ebook img

Biostatistics 602 - Statistical Inference Lecture 04 Ancillary Statistics PDF

84 Pages·2013·0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biostatistics 602 - Statistical Inference Lecture 04 Ancillary Statistics

MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . . Biostatistics 602 - Statistical Inference Lecture 04 Ancillary Statistics ...... Hyun Min Kang January 22th, 2013 . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 1/23 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 5.. How can we show that a statistic is minimal sufficient for (cid:18)? MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Recap from last lecture 1.. Is a sufficient statistic unique? 2.. What are examples obvious sufficient statistics for any distribution? 3.. What is a minimal sufficient statistic? 4.. Is a minimal sufficient statistic unique? 5.. How can we show that a statistic is minimal sufficient for (cid:18)? . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 2/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Minimal Sufficient Statistic . Definition 6.2.11 .. A sufficient statistic T(X) is called a minimal sufficient statistic if, for any ′ ′ other sufficient statistic T(X), T(X) is a function of T(X). ...... . Why is this called ”minimal” sufficient statistic? .. • The sample space X consists of every possible sample - finest partition • Given T(X), X can be partitioned into A where t t 2 T = ft : t = T(X) for some x 2 Xg • Maximum data reduction is achieved when jTj is minimal. • If size of T′ = t : t = T′(x) for some x 2 X is not less than jTj, then jTj can be called as a minimal sufficient statistic. ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 3/23 MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Theorem for Minimal Sufficient Statistics . Theorem 6.2.13 .. • f (x) be pmf or pdf of a sample X. X • Suppose that there exists a function T(x) such that, • For every two sample points x and y, • The ratio f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) if and only if X X T(x) = T(y). • Then T(X) is a minimal sufficient statistic for (cid:18). ...... . In other words.. .. • f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) =) T(x) = T(y). X X • T(x) = T(y) =) f (xj(cid:18))/f (yj(cid:18)) is constant as a function of (cid:18) X X ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 4/23 . Solution .. ∑ ∏n exp((cid:0)(x (cid:0)(cid:18))) exp((cid:0) n (x (cid:0)(cid:18))) f (xj(cid:18)) = i = ∏ i=1 i X (1+exp((cid:0)(x (cid:0)(cid:18))))2 n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 ∑ i i=1 i exp((cid:0) n x )exp(n(cid:18)) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 ...... i=1 i MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Exercise from the textbook . Problem .. X ;(cid:1)(cid:1)(cid:1) ;X are iid samples from 1 n e(cid:0)(x(cid:0)(cid:18)) f (xj(cid:18)) = ;(cid:0)1 < x < 1;(cid:0)1 < (cid:18) < 1 X (1+e(cid:0)(x(cid:0)(cid:18)))2 F...... ind a minimal sufficient statistic for (cid:18). . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 5/23 ∑ exp((cid:0) n (x (cid:0)(cid:18))) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 i ∑ exp((cid:0) n x )exp(n(cid:18)) = ∏ i=1 i n (1+exp((cid:0)(x (cid:0)(cid:18))))2 i=1 i MinimalSufficientStatistics AncillaryStatistics Location-scaleFamily Summary ..... ......... ....... . Exercise from the textbook . Problem .. X ;(cid:1)(cid:1)(cid:1) ;X are iid samples from 1 n e(cid:0)(x(cid:0)(cid:18)) f (xj(cid:18)) = ;(cid:0)1 < x < 1;(cid:0)1 < (cid:18) < 1 X (1+e(cid:0)(x(cid:0)(cid:18)))2 F...... ind a minimal sufficient statistic for (cid:18). . Solution .. ∏n exp((cid:0)(x (cid:0)(cid:18))) f (xj(cid:18)) = i X (1+exp((cid:0)(x (cid:0)(cid:18))))2 i i=1 ...... . . . . . . HyunMinKang Biostatistics602-Lecture04 January22th,2013 5/23

Description:
σY2. = Y1. Y2 also follows a cauchy distribution and is an ancillary statistic. Hyun Min Kang. Biostatistics 602 - Lecture 04. January 22th, 2013. 8 / 23
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.