstapproximationofcorrespondingambient ofthefamilySciadopityaceaehavebeenproposedasapotentialsource plantwater temperatures.Weusethestrongrelationshipbetweenairtemperature forBalticamberbasedonextensivecomparativeanalysesofFTIRspec- andprecipitationδ2HatKraków,Poland(50.1°N,19.9°E),whichyields tra(Wolfeetal.,2009),whereasvariousPinaceaehavebeeninvokedin δ2H=2.6(temperature)–91.8(R2=0.59;n=406).Thisisamong thissameregardforwelloveracentury,largelyonthebasisoftheanat- themostintenselysampledEuropeanstationsintheGlobalNetwork omyofwoodyinclusions(GoeppertandMenge,1883;Dolezychetal., ofIsotopesinPrecipitation(GNIP)program(IAEA/WMO,2014).Results 2011).FossilsbelongingtobothfamiliesarepresentinBalticamber,al- usingotherdenselysampledstations,suchasLeipzig(R2=0.35; thoughpinaceouselementsappearmoreconspicuous(Weitschatand n=341)andBerlin(R2=0.32;n=273),yieldsimilarresultsbut Wichard,2002).AdditionalToF-SIMS[M–H]−peaksthatareconsistent- sufferfromlowercoefficientsofdeterminationbetweenδ2Hand lyexpressedinthesuccinateregionofmodernconiferresinsinclude temperature.Resultingδ2H andtemperatureestimatesare thoseat73u(C H O−,whichmustbedifferentiatedfromC H−as plantwater 3 5 2 6 portrayedasadditionalaxesontheamberδ2Hprobabilitydistributions discussedearlier),80u(C H O−),85u(C H O−),and97u(C H O−). 5 4 4 5 2 5 5 2 (Fig.5D).Inthismodel,themeantemperaturesassociatedwithBaltic Two peaks are specific to individual species: 79 u (C H O−) in 5 3 andBitterfeldambersare17°Cand25°C,respectively,flankingthe Sciadopitysverticillataand112u(C H O−)inAgathisaustralis.Further 6 8 2 18°Cthresholdofmeanannualtemperaturethatdistinguishestropical differentiationbetweenthemodernresinscanbegleanedfromthe and mesothermal climate regimes (Peel et al., 2007). While both diterpene resin acid region of their ToF-SIMS spectra (Table 1). ambers produce a large number of samples with tropical isotopic AlthoughweareonlybeginningtoexploitToF-SIMSasastrategyin signatures,asdiscussedabove,onlyBalticamberproducesvaluescon- resinchemotaxonomy,andclearlyadditionalanalysesaredesirable, sistentwithtemperaturesb15°C.Ofcourse,wedonotconsiderthese theinitialresultspresentedhereportendconsiderablepotentialfor reconstructionstobedefinitive;theyarepresentedasanexploratory thisapproach. tool grounded in the premise that the systematics of isotopes in The relationships between amber and modern resin ToF-SIMS precipitationduringthePaleogeneweremechanisticallysimilartothe spectra can be formalized by hierarchical cluster analysis of the modernworld,despitedifferencesinprecipitationquantity,ambient dominantrecurrentpeakslistedinTable1.Weappliedclusteringby temperature,andseasonality(Wolfeetal.,2012).Nonetheless,the centroidlinkagetomatricesofEuclideandistancesusingClusterand results appear realistic in the sense of their consistency with the TreeViewsoftwarepackages(Page,1996;deHoonetal.,2004).Raw paleoentomologicalrecord,particularlythatofBalticamber.Having data(i.e.,intensitiesnormalizedtoarangeof0–100)werenottrans- nowestablishedongeochemicalgroundsnumerousdistinctionsbe- formedinanyotherwaypriortoclustering.Whenpeaksrestrictedto tweenBalticandBitterfeldamber,thelargestremainingquestionper- thesuccinateregionareconsidered(Fig.8A),onlySciadopitysverticillata tainstothebotanicaloriginofthesedeposits. resinclusterswiththeambersamples,revealinganespeciallyclosesim- ilaritytotheBitterfeldmaterial.ResinsfromAgathis,Pinus,Metasequoia 4.ToF-SIMSspectraofmodernresinsandthebotanicaloriginof andPodocarpusformasecondhighordergrouping.Inasecondand succinites moreinclusiveanalysis,peaksrepresentingmolecularionsofditerpene resinacids(i.e.,299–303u)wereincludedinadditiontothosefromthe NegativepolarityToF-SIMSspectraofmodernconiferresinsassistin succinateregion,yieldingadendrogramwherePinusjoinsSciadopitysas elucidatingthebotanicalprovenanceofBalticandBitterfeldamber. themodernresinswiththehighestdegreeofsimilaritytotheambers Of the modern taxa analyzed, only Pinus contorta and Sciadopitys (Fig.8B).Collectively,theseanalyseseffectivelyeliminateconifersof verticillatapreservepronouncedpeaksassociatedwithnegativeions thefamiliesAraucariaceae,Cupressaceae,andPodocarpaceaeaspoten- fromsuccinicacidanditsacidanhydride(Fig.7).Assuccinicacidis tialsourcesforEuropeansuccinites,leavingeitherextinctpinaceousor thedefiningbiomarkerforsucciniteambervarietalsincludingboth sciadopityaceoustreesasthemostviablecandidatesourceplants.Al- Baltic and Bitterfeld ambers (i.e., Class Ia resinites, Anderson and though the clustering exercises (Fig. 8) illustrate the longstanding Table1 Relativeintensitiesofdominant[M–H]−peaksobservedinthesuccinateandditerpeneresinacidregionsofToF-SIMSspectrafrommonomethylsuccinate,BalticandBitterfeldambers, andvariousmodernconiferresins.Valuesarescaledtothemaximumpeakintensitywithineachregion. Succinateregion Relativeintensitiesofdominantpeaks(maximumpeakin70–120urange=100) Analyte n 73.04u S.D. 85.09u S.D. 97.04u S.D. 99.02u S.D. 117.03u S.D. Monomethylsuccinate 2 25.94 3.43 2.28 0.52 7.90 3.19 9.59 1.33 100.00 0.00 Balticamber 3 41.83 9.10 22.71 0.93 14.93 4.20 100.00 0.00 25.00 3.29 Bitterfeldamber 3 19.40 7.02 24.47 3.32 78.84 25.63 39.14 9.34 6.48 0.64 Agathisaustralisresin 3 73.06 0.03 79.81 17.63 27.79 6.52 14.24 6.21 5.58 1.56 Metasequoiaglyprostroboidesresin 3 25.07 5.66 100.00 0.00 18.06 3.12 7.50 1.11 1.72 0.20 Pinuscontortaresin 3 59.59 3.62 95.01 8.65 36.10 4.40 24.31 5.40 8.28 0.51 Podocarpustotararesin 3 25.15 2.23 100.00 0.00 17.03 6.03 11.72 3.74 1.99 0.54 Sciadopitysverticillataresin 3 24.46 2.53 20.14 8.02 46.19 13.10 26.83 8.64 18.12 9.51 Diterpeneregion Relativeintensitiesofdominantpeaks(maximumpeakin298–304urange=100) Analyte n 299.21u S.D. 300.17u S.D. 301.22u S.D. 302.22u S.D. 303.24u S.D. Monomethylsuccinate 2 5.19 0.58 1.84 0.69 100.00 0.00 9.10 0.05 4.17 1.21 Balticamber 3 35.76 9.12 8.79 0.53 100.00 0.00 28.42 3.96 46.34 14.30 Bitterfeldamber 3 98.83 2.03 26.52 2.37 94.63 5.83 29.20 2.70 56.50 3.29 Agathisaustralisresin 3 12.12 7.26 4.42 1.91 100.00 0.00 25.84 2.09 11.89 6.54 Metasequoiaglyprostroboidesresin 3 7.49 1.17 3.06 0.44 100.00 0.00 22.68 2.40 14.19 3.95 Pinuscontortaresin 3 90.75 9.46 25.24 1.25 88.02 20.74 21.68 3.37 50.87 7.69 Podocarpustotararesin 3 4.17 0.59 1.85 0.57 100.00 0.00 22.67 3.16 10.70 3.83 Sciadopitysverticillataresin 3 95.96 7.00 50.37 2.28 79.69 2.32 45.70 3.24 91.54 12.18
Description: