Bipartite graphs related to mutually disjoint S-permutation matrices Krasimir Yordzhev 3 1 0 Faculty of Mathematics and Natural Sciences 2 South-West University, Blagoevgrad, Bulgaria n E-mail: [email protected] a J Abstract 3 Some numerical characteristics of bipartite graphs in relation to the 2 problemoffindingalldisjointpairsofS-permutationmatricesinthegen- ] eral n2×n2 case are discussed in this paper. All bipartite graphs of the O type g = hRg ∪Cg,Egi, where |Rg| = |Cg| = 2 or |Rg| = |Cg| = 3 are C provided. The cardinality of the sets of mutually disjoint S-permutation matrices in both the 4×4 and 9×9 cases are calculated. . h t Keyword:Bipartite graph, Binary matrix, S-permutation matrix, Disjoint a matrices, Sudoku m MSC[2010] code: 05C30, 05B20, 05C50 [ 2 1 Introduction v 1 0 Let m be a positive integer. By [m] we denote the set 4 0 [m]={1,2,...,m}. . 2 0 We let S denote the symmetric groupof order m i.e., the groupof all one- m 2 to-one mappings of the set [m] to itself. If x ∈ [m], ρ ∈ S , then the image of m 1 the element x in the mapping ρ we will denote by ρ(x). : v A bipartite graph is an ordered triple i X g =hR ,C ,E i, g g g r a where R and C are non-empty sets such that R ∩C = ∅. The elements of g g g g R ∪C will be called vertices. The set of edges is E ⊆R ×C ={hr,ci|r ∈ g g g g g R ,c∈C }. Multiple edges are not allowed in our considerations. g g Thesubjectofthe presentworkisbipartite graphsconsidereduptoisomor- phism. We refer to [3] or [6] for more details on graph theory. Let n and k be two nonnegative integers and let 0≤k ≤n2. We denote by G the set of all bipartite graphs of the type g =hR ,C ,E i, considered up n,k g g g to isomorphism, such that |R |=|C |=n and |E |=k. g g g LetP ,1≤i,j ≤n,ben2 squaren×nmatrices,whoseentriesareelements ij of the set [n2]={1,2,...,n2}. The n2×n2 matrix 1 P P ··· P 11 12 1n P P ··· P 21 22 2n P = ... ... ... ... P P ··· P n1 n2 nn is called a Sudoku matrix, if every row, every column and every submatrix P , 1 ≤ i,j ≤ n comprise a permutation of the elements of set [n2], i.e., every ij numbers∈{1,2,...,n2}isfoundjustonceineachrow,column,andsubmatrix P . Submatrices P are called blocks of P. ij ij Sudoku is a very popular game and Sudoku matrices are special cases of Latin squares in the class of gerechte designs [1]. A matrix is called binary if all of its elements are equal to 0 or 1. A square binary matrix is called permutation matrix, if in every row and every column there is just one 1. Let us denote by Σn2 the set of all n2 × n2 permutation matrices of the following type: A A ··· A 11 12 1n A A ··· A 21 22 2n A= ... ... ... ... , A A ··· A n1 n2 nn where for every s,t ∈ {1,2,...,n}, A is a square n × n binary submatrix st (block) with only one element equal to 1. The elements of Σn2 will be called S-permutation matrices. Two Σn2 matrices A = (aij) and B = (bij), 1 ≤ i,j ≤ n2 will be called disjoint, if there are not elements a and b with the same indices such that ij ij a =b =1. ij ij The concept of S-permutation matrix was introduced by Geir Dahl [2] in relation to the popular Sudoku puzzle. Obviously,asquaren2×n2matrixP withentriesfrom[n2]={1,2,...,n2}is a Sudoku matrix if andonly if there areΣn2 matrices A1,A2,...,An2, pairwise disjoint, such that P can be written in the following way: P =1·A1+2·A2+···+n2·An2 (1) In[5]RobertoFontanaoffersanalgorithmwhichreturnsarandomfamilyof n2×n2 mutuallydisjointS-permutationmatrices,wheren=2,3. Forn=3,he ran the algorithm 1000 times and found 105 different families of nine mutually disjoint S-permutation matrices. Then, applying (1), he decided that there are at least 9! · 105 = 38 102 400 Sudoku matrices. This number is very small comparedwith the exact number of 9×9 Sudoku matrices. In [4] it was shown that there are exactly 9!·722·27·27704267971=6670903752021072936960 number of 9×9 Sudoku matrices. To evaluate the effectiveness of Fontana’s algorithm, it is necessary to cal- culate the probability of two randomly generatedmatrices being disjoint. As is proved in [2], the number of S-permutation matrices is equal to |Σn2|=(n!)2n. 2 Thus the question of finding a formula for counting disjoint pairs of S- permutationmatricesnaturallyarises. Suchaformulaisintroducedandverified in [8]. In this paper, we demonstrate this formula to compute the number of disjoint pairs of S-permutation matrices in both the 4 × 4 and 9 × 9 cases. 2 A formula for counting disjoint pairs of S- permutation matrices Letg =hR ,C ,E i∈G forsomenaturalnumbersnandk andletv ∈V = g g g n,k g R ∪C . g g ByN(v)wedenotethesetofallverticesofV ,adjacentwithv,i.e.,u∈N(v) g if and only if there is an edge in E connecting u and v. If v is an isolated g vertex (i.e., there is no edge, incident with v), then by definition N(v)=∅ and degree(v) = |N(v)| = 0. If v ∈ R , then obviously N(v) ⊆ C , and if v ∈ C , g g g then N(v)⊆R . g Let g = hR ,C ,E i ∈ G and let u,v ∈ V = R ∪C . We will say that g g g n,k g g g u and v are equivalent and we will write u ∼v if N(u)=N(v). If u and v are isolated,thenbydefinitionu∼vifandonlyifuandv belongsimultaneouslyto R , or C . The above introduced relation is obviously an equivalence relation. g g ByV wedenotetheobtainedfactor-set(thesetoftheequivalenceclasses) g/∼ according to relation ∼ and let V ={∆ ,∆ ,...,∆ }, g/∼ 1 2 s where ∆ ⊆R , or ∆ ⊆C , i=1,2,...s, 2≤s≤2n. We put i g i g δ =|∆ |, 1≤δ ≤n, i=1,2,...,s i i i and for every g ∈G we define multi-set (set with repetition) n,k [g]={δ ,δ ,...δ }, 1 2 s where δ ,δ ,...,δ are natural numbers, obtained by the above described way. 1 2 s If z z ... z is a permutation of the elements of the set [n]={1,2,...,n} 1 2 n and we shortly denote ρ this permutation, then in this case we denote by ρ(i) the i-th element of this permutation, i.e., ρ(i)=z , i=1,2,...,n. i The following theorem is proved in [8]: Theorem 1 [8] Let n ≥ 2 be a positive integer. Then the number Dn2 of all disjoint ordered pairs of matrices in Σn2 is equal to (n−|N(v)|)! n2 Dn2 =(n!)4n+(n!)2(n+1) (−1)k v∈RYg∪Cg . (2) δ! kX=1 g∈XGn,k δY∈[g] The number dn2 of all non-ordered pairs of disjoint matrices in Σn2 is equal to 1 dn2 = 2Dn2 (3) (cid:3) 3 The proofofTheorem1 is describedin detailin [8] andherewe will miss it. In order to apply Theorem 1 it is necessary to describe all bipartite graphs up to isomorphism g =hR ,C ,E i, where |R |=|C |=n. g g g g g Let n and k are positive integers and let g ∈G . We examine the ordered n,k (n+1)-tuple Ψ(g)=hψ (g),ψ (g),...,ψ (g)i, (4) 0 1 n where ψ (g), i=0,1,...,n is equal to the number of vertices ofg incident with i n exactly i number of edges. It is obvious that iψ (g) = 2k is true for all i i=1 g ∈G . Then formula (2) can be presented X n,k n [(n−i)!]ψi(g) n2 Dn2 =(n!)4n+(n!)2(n+1) (−1)k Yi=0 . δ! Xk=1 g∈XGn,k δ∈[g] Y Since (n−n)!=0!=1 and [n−(n−1)]!=1!=1, then n−2 [(n−i)!]ψi(g) n2 Dn2 =(n!)4n+(n!)2(n+1) (−1)k Yi=0 . (5) δ! Xk=1 g∈XGn,k δY∈[g] Consequently,toapplyformula(5)foreachbipartitegraphg ∈G andfor n,k thesetG ofbipartitegraphs,itisnecessarytoobtainthefollowingnumerical n,k characteristics: n−2 [(n−i)!]ψi(g) ω(g)= iY=0 (6) δ! δY∈[g] and θ(n,k)= ω(g) (7) g∈XGn,k Using the numerical characteristics (6) and (7), we obtain the following variety of Theorem 1: Theorem 2 n2 Dn2 =(n!)4n+(n!)2(n+1) (−1)kθ(n,k), (8) k=1 X where θ(n,k) is described using formulas (7) and (6). (cid:3) 4 3 Demonstrations in applying of Theorem 2 3.1 Counting the number D of all ordered pairs of disjoint 4 S-permutation matrices for n = 2 3.1.1 k =1 In n=2 and k =1, G consists of a single graph g shown in Figure 1. 2,1 1 g 1 (cid:23)(cid:20)(cid:23)(cid:20) s c s c (cid:22)Rg1 (cid:21)(cid:22)Cg1 (cid:21) Figure 1: n=2, k =1 For graph g ∈G we have: 1 2,1 [g ]={1,1,1,1} 1 Ψ(g )=hψ (g ),ψ (g ),ψ (g )i=h2,2,0i 1 0 1 1 1 2 1 Then we get: [(2−0)!]2 ω(g )= =4 1 1!1!1!1! and therefore θ(2,1)= ω(g)=4. (9) g∈XG2,1 3.1.2 k =2 The set G consists of three graphs g , g and g depicted in Figure 2. 2,2 2 3 4 g g g 2 3 4 (cid:23)(cid:20)(cid:23)(cid:20) (cid:23)(cid:20)(cid:23)(cid:20) (cid:23)(cid:20)(cid:23)(cid:20) (cid:8) H s c s (cid:8) c s H c (cid:8) H (cid:8) H s c s c s c (cid:22)Rg2 (cid:21)(cid:22)Cg2 (cid:21) (cid:22)Rg3 (cid:21)(cid:22)Cg3 (cid:21) (cid:22)Rg4 (cid:21)(cid:22)Cg4 (cid:21) Figure 2: n=2, k =2 For graph g ∈G we have: 2 2,2 [g ]={1,1,1,1} 2 Ψ(g )=hψ (g ),ψ (g ),ψ (g )i=h0,4,0i 2 0 2 1 2 2 2 [(2−0)!]0 ω(g )= =1 1 1!1!1!1! For graphs g ∈G and g ∈G we have: 3 2,2 4 2,2 [g ]=[g ]={2,1,1} 3 4 5 Ψ(g )=Ψ(g )=h1,2,1i 3 4 [(2−0)!]1 ω(g )=ω(g )= =1 3 4 2!1!1! Then for the set G we get: 2,2 θ(2,2)= ω(g)=1+1+1=3. (10) g∈XG2,2 3.1.3 k =3 In n=2 and k =3, G consists of a single graph g shown in Figure 3. 2,3 5 g 5 (cid:23)(cid:20)(cid:23)(cid:20) H (cid:8) s H(cid:8) c (cid:8)H (cid:8) H s c (cid:22)Rg5 (cid:21)(cid:22)Cg5 (cid:21) Figure 3: n=2, k =3 For graph g ∈G we have: 5 2,3 [g ]={1,1,1,1} 5 Ψ(g )=hψ (g ),ψ (g ),ψ (g )i=h0,2,2i 5 0 5 1 5 2 5 Then we get: [(2−0)!]0 ω(g )= =1 5 1!1!1!1! and therefore θ(2,3)= ω(g)=1. (11) g∈XG2,3 3.1.4 k =4 Whenn=2andk =4thereisonlyonegraphandthisisthecompletebipartite graph g which is shown in Figure 4. 6 g 6 (cid:23)(cid:20)(cid:23)(cid:20) H (cid:8) s H(cid:8) c (cid:8)H (cid:8) H s c (cid:22)Rg6 (cid:21)(cid:22)Cg6 (cid:21) Figure 4: n=2, k =4 For graph g ∈G we have: 6 2,4 [g ]={2,2} 6 Ψ(g )=hψ (g ),ψ (g ),ψ (g )i=h0,0,4i 6 0 6 1 6 2 6 6 Then we get: [(2−0)!]0 1 ω(g )= = 6 2!2! 4 and therefore 1 θ(2,4)= ω(g)= . (12) 4 g∈XG2,1 Havinginmindthe formulas(8), (9), (10), (11) and(12)forthe numberD 4 of all ordered pairs disjoint S-permutation matrices in n=2 we finally get: D =(2!)8+(2!)6[−θ(2,1)+θ(2,2)−θ(2,3)+θ(2,4)]= (13) 4 1 =256+64 −4+3−1+ =144. 4 (cid:18) (cid:19) Thenumberd ofallnon-orderedpairsdisjointmatricesfromΣ is equalto 4 4 1 d = D =72. (14) 4 4 2 3.2 Counting the number D of all ordered pairs of disjoint 9 S-permutation matrices for n = 3 3.2.1 k =1 Graph g , which is displayed in Figure 5 is the only bipartite graph belonging 7 to the set G . 3,1 g 7 (cid:23) (cid:20)(cid:23) (cid:20) s c s c s c (cid:22)Rg7 (cid:21)(cid:22)Cg7 (cid:21) Figure 5: n=3, k =1 For graph g ∈G we have: 7 3,1 [g ]={1,1,2,2} 7 Ψ(g )=hψ (g ),ψ (g ),ψ (g ),ψ (g ),ψ (g )i=h4,2,0,0i 7 0 7 1 7 2 7 3 7 4 8 Then we get: [(3−0)!]4[(3−1)!]2 64·22 ω(g )= = =1296 7 1!1!2!2! 1·1·2·2 and therefore θ(3,1)= ω(g)=1296. (15) g∈XG3,1 7 3.2.2 k =2 In this case G ={g ,g ,g }. The graphs g , g and g are shownin Figure 3,2 8 9 10 8 9 10 6. g g g 8 9 10 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) H (cid:8) s c s H c s (cid:8) c H (cid:8) H (cid:8) s c s c s c s c s c s c (cid:22)Rg8 (cid:21)(cid:22)Cg8 (cid:21) (cid:22)Rg9 (cid:21)(cid:22)Cg9 (cid:21) (cid:22)Rg10 (cid:21)(cid:22)Cg10 (cid:21) Figure 6: n=3, k =2 For graph g ∈G we have: 8 3,2 [g ]={1,1,1,1,1,1} 8 Ψ(g )=hψ (g ),ψ (g ),ψ (g ),ψ (g ),ψ (g )i=h2,4,0,0i 8 0 8 1 8 2 8 3 8 4 8 [(3−0)!]2[(3−1)!]4 ω(g )= =62·24 =576 8 1!1!1!1!1!1! For graphs g ∈G and g ∈G we have: 9 3,2 10 3,2 [g ]=[g ]={1,1,2,2} 9 10 Ψ(g )=Ψ(g )=h3,2,1,0i 9 10 [(3−0)!]3[(3−1)!]2 63·22 ω(g )=ω(g )= = =216 9 10 1!1!2!2! 1·1·2·2 Then for the set G we get: 3,2 θ(3,2)= ω(g)=576+216+216=1008. (16) g∈XG3,2 3.2.3 k =3 When n=3 and k =3 the set G ={g ,g ,g ,g ,g ,g } consists of six 3,3 11 12 13 14 15 16 bipartite graphs, which are shown in Figure 7. For graph g ∈G we have: 11 3,3 [g ]={1,1,1,1,1,1} 11 Ψ(g )=h0,6,0,0i 11 [(3−0)!]0[(3−1)!]6 ω(g )= =60·26 =64 11 1!1!1!1!1!1! 8 g g g 11 12 13 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) H (cid:8) s c s H c s (cid:8) c H (cid:8) H (cid:8) s c s c s c s c s c s c (cid:22)Rg11 (cid:21)(cid:22)Cg11 (cid:21) (cid:22)Rg12 (cid:21)(cid:22)Cg12 (cid:21) (cid:22)Rg13 (cid:21)(cid:22)Cg13 (cid:21) g g g 14 15 16 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) H (cid:8) H s H c s (cid:8) c s H c H (cid:8) H H (cid:8) H H (cid:8) s c s H c s (cid:8) c H (cid:8) H (cid:8) s c s c s c (cid:22)Rg14 (cid:21)(cid:22)Cg14 (cid:21) (cid:22)Rg15 (cid:21)(cid:22)Cg15 (cid:21) (cid:22)Rg16 (cid:21)(cid:22)Cg16 (cid:21) Figure 7: n=3, k =3 For graphs g ,g ∈G we have: 12 13 3,3 [g ]=[g ]={1,1,1,1,2} 12 13 Ψ(g )=Ψ(g )=h1,4,1,0i 12 13 [(3−0)!]1[(3−1)!]4 61·24 ω(g )=ω(g )= = =48 12 13 1!1!1!1!2! 2 For graph g ∈G we have: 14 3,3 [g ]={1,1,1,1,1,1} 14 Ψ(g )=h2,2,2,0i 14 [(3−0)!]2[(3−1)!]2 ω(g )= =62·22 =144 14 1!1!1!1!1!1! For graphs g ,g ∈G we have: 15 16 3,3 [g ]=[g ]={1,2,3} 15 16 Ψ(g )=Ψ(g )=h2,3,0,1i 15 16 [(3−0)!]2[(3−1)!]3 62·23 ω(g )=ω(g )= = =24 15 16 1!2!3! 2·6 Then for the set G we get: 3,3 θ(3,3)= ω(g)=64+48+48+144+24+24=352. (17) g∈XG3,3 9 3.2.4 k =4 When n=3 and k =4 the set G ={g ,g ,g ,g ,g ,g ,g } consists of 3,4 17 18 19 20 21 22 23 seven bipartite graphs, which are shown in Figure 8. g g g 17 18 19 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) H (cid:8) H H s H(cid:8) c s H c s H c (cid:8)H H H (cid:8) H H H H s c s H c s c H H s c s c s c (cid:22)Rg17 (cid:21)(cid:22)Cg17 (cid:21) (cid:22)Rg18 (cid:21)(cid:22)Cg18 (cid:21) (cid:22)Rg19 (cid:21)(cid:22)Cg19 (cid:21) g g 20 21 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:8) H s (cid:8) c s H c (cid:8) H (cid:8) H H (cid:8) s H c s (cid:8) c H (cid:8) H (cid:8) s c s c (cid:22)Rg20 (cid:21)(cid:22)Cg20 (cid:21) (cid:22)Rg21 (cid:21)(cid:22)Cg21 (cid:21) g g 22 23 (cid:23) (cid:20)(cid:23) (cid:20) (cid:23) (cid:20)(cid:23) (cid:20) (cid:8) H s (cid:8) c s H c (cid:8) H (cid:8) H H (cid:8) s H c s (cid:8) c H (cid:8) H (cid:8) s c s c (cid:22)Rg22 (cid:21)(cid:22)Cg22 (cid:21) (cid:22)Rg23 (cid:21)(cid:22)Cg23 (cid:21) Figure 8: n=3, k =4 For graph g ∈G we have: 17 3,4 [g ]={1,1,2,2} 17 Ψ(g )=h2,0,4,0i 17 [(3−0)!]2[(3−1)!]0 62·20 ω(g )= = =9 17 1!1!2!2! 22 For graph g ∈G we have: 18 3,4 [g ]={1,1,2,2} 18 Ψ(g )=h0,4,2,0i 18 [(3−0)!]0[(3−1)!]4 60·24 ω(g )= = =4 18 1!1!2!2! 22 For graph g ∈G we have: 19 3,4 10