MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . . Biostatistics 602 - Statistical Inference Lecture 04 Ancillary Statistics ...... Hyun Min Kang January 22th, 2013 . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 1/23 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Minimal Sufficient Statistic . Definition 6.2.11 .. A sufficient statistic T(X) is called a minimal sufficient statistic if, for any ′ ′ other sufficient statistic T(X), T(X) is a function of T(X). ...... . Why is this called ”minimal” sufficient statistic? .. • The sample space X consists of every possible sample - finest partition • Given T(X), X can be partitioned into A where t t 2 T = ft : t = T(X) for some x 2 Xg • Maximum data reduction is achieved when jTj is minimal. • If size of T′ = t : t = T′(x) for some x 2 X is not less than jTj, then jTj can be called as a minimal sufficient statistic. ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 3/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Theorem for Minimal Sufficient Statistics . Theorem 6.2.13 .. • f (x) be pmf or pdf of a sample X. X • Suppose that there exists a function T(x) such that, • For every two sample points x and y, • The ratio f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) if and only if X X T(x) = T(y). • Then T(X) is a minimal sufficient statistic for (cid:18). ...... . In other words.. .. • f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) =) T(x) = T(y). X X • T(x) = T(y) =) f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) X X ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 4/23 . Solution .. ∑ ∏n exp((cid:0)(x (cid:0)(cid:18))) exp((cid:0) n (x (cid:0)(cid:18))) f (xj(cid:18)) = i = ∏ i=1 i X (1+exp((cid:0)(x (cid:0)(cid:18))))2 n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 ∑ i i=1 i exp((cid:0) n x )exp(n(cid:18)) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 ...... i=1 i MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Exercise from the textbook . Problem .. X ;(cid:1)(cid:1)(cid:1) ;X are iid samples from 1 n e(cid:0)(x(cid:0)(cid:18)) f (xj(cid:18)) = ;(cid:0)1 < x < 1;(cid:0)1 < (cid:18) < 1 X (1+e(cid:0)(x(cid:0)(cid:18)))2 F...... ind a minimal sufficient statistic for (cid:18). . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 5/23 ∑ exp((cid:0) n (x (cid:0)(cid:18))) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 i ∑ exp((cid:0) n x )exp(n(cid:18)) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 i MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Exercise from the textbook . Problem .. X ;(cid:1)(cid:1)(cid:1) ;X are iid samples from 1 n e(cid:0)(x(cid:0)(cid:18)) f (xj(cid:18)) = ;(cid:0)1 < x < 1;(cid:0)1 < (cid:18) < 1 X (1+e(cid:0)(x(cid:0)(cid:18)))2 F...... ind a minimal sufficient statistic for (cid:18). . Solution .. ∏n exp((cid:0)(x (cid:0)(cid:18))) f (xj(cid:18)) = i X (1+exp((cid:0)(x (cid:0)(cid:18))))2 i i=1 ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 5/23
Description: