RESEARCHARTICLE Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites MahwishSiddiqui1,MalikShoaibAhmad1,Atia-tul-Wahab2,SammerYousuf1, NarjisFatima2,NimraNaveedShaikh1,Atta-ur-Rahman1,M.IqbalChoudhary1,2,3* a1111111111 a1111111111 1 H.E.J.ResearchInstituteofChemistry,InternationalCenterforChemicalandBiologicalSciences, a1111111111 UniversityofKarachi,Karachi,Pakistan,2 Dr.PanjwaniCenterforMolecularMedicineandDrugResearch, a1111111111 InternationalCenterforChemicalandBiologicalSciences,UniversityofKarachi,Karachi,Pakistan, a1111111111 3 DepartmentofBiochemistry,FacultyofScience,KingAbdulazizUniversity,Jeddah,SaudiArabia *[email protected] Abstract OPENACCESS Citation:SiddiquiM,AhmadMS,WahabA-t, Sevenmetaboliteswereobtainedfromthemicrobialtransformationofanabolic-androgenicste- YousufS,FatimaN,NaveedShaikhN,etal.(2017) roidmibolerone(1)withCunninghamellablakesleeana,C.echinulata,andMacrophominapha- Biotransformationofapotentanabolicsteroid, seolina.Theirstructuresweredeterminedas10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3- mibolerone,withCunninghamellablakesleeana,C. one(2),6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one(3),6β,10β,17β-trihydroxy-7α,17α- echinulata,andMacrophominaphaseolina,and biologicalactivityevaluationofitsmetabolites. dimethylestr-4-en-3-one(4),11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en- PLoSONE12(2):e0171476.doi:10.1371/journal. 3-one(5),1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one(6),1α,11β,17β-trihydroxy-7α,17α- pone.0171476 dimethylestr-4-en-3-one(7),and11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one(8),onthe Editor:MohammadShahid,AligarhMuslim basisofspectroscopicstudies.Allmetabolites,except8,wereidentifiedasnewcompounds. University,INDIA ThisstudyindicatesthatC.blakesleeana,andC.echinulataareabletocatalyzehydroxylation Received:October7,2016 atallylicpositions,whileM.phaseolinacancatalyzehydroxylationofCH andCH groupsof 2 3 Accepted:January20,2017 substrate1.Mibolerone(1)wasfoundtobeamoderateinhibitorofβ-glucuronidaseenzyme (IC =42.98±1.24μM)duringrandombiologicalscreening,whileitsmetabolites2–4,and8 Published:February24,2017 50 werefoundtobeinactive.Mibolerone(1)wasalsofoundtobesignificantlyactiveagainstLeish- Copyright:©2017Siddiquietal.Thisisanopen maniamajorpromastigotes(IC =29.64±0.88μM).Itstransformedproducts3(IC =79.09± accessarticledistributedunderthetermsofthe 50 50 CreativeCommonsAttributionLicense,which 0.06μM),and8(IC50=70.09±0.05μM)showedaweakleishmanicidalactivity,while2and4 permitsunrestricteduse,distribution,and werefoundtobeinactive.Inaddition,substrate1(IC =35.7±4.46μM),anditsmetabolite8 50 reproductioninanymedium,providedtheoriginal (IC =34.16±5.3μM)exhibitedpotentcytotoxicityagainstHeLacancercellline(humancervi- authorandsourcearecredited. 50 calcarcinoma).Metabolite2(IC =46.5±5.4μM)alsoshowedasignificantcytotoxicity,while 50 DataAvailabilityStatement:Allrelevantdataisin 3(IC =107.8±4.0μM)and4(IC =152.5±2.15μM)showedweakcytotoxicityagainst thepaperandsupportinginformationfiles. 50 50 HeLacancercellline.Compound1(IC =46.3±11.7μM),anditstransformedproducts2 50 Funding:OPCWfinanciallysupportthewhole (IC =43.3±7.7μM),3(IC =65.6±2.5μM),and4(IC =89.4±2.7μM)werealsofoundto project,througharesearchprojectentitled, 50 50 50 bemoderatelytoxicto3T3cellline(mousefibroblast).Interestingly,metabolite8showedno “Structuralandbiologicalstudiesonnewanabolic steroidsobtainedbyBiotransformation”. cytotoxicityagainst3T3cellline.Compounds1–4,and8werealsoevaluatedforinhibitionof tyrosinase,carbonicanhydrase,andα-glucosidaseenzymes,andallwerefoundtobeinactive. Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 1/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Introduction Mibolerone(7α,17α-dimethyl-19-nortestosterone)(1)isapotentsyntheticanabolicand androgenicsteroid,marketedbytheUpjohnCompanyunderthebrandnameofCheck Drops,forthetreatmentofestrous(heat)infemaledogs.Itisstabletometabolicconversion intheratventralprostate.Becauseofitsstabilityandhighaffinitybinding,ithasbeenusedas aligandforthecharacterizationandquantitationofandrogeninprostate,liver,andcultured cells.Inaddition,mibolerone(1)ismorereceptor-selectiveforandrogenicreceptorthan methyltrienolone.Thebindinginteractionofcompound1withtestosterone-estradiolbinding globulinofhumanserumisweakerthan5α-dihydrotestosterone.Mibolerone(1)alsoacts throughtheprogesteronereceptor(PR)asiteliminatesprogesteronereceptorexpressionat lowerdoses(1nM),incontrastto5α-dehydrotestosterone(10–100nM),whichreducesPRto basallevels.Inbreastcancercells,mibolerone(1)hasshownadualaction,i.e.,androgenicand progestagenic[1–4]. Theregio-,chemo-,andstereo-selectivesynthesisoforganiccompoundshasbeenanarea ofactiveresearchsinceseveraldecades.Manyoftheseconversionsaredifficulttoachieve throughconventionalsyntheticmethodologies.However,biocatalystscancarryoutthesereac- tionseffectively.Biocatalysishasseveraladvantagesoverchemicalsynthesis,suchasselectivity, mildreactionconditions,andtheireco-friendlynature.Variousbiocatalysts,suchaspure enzymesandwhole-cellsystems,arebeingusedforthetransformationoforganiccompounds. However,whole-cellbiocatalysis,especiallywithfungi,isanefficientchoiceforregio-andste- reo-selectivetransformations[5–9],astheyhaveP450cytochromeenzymesystems,whichcat- alyzehydroxylationatvariouspositionsofsteroids[10–12]. Incontinuationofourresearchonthefungaltransformationofbioactivesteroids[13–17], weincubatedmibolerone(1)(C H O ),withCunninghamella blakesleeana,C.echinulata, 20 30 2 andMacrophomina phaseolina.Compounds2–4(Fig1)wereobtainedonincubationofsub- strate1withC.blakesleeana,andC.echinulata,whereasmetabolites5–8(Fig2)wereobtained onthetransformationofsubstrate1withM.phaseolina.Metabolites2–7werefoundtobe new,whereasmetabolite8wasidentifiedasaknowncompound.Interestingly,substrate1was foundtobeactiveagainstβ-glucuronidaseenzyme,Leishmaniamajorpromastigotes,and HeLa(cervicalcancer)and3T3(normal)celllinesinpreliminaryassays. β-Glucuronidaseisaninducibleexoglycosidaseenzyme.Itsincreasedlevelinbloodcan createproblemsinthedetoxificationprocessofvarioustoxicsubstances.Toxiccarcinogenic substances,alongwithendogenouslyproducedtoxicmetabolitessuchassteroids,aremetabo- lizedintheliver.Beforetheirexcretionintothesmallintestineviathebile,thesesubstances undergoconjugationwithglucuronicacid.β-Glucuronidase,producedbyintestinalbacteria, catalyzesthehydrolysisoftheseconjugatesinthecolon.Increasedactivityofβ-glucuronidase isoneofthekeyobservationsincoloncancer.Hence,β-glucuronidaseplaysakeyroleinthe etiologyofcoloncancer[18–22]. Leishmaniasis,aneglectedtropicaldisease(NTD),isamajorvectorbornediseaseofproto- zoalorigin.Nearly350millionpeoplein88countriesareatriskofthedisease.Orallyavailable drugsforthetreatmentofleishmaniasisareveryfewandoftenlesseffective.Therefore,devel- opmentofsafeandeffectivenewtherapeuticagentsforleishmaniasisisurgentlyneededto reducetheburdenofthedisease[23–25]. Afterbreastcancer,cervicalcanceristhesecondmostprevalentcancerinwomenacross theworld.Inthiscancer,malignantcellsareformedintissuesofthecervix.Currently,radio- therapy,surgery,andmostcommonly,cisplatinbasedchemotherapicagentsareusedforthe treatmentofcancers.However,theresponseratetochemotherapyisoftenverylowduetofre- quentdevelopmentofresistanceofcancercellsagainstchemotherapeuticagents.HeLacell PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 2/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Fig1.Compounds2–4obtainedbythebiotransformationofmibolerone(1)withCunninghamellablakesleeanaandC.echinulata. doi:10.1371/journal.pone.0171476.g001 line,obtainedfromhumancervicalcancer,provideausefulmodeltoevaluatethecytotoxic potentialofchemicalcompoundsagainstcervicalcancerinvitro[26–29]. Experimental Chemicalsandreagents Mibolerone(1)waspurchasedfromtheBettersynCo.,Ltd(China).Mediaingredientswere purchasedfromDaejungChemicalsandMetalsCo.,Ltd.(Korea),OxoidLtd.(England),and Sigma-Aldrich(Germany). Chromatographicprotocols Thepurityofcompound1andthedegreeofitstransformationswereanalyzedbyTLC(Thin layerchromatography)(silicagel,20×20,0.25mmthick,PF Merck,Germany),whilesilica 254, gel(70–230mesh,Merck,Germany)wasusedforcolumnchromatography.Compoundswere finallypurifiedonarecyclingHPLC(JAILC-908W,Japan),equippedwithYMCL-80(4– 5μm,20−50mmi.d.).Cericsulphatereagentwasusedforvisualizingthecompoundson TLCs.Allsolventsusedforchromatographywereofanalyticalgrade. PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 3/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Fig2.Compounds5–8obtainedbythebiotransformationofmibolerone(1)withMacrophominaphaseolina. doi:10.1371/journal.pone.0171476.g002 PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 4/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Instrumentalanalysis 1H-(400,500,and600MHz),and13C-NMR(100,125,and150MHz)and2D-NMRspectra wererecordedonBrukerAvance-NMRspectrometers(France)inCD OD,CD COCD or 3 3 3 DMSO-d.MeltingpointswererecordedonBuchiM-560apparatus(Japan).EI-andHREI-MS 6 wererecordedonJEOLJMS-600H(Japan).Opticalrotationsofallisolatedcompoundswere measuredonJASCOP-2000polarimeter(Japan)inchloroformormethanol.IRanalyseswere performedonBrukerVector22FT-IRspectrometer(France).Evolution300UV-visiblespectro- photometerwasusedtorecordtheUVspectra(ThermoScientific,England).Single-crystalX-ray diffractiondatawascollectedonBrukerAPEXIID8Venturediffractometer,fittedwithPHO- TON100detector(CMOStechnology),andfine-focussealedtubehavingX-raysource[CuKα radiationα=1.54178Å].ReflectionintensitieswereintegratedusingSAINTsoftware.Absorp- tioncorrectionwasdoneonM-multi-scan.StructuresweresolvedonSHELXTL[30–31]. Crystallographicdataforcompounds1,2,4,and8weredepositedwiththeCambridge CrystallographicDataCenterandcanbeobtainedfreeofchargefromtheCambridgeCrystal- lographicDataCenterviawww.ccdc.cam.ac.uk/data_request/cif. Fungalcultures FungalstrainsofCunninghamella blakesleeana(ATCC8688A),andCunninghamellaechinulata (ATCC9244)wereobtainedfromtheAmericanTypeCultureCollection(ATCC),whereas Macrophomina phaseolina(KUCC730)wasobtainedfromtheKarachiUniversityCultureCol- lection(KUCC).AllcultureswerestoredonSabourauddextroseagar(SDA)at4˚C. Generalfermentationprotocol Theingredientsusedfor1Lculturemediumwerecomprised10gglucose,5gpeptone,5g KH PO ,5gyeastextract,5gNaCl,and10mLglycerolin1Lofdistilledwater. 2 4 Theaforementionedingredientswereusedtopreparetheculturemediumforthegrowth ofC.blakesleeana,C.echinulata, andM.phaseolina.Theexperimentswerecarriedouton twoscales,i.e.,theexperimentalandthepreparativescales.Intheexperimentalscale,600 mLmediawaspreparedforeachfungus,transferredto6flasksof250mL,andautoclaved. Twoflasksservedaspositive(fungalmedia+substrate)andnegative(fullygrownfungusin media)controls,whereastheremainingfourflaskswereusedastestflasks.Thefungiwere grownintestflasksandnegativecontrolbytransferringitsspores.Aftermaturegrowthof thefungi,20mgofthesubstratewasdissolvedin0.5mLofmethanolandincubatedineach culture-containingtestflask.Onetestflaskwasharvestedevery4thday,followedbyfiltra- tionofthemycelia,andextractionwithdichloromethane(DCM).Basedonthesmallscale screening,substrate1wassubjectedtopreparativescaletransformation. Fourlitersofliquidmediawaspreparedforeachfungus,anddistributedequallyin40flasks of250mLeach.Themediawasthenautoclavedandinoculatedwithsporesoftheappropriate fungusat22˚C.After4daysofinoculation,funguscultureswerefoundtobefullymatured. Substrate1(600mg)wasdissolvedin20mLmethanol,anddispensedequally(0.5mLineach) inallflasks.Theseflaskswerethenplacedonarotatoryshakerfor12daysat22˚C. Extractionofmetabolites Onthe12thday,thecontentofallflasksofeachfunguswerecombinedandfilteredtoremove themycelia.TheaqueouslayerwasextractedthricewithCH Cl (24L).Thecrudeextractwas 2 2 mademoisturefreebyaddingsodiumsulphate,filtered,andconcentratedonarotaryevapora- tor,whichyieldedathickbrowngumlikematerial. PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 5/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Isolationofmetabolitesofmibolerone(1)fromtheincubationof mibolerone(1)withCunninghamellablakesleeana,andC.echinulata Incubationofsubstrate1withC.blakesleeana,andC.echinulatayieldedabout2gofcrude extracts.Theextractsweresubjectedtosilicagelcolumnchromatography.Themobilephase comprisedhexanes-acetonemixtures.Thepolarityofthemobilephasewasincreasedbyincreas- ingtheconcentrationofacetone(5–100%gradientofacetone).500mLofsolventsystemateach concentrationwaspassedthroughthecolumn.ThefractionsobtainedwereanalyzedbyTLC analysis,andthefractionsofsimilarcompositionwerepooledtogether.Threemainfractions (1–3)wereobtained,whichwerethenpurifiedonareversephaserecyclingHPLC.Metabolite2 (R =26min,MeOH:H O;70:30)wasobtainedfromfraction1.Fraction2yieldedcompound T 2 3(R =23min,MeOH:H O;70:30),andcompound4(R =22min,MeOH:H O;70:30)was T 2 T 2 obtainedfromfraction3onpurificationwithreversephaserecyclingHPLC. 17β-Hydroxy-7α,17α-dimethylestr-4-en-3-one(1). Single-crystalX-raydata:empirical formulaC H O ;formulaweight302.44;crystalsystemorthorhombic,spacegroupP2 2 2 , 20 30 2 1 1 1 unitcell,a=8.2316(5)Å,b=9.8785(6)Å,c=20.6304(12)Å,α=β=γ=90˚,volume1677.58(17) A3,Z=4,calculateddensity1.197mg/m3,F(000)664,crystalsize0.32x0.24x0.12mm,Ɵrange fordatacollection4.29to79.81˚,reflectionscollected20,227,uniquereflections3,597(R = int 0.0976),goodness-of-fitonF21.097,finalRindices[I>2δ(I)]R =0.0661,wR2=0.2004,Rindi- 1 cesR1=0.0695,wR2=0.2074foralldata,largestdiff.peakandhole0.599and-0.620e.A-3. 10β,17β-Dihydroxy-7α,17α-dimethylestr-4-en-3-one(2). Whitecrystalline;yield(per- centageyield):40mg(4%);meltingpoint200–201˚C;UVλ (logε):235(4.38);½a(cid:138)25=–22.5 max D (c0.004,CH OH);IR(CHCl )υ ;3360(O-H),1654(α,β-unsaturatedketone);EI-MSm/z(rel. 3 3 max int.,%):318.2[M+](59),300.0(63),290.2(23),230.2(47),229.1(64),43.9(100);HREI-MSm/z: 318.2192[M+](mol.formulaC H O ,calcd.318.2195);1H-NMR(CD OD,400MHz):Table1; 20 30 3 3 13C-NMR(CD OD,125MHz):Table1.Single-crystalX-raydata:empiricalformulaC H O ; 3 20 30 3 formulaweight318.44;crystalsystemorthorhombicspacegroupP2 2 2 ,unitcell,a=8.338(2) 1 1 1 Å,b=9.733(2)Å,c=20.949(5)Å,α=β=γ=90˚,volume1700.1(7)A3,Z=4,calculateddensity 1.244mg/m3,F(000)696,crystalsize0.31x0.11x0.07mm,Ɵrangefordatacollection4.22to 43.50˚,reflectionscollected3,259,uniquereflections770(R =0.0465),goodness-of-fitonF2 int 1.119,finalRindices[I>2δ(I)]R1=0.0418,wR2=0.1008,RindicesR1=0.0458,wR2=0.1035 foralldata,largestdiff.peakandhole0.294and-0.200e.A-3. 6β,17β-Dihydroxy-7α,17α-dimethylestr-4-en-3-one(3). Whitesolid;yield(percentage yield):20mg(2%);meltingpoint219–221˚C;UVλ (logε):230(4.27);½a(cid:138)25=–134.2(c max D 0.0014,CH OH);IR(CHCl )υ ;3431(O-H),1659(α,β-unsaturatedketone);EI-MSm/z 3 3 max (rel.int.,%):318.3[M+](16),300.3(100),242.2(39),229.2(98),174.1(41),147.0(27),136.0 (26),95.0(21),42.9(54);HRESI-MSm/z:318.2196[M+](mol.formulaC H O ,calcd. 20 30 3 318.2195);1H-NMR(CD OD,500MHz):Table1;13C-NMR(CD OD,125MHz):Table1. 3 3 6β,10β,17β-Trihydroxy-7α,17α-dimethylestr-4-en-3-one(4). Whitecrystalline;yield (percentageyield):300mg(30%);meltingpoint228–229˚C;UVλ (logε):230(5.20);½a(cid:138)25= max D –22.9(c0.0041,CH OH);IR(CHCl )υ ;3412(O-H),1664(α,β-unsaturatedketone); 3 3 max EI-MSm/z(rel.int.,%):334.2[M+](100),298.2(24),240.1(11),227.1(64),172.1(19),43.0 (16);HREI-MSm/z:334.2159[M+](mol.formulaC H O ,calc.for334.2144);1H-NMR 20 30 4 (CD OD,400MHz):Table1;13C-NMR(CD OD,125MHz):Table1.Single-crystalX-raydata: 3 3 empiricalformulaC H O ;formulaweight352.46;crystalsystemorthorhombic,spacegroup 20 32 5 P2 2 2 ,unitcell,a=7.6451(10)Å,b=10.734(2)Å,c=23.051(3)Å,α=β=γ=90˚,Volume 1 1 1 1891.6(5)A3,Z=4,calculateddensity1.238mg/m3,F(000)768,crystalsize0.30x0.25x0.20 mm,Ɵrangefordatacollection7.11to70.13˚,reflectionscollected15,121,uniquereflections 2040(R =0.0240),goodness-of-fitonF21.079,finalRindices[I>2δ(I)]R =0.0300, int 1 PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 6/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites 4 (JinHz)δH 1.84,overlap2.16,m 2.26,m;2.63,m ─ 5.83,s ─ 4.08,s 2.01,m 2.30,m 1.35,m ─ 1.67,overlap;1.78,m 1.32,overlap;1.54,m ─ 1.45,m 1.35,m;1.57,m 1.69,m;1.88,m ─ 0.93,s 0.75,d(J=7.2)19/7β 1.19,s δC 34.1 34.7 202.3 127.9 160.6 80.1 38.6 33.6 46.6 72.4 20.8 32.1 46.9 46.6 23.5 39.0 82.1 14.3 10.9 26.1 4) = J8a/7e 5, 1. 1 = J8a/14a 5) 3 (JinHz)δH 1.32,m;1.61,m 2.32,m;2.40,m ─ 5.86,d(J=2)4/6 ─ 3.97,d(J=3)6/7 1.95,m 2.14,ddd(J=8a/9a 1.14,m 2.50,m 1.44,m;1.54,m 1.30,m;1.52,m ─ 1.42,m 1.89,m;2.30,m 1.67,m;1.87,m ─ 0.94,m 0.74,d(J=7.19/7β 1.18,s δC 27.3 37.2 202.9 127.4 167.3 78.7 38.4 37.4 43.3 39.8 23.2 32.5 47.1 46.7 27.6 39.1 82.1 14.5 11.1 26.1 16.8) 3.6) = = J1/3 J6/7 nds1–4(ppm).δ 2 (JinHz)δH 1.92,m;2.22,m 2.27,m;2.56,ddd(J=4.8,1/2 ─ 5.72,s ─ 2.10,m;2.90,dd(J=13.2,6/6 2.02,m 1.99,m 1.41,m ─ 1.70,m;1.73,m 1.29,overlap;1.56,overlap ─ 1.32,overlap 1.30,overlap;1.57,overlap 1.67,m;1.84,m ─ 0.92,s 0.79,d(J=6.8)19/7β 1.18,s u o comp δC 34.5 34.5 202.0 126.7 166.7 41.0 39.5 32.1 47.4 70.8 21.0 32.3 46.7 46.6 23.6 39.1 82.1 14.3 12.6 26.1 of z) JinH =4.8) a( J6/7 Hz) Hz) at 4, M M d 1 H-NMRchemicalshift 1 (JinHz)δH 1.94,m;2.35,overlap 1.31,overlap;1.51,overlap ─ 5.79,s ─ 2.33,overlap;2.56,dd(J=6/6 1.99,m 1.66,overlap 1.83,overlap 2.15,m 1.57,overlap;1.86,overlap 1.69,overlap;1.86,overlap ─ 1.42,overlap 1.34,overlap;1.53,overlap 2.32,overlap;2.36,overlap ─ 0.92,s 0.79,d(J=7.2)19/7β 1.29,s 13Hz),andC-NMR(12513Hz),andC-NMR(125 ne.0171476.t001 1 M M o 13C-and δC 27.8 32.5 202.5 126.6 169.4 44.5 32.1 44.6 43.6 44.2 23.3 39.1 46.9 47.4 27.7 37.4 82.1 14.5 13.1 26.1 MR(400 MR(500 1/journal.p e1. on H-N H-N 0.137 Tabl Positi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1a=1b= doi:1 PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 7/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites wR2=0.0799,RindicesR1=0.0302,wR2=0.0802foralldata,largestdiff.peakandhole0.243 and-0.175e.A-3. Isolationofmetabolitesofmibolerone(1)fromtheincubationof mibolerone(1)withM.phaseolina Incubationofsubstrate1withM.phaseolinaafforded2.3gcrudeextract.Silicagelcolumn chromatographyofthecrudeextractyieldedfourmainfractions(4–7),whichwerefurther purifiedonreversephaserecyclingHPLC.Metabolite5(R =21min,6mg)wasobtained T fromfraction4throughpurificationonreversephaseHPLC(MeOH:H O;70:30).Metabolite 2 6(R =22min,7mg)fromfraction5,compound7(R =24min,6mg)fromfraction6,and T T compound8(R =23min,6mg)fromfraction7wereobtained,onpurificationwithreverse T phaserecyclingHPLC(MeOH:H O;70:30). 2 11β,17β-Dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one(5). White solid;yield(percentageyield):2.9mg(0.4%);meltingpoint228–230˚C;UVλ (logε):248 max (3.82);½a(cid:138)25=+70.0(c0.0019,CHOH);IR(CHCl )υ ;3412(O-H),1643(α,β-unsaturated D 3 3 max ketone);EI-MSm/z(rel.int.,%):334.2[M+](25),317.2(31),286.1(32),285.1(80),267.1(51),242.1 (50),229.1(100)133.1(18),55.0(11);HREI-MSm/z:334.2146[M+](mol.formulaC H O,calc. 20 30 4 for334.2144);1H-NMR(CD OD,600MHz):Table2;13C-NMR(CD OD,150MHz):Table2. 3 3 1α,17β-Dihydroxy-7α,17α-dimethylestr-4-en-3-one(6). Whitesolid;yield(percentage yield):2.4mg(0.24%);meltingpoint170–174˚;UVλ (logε):247(2.99);½a(cid:138)25=–41.4(c max D 0.0049,CH OH);(CHCl );υ 3433(O-H),1651(α,β-unsaturatedketone);EI-MSm/z(rel. 3 3 max int.,%):318.9[M+](28),301.9(35),300.9(100),299.9(96),261.9(61),228.8(67),226.9(49) 173.9(53),135.0(33);HREI-MSm/z:318.2193[M+](mol.formulaC H O ,calc.for 20 30 3 318.2195);1H-NMR(CD OD,400MHz):Table2;13C-NMR(CD OD,150MHz):Table2. 3 3 1α,11β,17β-Trihydroxy-7α,17α-dimethylestr-4-en-3-one(7). Whitesolid;yield(percent- ageyield):2.4mg(0.34%);meltingpoint280–282˚C;UVλ (logε):247(4.12);½a(cid:138)25=–94.2(c max D 0.0019,CH OH);IR(CHCl )υ ;3418(O-H),1661(α,β-unsaturatedketone);EI-MSm/z(rel. 3 3 max int.,%):334.2[M+](2.6),318.1(41),317.1(90),259.1(68),241.1(49),228.1(100),214.1(81)201.1 (47),43.0(36);HREI-MSm/z334.2140[M+](mol.formulaC H O ,calc.for334.2144);1H-NMR 20 30 4 (CD OD,600MHz):Table2;13C-NMR(CD OD,150MHz):Table2. 3 3 11β,17β-Dihydroxy-7α,17α-dimethylestr-4-en-3-one(8). Whitecrystalline;yield(per- centageyield):21.1mg(3%);meltingpoint249–252˚C;UVλ (logε):229(3.88);½a(cid:138)25= max D +104.3(c0.0021,IRCH OH);(CHCl )υ ;3410(O-H),1651(α,β-unsaturatedketone); 3 3 max EI-MSm/z(rel.int.,%):334.2[M+](2.6),318.1(41),317.1(90),259.1(68),241.1(49),228.1 (100),214.1(81)201.1(47),43.0(36);HREI-MSm/z:318.2211[M+](mol.formulaC H O , 20 30 3 calcd.for318.2195);1H-NMR(CD OD,400MHz):Table2;13C-NMR(CD OD,100MHz): 3 3 Table2.Single-crystalX-raydata:empiricalformulaC H O ;formulaweight318.44;crystal 20 30 3 systemmonoclinic,spacegroupP2 ,unitcell,a=5.9750(11)Å,b=11.550(3)Å,c=12.642(2) 1 Å,β=99.728(14˚,volume859.9(3)A3,Z=2,calculateddensity1.230mg/m3,F(000)348,crys- talsize0.32x0.28x0.18mm,Ɵrangefordatacollection7.52to72.00˚,reflectionscollected 13,571,uniquereflections3,334(R =0.0236),goodness-of-fitonF21.037,finalRindices int [I>2δ(I)]R1=0.0270,wR2=0.0734,RindicesR1=0.0272,wR2=0.0736foralldata,largest diff.peakandhole0.219and-0.160e.A-3. Assayprotocolforβ-glucuronidaseinhibition Theinhibitionofβ-glucuronidaseenzyme(E.C.3.2.1.31,bovineliver)bytestcompoundswas determinedonaspectrophotometerbymeasuringtheabsorbanceofp-nitrophenolat405nm, PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 8/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites Table2. 13C-and1H-NMRchemicalshiftdata(JinHz)ofcompounds5–8(δppm). Position 5 6 7 8 δ δ (JinHz) δ δ (JinHz) δ δ (JinHz) δ δ (JinHz) C H C H C H C H 1 27.2 2.29,overlap;2.34,overlap 66.3 4.40,d(J=2.8) 66.3 4.38,t(J=3) 27.3 1.57,m;2.33,m 2 37.5 2.30,overlap;2.35,overlap 47.1 2.41,overlap;2.45, 48.9 2.55,overlap;2.59, 37.5 2.34,m2(H) overlap overlap 3 202.6 - 200.8 - 200.9 - 202.6 - 4 126.8 5.83,s 126.4 5.83,s 126.5 5.86,s 126.8 5.79,s 5 170.8 - 164.9 - 166.4 - 170.6 - 6 44.3 2.31,overlap;2.54,dd(J 44.3 2.37,d(J=14.8); 44.2 2.52,dd(J = 44.3 2.31,m;2.53,dd(J =13.6,J = 6/6 6/6 6/6 6/7 =13.5,J =4.5) 2.53,overlap 14.4,J =4.2) 4.4) 6/7 6/7 7 32.1 2.18,m 31.4 1.95,m 31.4 2.02,m 32.1 2.07,m 8 38.9 1.96,m 36.4 1.68,overlap 38.9 1.96,m 39.3 1.94,m 9 49.2 1.23,m 44.2 1.69,overlap 41.2 1.81,overlap 48.3 1.24,m 10 39.1 2.65,overlap- 48.5 2.27,m 43.3 2.85,overlap; 39.0 2.64,m 11 67.4 4.19,d(J =7.2) 27.0 1.32,m;1.99,m 67.2 4.25,d(J = 67.5 4.21,d(J =3.2) 11/9,12 11/9,12 11/9,12 2.4) 12 39.9 1.87,dd(J =13.8,J 32.4 1.37,m;1.54,m 39.8 1.49,m;1.82, 39.9 1.46,dd;(J =14,J =3.2); 12/12 12/11 12/12 12/11 =2.4);1.49,overlap overlap 1.82,dd(J =14,J =2.8) 12/12 12/11 13 46.4 - 46.9 - 47.1 - 46.5 - 14 48.2 1.48,m 47.6 1.31,overlap 46.8 1.58,m 48.4 1.38,overlap 15 23.6 1.35,m;1.61,m 23.2 1.21,m;1.45,m 23.3 1.41,m;1.61,m 26.4 1.35,m;1.61,m 16 33.3 1.67,m;1.88,m 39.0 1.69,overlap;1.89, 48.7 1.45,m;1.59,m 39.0 1.67,m;1.88,m overlap 17 84.5 - 82.2 - 82.5 - 82.4 - 18 17.4 1.15,s 14.4 0.93,s 17.0 1.13,s 17.1 1.12,s 19 13.3 0.79,d(J =7.2) 13.0 0.81,d(J =7.2) 12.9 0.82,d(J = 13.0 0.79,d(J =6.8) 19/7β 19/7β 19/7β 19/7β 7.2) 20 67.7 3.42,d(J =11.4);3.57, 26.1 1.21,s 26.4 1.18,s 23.3 1.18,s 20/20 d(J =11.4) 20/20 c=1H-NMR(600MHz),and13C-NMR(150MHz) d=1H-NMR(400MHz),and13C-NMR(150MHz) e=1H-NMR(400MHz),and13C-NMR(100MHz) doi:10.1371/journal.pone.0171476.t002 producedfromthesubstrate.Thereactionmixturecomprised185μLof0.1Macetatebuffer, and5μLoftestcompoundsolution,and10μLof(1U)enzymesolutionina96-wellplate.The mixturewasincubatedat37˚Cfor30min.ThetestcompoundsweresolubilizedinDMSO (100%),and5μLvolumewasaddedineachwell(2%oftotalvolume).Similarconditionswere usedforthestandard(D-saccharicacid1,4-lactone).Theplateswerereadonamultiplate reader(SpectraMaxplus384)at405nmand37˚C,afteradditionof50μLof0.4mMp-nitro- phenyl-β-D-glucuronide.Allassayswereperformedintriplicate.IC valueswerecalculated 50 throughEZ-Fitsoftware(PerrellaScientificInc.,Amherst,MA,USA). Assayprotocolforleishmanicidalactivity Leishmaniamajor(DESTO,Pakistan)wasculturedinamixtureofNNN-biphasicmedium, andnormalphysiologicalsalinesolution.L.majorpromastigotesweregrownonRPMI1640 medium,supplementedwithfetalbovineserum(FBS)(10%heatinactivated).Parasiteswere centrifuged(atlogphase)for10minat2,000rpmandwashedthricewithsaline.Thefinal densityoffreshculture(106cells/mL)wasacquiredthroughdilutionofparasites.Sample PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 9/22 Fungalbiotransformationofmibolerone,andbiologicalactivityevaluationofitsmetabolites solutionof1mgoftestcompoundswaspreparedinamixture50μLofDMSOand950μLof RPMImedia.Fullydissolvedcompoundsweretransferredto96-wellplate.Thefirstrowof 96-wellplatereceived180μLofthemedium,whiletheremainingwellsreceived100μL medium.Testcompounds(20μLeach)wereaddedintothemediumcontainingwells,fol- lowedbyserialdilution.Theparasiteculture(100μL)wasthentransferredtoeachwell.Nega- tivecontrolscomprisedofonlythegrowthmedium,whilestandardleishmanicidaldrugs (amphotericinorpentamidine)wereusedaspositivecontrols.Theplatewasthenincubated for72hat21–22˚C.Theinhibitoryeffectoftestcompoundsontheculturewasanalyzed microscopicallyonanimprovedNeubauercountingchamber.IC valueswerecalculated 50 throughEzfit5.03PerellaScientificsoftware(USA). Assayprotocolforcytotoxicity MTT(3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide)assaywasemployedto studythecytotoxicactivityagainstHeLa(humancervicalcarcinoma,providedbyProf.Dr. AnwarAliSiddiquifromAgaKhanUniversity,Karachi,Pakistan),andmousefibroblast3T3 (ATCC1CRL-1658,purchasedfromAmericanTypeCultureCollection,ATCC,Virginia, USA)celllines.Thecells(1×105/well)wereplatedin0.2mLofDMEMhighglucose medium/wellin96-wellplates.Thecellsweretreatedfor24hourswithtestcompoundsinthe rangeof25,50,75,100,and200μMconcentrations,respectively.FortheMTTassay,the mediumfromthewellswasremovedcarefullyafter24hourstreatment.Eachwellwaswashed with1XPBSfor2–3times,and200μLofMTT(5mg/mL)wasaddedintomediacontaining wells(1:10).Theplateswereincubatedfor4hoursat37˚C,ina5%CO incubator.Afterincu- 2 bation,MTTwasremovedand0.1mLofDMSOwasaddedtoeachwellandmixedbykeeping onastirrer.Thepresenceofviablecellswasvisualizedbythedevelopmentofpurplecolordue toformationoftheformazancrystals.Theplateswereobservedunderspectrophotometer (Spectramax)andabsorbancewastakenat545and570nmforcancerandnormalcelllines, respectively.Measurementswereperformedandtheconcentrationrequiredfora50%inhibi- tionofviability(IC )wasdeterminedgraphically. 50 Resultsanddiscussion Structureelucidationofcompounds1–8 Compound1isawhitesolidwiththe[M+]atm/z302.2.Theidentityofsubstrate1wascon- firmedby1H-,13C-NMRand2D-NMRtechniques(Table1)[1–4].Single-crystalX-raydif- fractionanalysisofcompound1showedfourfusedrings,i.e.,A(C1-C5/C10),B(C5-C10),C (C8-C9/C11-C14),andD(C13-C17).RingAexistsinahalfchairconformationandcontains α-βunsaturatedcarbonylmoiety,whereastrans-fusedringsB,andCwereinchairconforma- tions.FivememberedringDattainsanenvelopeconformation.Aβ-orientedhydroxylgroup atC-17isinapseudoequatorialorientation(Fig3).Single-crystalX-raydataof1wassubmit- tedtotheCambridgeCrystallographicDataCentre(CCDC1483437). Metabolite2wasisolatedaswhitecrystals.Itdisplayedthe[M+]inHREI-MSatm/z 318.2192(C H O ,calcd.318.2195),whichsuggestedtheadditionofanoxygeninsubstrate 20 30 3 1(m/z302.45).TheIRabsorbancesat1654and3360cm-1wereduetothepresenceofα,β- unsaturatedketone,andhydroxylfunctionalities,respectively.The1H-NMRspectrumwas distinctlysimilartosubstrate1(Table1).Anadditionaloxygenatedquaternarycarbonsignal (δ70.8)wasobservedinthe13C-NMRspectrumofcompound2,whichsuggestedthehydrox- ylationofsubstrate1(Table1).ThisOHgroupwasplacedatC-10,basedontheHMBCcorre- lationsofH-4(δ5.72,s)andH -1(δ1.92,m;2.22,m)withC-10(δ70.8)(Fig4).TheOH(δ 2 4.93)(DMSO-d )atC-10wasdeducedtobeβ-orientedbasedonitsNOEcorrelationwiththe 6 PLOSONE|DOI:10.1371/journal.pone.0171476 February24,2017 10/22
Description: