ebook img

BIOREACTORS, AIR-LIFT REACTORS - nashaucheba.ru PDF

75 Pages·2003·0.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BIOREACTORS, AIR-LIFT REACTORS - nashaucheba.ru

320 BIOREACTORS,AIR-LIFTREACTORS BIOREACTORS, AIR-LIFT REACTORS streamofairorsometimesbyothergases.Inthosecases, the name gas lift reactors has been used. In addition to J.C.MERCHUK agitation, the gas stream has the important function of M.GLUZ facilitating exchange of material between the gas phase Ben-GurionUniversityoftheNegev andthemedium;oxygenisusuallytransferredtotheliq- Beer-Sheva,Israel uid, and in some cases reaction products are removed throughexchangewiththegasphase. ThemaindifferencebetweenALRsandbubblecolumns KEYWORDS (whicharealsopneumaticallyagitated)liesinthetypeof fluid flow, which depends on the geometry of the system. Bubblecolumn The bubble column is a simple vessel into which gas is Fluiddynamics injected,usuallyatthebottom,andrandommixingispro- Gashold-up duced by the ascending bubbles. In the ALR, the major Heattransfer patternsoffluidcirculationaredeterminedbythedesign Liquidflow ofthereactor,whichhasachannelforgas–liquidupflow— Masstransfer the riser—and a separate channel for the downflow (Fig. 1). The two channelsare linkedatthebottomandat the Scale-up toptoformaclosedloop.Thegasisusuallyinjectednear Three-phaseairliftreactors the bottom of the riser. The extent to which the gas dis- engagesatthetop,inthesectiontermedthegasseparator, OUTLINE is determined by the design of this section and the oper- atingconditions.Thefractionofthegasthatdoesnotdis- Introduction engage, but is entrapped by the descending liquid and taken into the downcomer, has a significant influenceon General thefluiddynamicsinthereactorandhenceontheoverall AirliftReactorMorphology reactorperformance. AdvantagesofAirliftBioreactors FluidDynamics AirliftReactorMorphology FlowConfiguration Airlift reactors can be divided into two main types of re- GasHoldup actorsonthebasisoftheirstructure(Fig.1):(1)external- GasRecirculation loopvessels,inwhichcirculationtakesplacethroughsepa- LiquidVelocity rateanddistinctconduits;and(2)baffled(orinternal-loop) LiquidMixing vessels,inwhichbafflesplacedstrategicallyinasingleves- MixingintheGasPhase sel create the channels required for the circulation. The designs of both types can be modified further, leading to EnergyDissipationandShearRateinAirlift variations in the fluid dynamics, in the extent of bubble Reactors disengagementfromthefluid,andintheflowratesofthe MassTransfer variousphases. MassTransferRateMeasurements BubbleSizeandInterfacialArea DataCorrelationsforMassTransferRate Internal-loop split Internal-loop External-loop HeatTransfer ALR concentric ALR Three-PhaseAirliftReactors tube reactor AirliftReactor—SelectionandDesign Gas output Gas output Gas output Scale-upofAirliftBioreactors DesignImprovements SummaryandConclusions Nomenclature Bibliography INTRODUCTION General Thetermairliftreactor(ALR)coversawiderangeofgas– liquid or gas–liquid–solid pneumatic contacting devices thatarecharacterizedbyfluidcirculationinadefinedcy- Gas input Gas input Gas input clicpatternthroughchannelsbuiltspecificallyforthispur- pose.InALRs,thecontentispneumaticallyagitatedbya Figure1. DifferenttypesofALRs. BIOREACTORS,AIR-LIFTREACTORS 321 AllALRs,regardlessofthebasicconfiguration(external Gas separator configurations of internal-loop ALRs looporbaffledvessel),comprisefourdistinctsectionswith differentflowcharacteristics: • Riser.Thegasisinjectedatthebottomofthissection, and the flow of gas and liquid is predominantlyup- ward. • Downcomer. This section, which is parallel to the riser, is connected to the riser at the bottom and at thetop.Theflowofgasandliquidispredominantly downward. The driving forceforrecirculationisthe difference in mean density between the downcomer andtheriser;thisdifferencegeneratesthepressure gradientnecessaryforliquidrecirculation. • Base.Inthevastmajorityofairliftdesigns,thebot- tom connection zone between the riser and down- comer is very simple. It is usuallybelievedthatthe basedoesnotsignificantlyaffecttheoverallbehavior ofthereactor,butthedesignofthissectioncaninflu- encegasholdup,liquidvelocity,andsolidphaseflow Gas separator configurations of external-loop ALRs (1,2). • Gasseparator.Thissectionatthetopofthereactor connectstherisertothedowncomer,facilitatingliq- uid recirculation and gas disengagement. Designs that allow for a gas residence time inthe separator that is substantially longer than the time required for the bubbles to disengage willminimizethefrac- tion of gas recirculating through the downcomer (Fig.2). Momentum,masstransfer,andheattransferwillbedif- Figure2. Differenttypesofgasseparators. ferentineachsection,butthedesignofeachsectionmay influence the performance and characteristics of each of the other sections, since the four regions are intercon- forces; for example, the maximum shear gradient in a nected. stirredtankwithaflat-bladeturbinehasbeenreportedto beapproximately14timesthemeansheargradient(7). AdvantagesofAirliftBioreactors Cells in culture may thus be exposed to contrasting Forthegrowthofmicroorganisms,ALRsareconsideredto environments in a mechanically stirred vessel, either to besuperiortotraditionalstirred-tankfermentersdespite minimal shear forces that may generate potentially un- thefactthattheconventionalfermentersprovidethema- desirable gradientsintemperatureandinsubstrate,me- jor requirements for culturing microorganisms: gas– tabolite,andelectrolyteconcentrationsor,alternatively,to mediuminterfaceforthesupplyofoxygenandtheremoval highlyturbulentzones,withnoproblemsofheatormass ofwastegases;meansofagitationtoensurepropernutri- transfer,butwithveryhighsheargradientsthatmayen- ent distribution and to minimize damage resulting from danger cell integrity or exert some influence on cellmor- addition of concentrated acid or base (for pH control); phologyandmetabolism(6).Changesinthemorphologyof means of heat transfer (for temperature control); and a microorganisms associated with high shear forces in the contamination-freeenvironment.Therefore,thereasonfor mediumhavefrequentlybeenobserved(8–10).Thenature themoresuccessfulgrowthreportedinALRs(3,4)appears of the relationship between such morphological changes tolieinthedifferenceinthefluiddynamicsbetweenALRs andtheratesofgrowthandmetaboliteproductionisstill and the more conventional fermenters. In conventional not properly understood, although it may be of great im- stirred tanks or bubble columns, the energy required for portanceinthedesignandscale-upofbioreactors. themovementofthefluidsisintroducedfocally,atasingle InALRs,asinbubblecolumns,thegasisinjectedata pointinthereactor,viaastirrerorasparger,respectively. singlepoint,butinALRsthedirectcontributionofgasin- Consequently, energy dissipation is very high in the im- jectiontothedynamicsofthesystemissmall;circulation mediate surroundings of the stirrer and decreases away of liquid and gas is facilitated by the difference in gas fromittowardthewalls.Similarly,shearwillbegreatest holdup between the riser and the downcomer, whichcre- near the stirrer (5), since the momentum is transferred atesapressuredifferenceatthebottomoftheequipment: directlytothefluidinthatregion(6),which,inturn,trans- DP (cid:1) q g(u (cid:2) u ) (1) fers this energy to the slower-moving, more distant ele- b L r d mentsofthefluid.Thisresultsinawidevariationofshear where DP is the pressure difference, q is the density of b L 322 BIOREACTORS,AIR-LIFTREACTORS the liquid (the density of the gas is consideredto be neg- peciallyimportantinprocessesinvolvingslow-growingcul- ligible), g isthe gravitational constant,andu andu are tures,suchasanimalandplantcells,forwhichtheriskof r d the fractionalgas holdup ofthe riseranddowncomer,re- contaminationislarge. spectively.Thepressuredifferenceforcesthefluidfromthe All the points mentioned above are particularly rele- bottomofthedowncomertowardtheriser,generatingfluid vant for sophisticated processes in which the product is circulation in the ALR. Since u and u are both average usuallyofhighvalue.ButALRsmaybeusedalsoforpro- r d valuesintegratedalongtheheightofthereactor,itfollows cesses involving low-value products, in which case effi- thattherearenofocalpointsofenergydissipationandthat ciency of energy use may well become the key point for shear distribution is homogeneous throughout the ALR. design, as in the use of ALRs for wastewater treatment Thereisthusarelativelyconstantenvironment,withmin- (32). The superiority of ALRs over mechanicallyagitated imizationofsharpchangesinthemechanicalforcesacting contactorsintermsofmasstransferratesforagivenen- on suspended particles.Becausegoodmixingisrequired, ergy input has been demonstrated by Legrys (33). Com- shearforcescannotbeavoidedcompletely.Oneofthemost parison of the efficiency of oxygen transfer, that is, the critical points is the bottom, where there is a sharp 180(cid:1) massofoxygenabsorbedperunitenergyinvestedandunit turn. time, showed that the efficiencyoftheALRisamongthe Shear-sensitive mammalian and plant cells in culture highest in agitated systems (32). The ALRs are particu- should benefit from such an environment. Currently,the larly suited to processes with changing oxygen require- research and development of new bioreactors for mam- ments because aeration efficiency and performance are maliancellsisindeedfocusingontheissueofshear-related relatively insensitive to changes in operating conditions. damagetosuspendedcells(8,11–24). Performance decreases markedly in mechanicallystirred Mammalianandplantcellsinculturearemoresuscep- systems as the energy input (or oxygen transferrate)in- tiblethanmicroorganismstothereactorconditions.Mam- creases,butitisquiteconstantinALRs(34)(Fig.3). maliancells,whichlacktherigidcellwallofmicroorgan- TheefficiencyofALRsdecreasesrelativelyslowlyasthe isms, have a larger size (one order of magnitude) than energyinputperunitvolumeofreactorisincreased,asis microorganisms and are very sensitive to mechanical shown in Figure 4 (32). In contrast, in the operation of stress.Plantcellshavearigidcellulosewall,buttheyare stirred tanks, the mass transfer rate can be easily in- also much larger than microorganisms (usually by about creased by increasing the power input, but this improve- anorderofmagnitude)andarethereforealsosensitiveto mentisachievedatthecostofaconsiderabledecreasein reactor conditions. Kolmogoroff’s model of isotropic tur- the efficiency of oxygen transfer. This decrease may con- bulence (25) indicates that serious damage may occur at stituteacrucialdisadvantageinaprocesslikewastewater relativelylargevaluesofthelengthscale.Thelastlength treatment, where the energy input is an important ele- is a parameter of the model and indicates the size of the ment in the cost of the final product and flexibilityofop- eddywhereenergystartstobedissipatedbyviscousresis- erating conditions is required because of the constant tance.Indeed,ithasbeenobservedthatplantcells,inspite changeoffeedcompositionandflowrate. oftheirrigidwall,areshear-sensitive,anddifficultieshave EnergyeconomyintheALRmaybeimprovedbyplac- beenfoundinstirred-tankcultures.Thisisespeciallytrue ing a second sparger in the upperpart ofthe downcomer when large-scale systems are considered. Although high (32,35,36). If the liquid velocity is greater than the free agitationratesmaybedetrimentaltocellgrowth,lowag- risingvelocityofthebubblesgenerated,thegasiscarried itationratesleadtoanincreaseinthenumberandsizeof down,resultinginalongercontacttimebetweenthebub- cellaggregates—alsoanundesirablephenomenon.Theag- ble and the liquid. This diminishes the energy require- gregatesareformedasaresultofdaughtercellsfailingto ments,sincepartofthegasisinjectedagainstalowerhy- separateafterdivisionandasaconsequenceofthesticki- drostaticpressure. nessofthepolysaccharidesexcretedbythecells,especially Theadvantagesdescribedabovecounterbalancetheob- attheendofthegrowthphase.Anoptimalshearratebe- viousdisadvantageofALRs,whichistherequirementfor tweenthesetwoextremesmustbefoundforeachculture. aminimumliquidvolumeforproperoperation.Indeed,the Ithasrecentlybeenshownexperimentallythatvelocity changes in liquid volume in these reactors are limited to fluctuations related to turbulent shear are relatively ho- theregionofthegasseparator,sincetheliquidheightmust mogeneouslydistributedinanALR(26,27).Themeasure- alwaysbesufficienttoallowliquidrecirculationinthere- mentsoffluctuatingvelocitymadebyTanetal.(26)show actorandmustthereforebeabovetheseparationbetween thattheliquidturbulenceinALRsishomogeneouslydis- theriserandthedowncomer. tributed in both the riser and the downcomer. It thus seems reasonable to assume that the homogeneity of the FLUIDDYNAMICS stress forces is the main advantage offered by ALRs and that this homogeneity is responsible for the success of Theinterconnectionsbetweenthedesignvariables,theop- shear-sensitive cultures in the ALR type of fermenter eratingvariables,andtheobservablehydrodynamicvari- (3,28–31). ables in an ALR are presented diagramaticallyinFigure Another advantage of the ALR is the mechanicalsim- 5 (37). The design variables are the reactor height, the plicityofthedevice.Theabsenceofashaftandoftheas- riser-to-downcomer area ratio, the geometrical design of sociatedsealing,whichisalwaysaweakelementfromthe the gas separator, and the bottom clearance (C , the dis- b point of view of sterility, confers on the ALR an obvious tancebetweenthebottomofthereactorandthelowerend advantage over agitated tanks. This consideration is es- ofthedrafttube,whichisproportionaltothefreeareafor BIOREACTORS,AIR-LIFTREACTORS 323 100 h) p/ h Rectangular airlift /2 O o (lb One-stage split-cylinder Two-stagea isrplilfitt-cylinder ati 10 airlift e r c n a m or Concentric cylinder Agitated tank erf airlift P Aeration tower 1 1 10 100 1000 Oxygen transfer rate (mmol O /m3/h) 2 Figure3. Performanceratioasafunctionofoxygen-transferrate,showingthataerationefficiency andperformancearerelativelyinsensitivetochangesinoperatingconditionsindifferenttypesof ALRs (1–5) versus an agitation tank (6) and an aeration tower (7). Adapted from Orazem and Erickson(34). 8 7 6 h 5 W k /24 O g k 3 2 Figure 4. Aeration efficiency as a 1 functionofpneumaticpowerofgas inputperunitvolumeinastraight- 0 baffleALR.Thelevelindicatedcor- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 responds to no-aeration conditions. Power per liquid volume (kW/m3) AdaptedfromSiegeletal.(32). flowinthebottomandrepresentstheresistancetoflowin FlowConfiguration thispartofthereactor).Themainoperatingvariablesare Riser. Intheriser,thegasandliquidflowupward,and primarilythegasinputrateand,toalesserextent,thetop the gas velocity is usually larger than that of the liquid. clearance (C, the distance betweentheupperpartofthe t Theonlyexceptionishomogeneousflow,inwhichcaseboth drafttubeandthesurfaceofthenonaeratedliquid).These phasesflowatthesamevelocity.Thiscanhappenonlywith two independent variables set the conditions that deter- very small bubbles, in which case the free-risingvelocity mine the liquidvelocity inthe ALRvia themutualinflu- of the bubbles is negligible with respect to the liquid ve- encesofpressuredropsandholdups,asshowninFigure5 locity. Although about a dozen different gas–liquid flow (37).ViscosityisnotshowninFigure5asanindependent configurationshavebeendeveloped(38),onlytwoofthem variablebecauseinthecaseofgas–liquidmixtures,itisa areofinterestinALRs(39,40): functionofthegasholdup(andofliquidvelocityinthecase of non-Newtonianliquids),andbecauseinarealprocess, 1. Homogeneousbubblyflowregime,inwhichthebub- itwillchangewithtimeduethechangesinthecomposition bles are relatively small and uniform in diameter oftheliquid. andturbulenceislow 324 BIOREACTORS,AIR-LIFTREACTORS Operation Design variables variables Top Friction Area pressure pressure ratio drop drop Liquid Bottom Reactor velocity pressure height drop Bottom Gas Riser Viscosity clearance input holdup Top Separator Downcomer Separator clearance holdup holdup design Figure5. InteractionbetweengeometricandfluiddynamicvariablesinanALR.Adaptedfrom Merchuketal.(37). 2. Churn-turbulent regime, in which a wide range of beentrappedandflowdownward,theliquidvelocitymust bubblesizescoexistwithinaveryturbulentliquid begreaterthanthefree-risevelocityofthebubbles.Atvery low gas flow input, the liquid superficial velocity is low, The churn-turbulent regime can be produced fromho- practicallyallthebubblesdisengage,andclearliquidcir- mogeneousbubblyflowbyincreasingthegasflowrate.An- culates in the downcomer. As the gas input is increased, other way of obtaining a churn-turbulent flow zone is by theliquidvelocitybecomessufficientlyhightoentrapthe starting from slug flow and increasing the liquid turbu- smallestbubbles.Uponafurtherincreaseinliquidvelocity lence,byincreasingeithertheflowrateorthediameterof largerbubblesarealsoentrapped.Undertheseconditions thereactor,ascanbeseeninFigure6(41).Theslug-flow thepresenceofbubblesreducesthecross-sectionavailable configurationisimportantonlyasasituationtobeavoided forliquidflow,andtheliquidvelocityincreasesinthissec- atallcosts,becauselargebubblesbridgingtheentiretower tion. Bubbles are thus entrapped and carrieddownward, cross-sectionofferverypoorcapacityformasstransfer. untilthenumberofbubblesinthecross-sectiondecreases, theliquidvelocitydiminishes,andthedragforcesarenot Downcomer. Inthedowncomer,theliquidflowsdown- sufficienttoovercomethebuoyancy.Thisfeedbackloopin wardandmaycarrybubblesdownwithit.Forbubblesto thedowncomercausesstratificationofthebubbles,which isevidentasafrontofstaticbubbles,fromwhichsmaller bubblesoccasionallyescapedownwardandlargerbubbles, 0.15 producedbycoalescence,escapeupward.Thebubblefront descends,asthegasinputtothesystemisincreased,until et superficial(m/s)elocity J G0.00.51 Slug flow cHheutrenr-fotlgouewrbnueoleunst tttiushhinoeetnlhebrseiiunssmbeatbroh.lsseeWitsnddhegoevelwseneinnrptactahoubsimalsseleploflyrfooirbgwneeatacsccoioshimnsrtfieerhsgeaeuqcmbhuraoueirttcdteih,oodnmt.mhTieonahrnbteeduhucberonbedrcilrofeioewrdrccnmtuisclct.aohrTmtioebhiecutiroes-, Inlas v Homogeneous owfilclrdosest-esremctiinoenathlearteyaperaotfiflooowf.therisertothedowncomer g bubbly flow GasSeparator. Thegasseparatorisoftenoverlookedin 0 0.01 0.1 1 descriptionsofexperimentalALRdevices,althoughithas Column diameter, D (m) considerable influence on the fluid dynamics of the reac- tors.Thegeometricdesignofthegasseparatorwilldeter- Figure 6. Map of flow configurations for gas–liquidconcurrent minetheextentofdisengagementofthebubblesentering flowinaverticaltube.AdaptedwithpermissionfromWiswana- from the riser. In the case of complete disengagement, than(40). clearliquidwillbetheonlyphaseenteringthedowncomer. BIOREACTORS,AIR-LIFTREACTORS 325 In the general case, a certain fraction of the gas will be gas velocity (gas volumetric flow rate per unit of cross- entrapped and recirculated. Fresh gas may also be en- sectional area), l is the effective viscosity of the liquid, ap trapped from the headspace if the fluid is very turbulent and(cid:1),b,c,andaareconstantsthatdependonthegeom- near the interface. The extent of this entrapment influ- etry of the reactor and the properties of the liquid. The encesstronglygasholdupandliquidvelocityinthewhole correlationcanbe usedto predicttheholdupinasystem reactor. that is being designed or simulated as a function of the It is quite common to enlarge the separator sectionto operatingvariables,thegeometryofthesystem,ortheliq- reduce the liquid velocity and to facilitate better disen- uid properties. Such correlations are effective for fitting gagement of spent bubbles. Experiments have been re- dataforthesametypeofreactor(e.g.,asplit-vesselreac- ported in which the liquid level in the gas separator was tor)withdifferentarearatiosorevendifferentliquidvis- highenoughtoberepresentedastwomixedvesselsinse- cosities,buttheyaremostlyreactor-typespecific. The cyclic flow in the ALR complicates the analysisof ries(42,43).Thispointwillbeanalyzedfurtherinthesec- thesystem.Therisergasholdupdependsstronglyonthe tiondevotedtomixing. geometric configuration of the gas–liquid separator and GasHoldup thewaterlevelinthegasseparator.Thishasbeenshown experimentallyinasplit-vesselrectangularALR(60),but Gasholdupisthevolumetricfractionofthegasinthetotal the premise can essentially be extended to any internal- volumeofagas–liquid–soliddispersion: loopALR.Analysisofthesystemrevealedthatthesefac- V tors influence the gas disengagement and hence the gas u (cid:1) G (2) i V (cid:3) V (cid:3) V recirculation in the downcomer. When this influence is L G S taken into account and the holdup is plotted against the wherethesubindexesL,G,andSindicateliquid,gas,and truegassuperficialvelocity,J ,whichisdefinedasthe G,true solid,andiindicatestheregioninwhichtheholdupiscon- sum of the gas superficial velocity due to the freshly in- sidered, that is, gas separator (s) the riser (r), the down- jectedgas,Q ,andtotherecirculatedgas,Q ,thatis, in d comTehre(dim),poorrtthaencteotoafltrheeachtoorld(uTp).is twofold: (1) the value J (cid:1) (cid:1)Qin (cid:3) Qd(cid:2) (4) G,true A oftheholdupgivesanindicationofthepotentialformass r transfer, since for a given system a larger gas holdupin- then all the data for the different gas separators may be dicatesalargergas–liquidinterfacialarea;and(2)thedif- represented by a single relationship, such as equation 3. ference in holdup between the riser and the downcomer Inotherwords,iftheactualgasflowisknown,theinflu- enceofgasrecirculation(whichdependsonA /A andthe generatesthedrivingforceforliquidcirculation.Itshould d r design of the gas separator) has been already taken into bestressed,however,thatwhenreferringtogasholdupas accountanddoesnotneedtobeconsideredagain.Never- the driving force for liquid circulation, only the total vol- theless, this simple approachhasa drawbackinthatthe ume of the gas is relevant. This is not the case formass- truegassuperficialvelocityisdifficulttomeasurebecause transferphenomena,inthiscase,theinterfacialareaisof thegasrecirculationrateisusuallynotknown.Amethod paramountimportance,andthereforesomeinformationon for evaluation of the extent of the maximum gas recircu- bubble size distributionisrequiredforacompleteunder- lation has recently been developed and will be discussed standingoftheprocess. laterinthisarticle. Becausegasholdupvaluesvarywithinareactor,aver- Thus, correlations that take into account all the vari- age values, referring to the whole volume of the reactor, ables,whichmaybeeasilymeasured,remaintheoptionof areusuallyreported.Valuesreferringtoaparticularsec- choice.Table1showsmostofthecorrelationsofthistype tion, such as the riser or the downcomer, are muchmore that have been proposed for the riser holdup in internal- valuable,sincetheyprovideabasisfordeterminingliquid loopALRs.Comparisonofanumberofthesecorrelations velocity and mixing. However, such values are less fre- showsthatthereisreasonableagreementbetweenthepre- quentlyreported. dictionsofthedifferentsources(Fig.7). ThegeometricdesignoftheALRhasasignificantinflu- Figure7canbeusedasanexampleoftheactualstate- ence on the gas holdup. Changes in the ratio A /A, the of-the-art in ALR design. A number of correlations have d r cross-sectional areas of the downcomer and the riser, re- been proposed, and three variables (A /A, l , and J ) d r ap G spectively,willchangetheliquidandgasresidencetimein havebeentestedbymostresearchers.Therangesinwhich each part of the reactor and hence their contributionsto thesevariableswerestudiedvariesfromsourcetosource. theoverallholdup.Gasholdupincreaseswithdecreasing In addition, some other variables (such as bottom clear- A /A (44–47). ance, top clearance or gas separator design, and surface d r tension) have been used by some authors but ignored by GasHoldupinInternalAirliftReactors. Correlationspre- others.Oneexampleisthedisengagementratiodefinedby sentedforinternal-loopALRsareshowninTable1.These SiegelandMerchuk(64),whichrepresentsthemeanhor- take into account liquid properties and geometric differ- izontalpathofarecirculatingbubblerelativetotheexter- enceswithinaparticulardesign.Mostofthecorrelations naldiameterandisequivalenttotheparameterobtained taketheform: bydimensionalanalysis(1)as: (cid:1)A (cid:2)b ur (cid:1) a(JG)(cid:1) Ad (lap)c (3) M (cid:1) DS r 4D whereu isthegasholdupintheriser,J isthesuperficial whereDisthediameterofcolumnandD thediameterof r G s 326 BIOREACTORS,AIR-LIFTREACTORS Table1. GasHold-UpinInternal-LoopALR No. Formula Ref. 1 u (cid:1)0.441J0.841l(cid:2)0.135 48 r Gr ap u (cid:1)0.297J0.935l(cid:2)0.107 d Gr ap 2 u (cid:1)2.47J0.97 49 r Gr 3 (cid:1) A (cid:2)(cid:2)1.06 50 u (cid:1)0.465J0.65 1(cid:3) d l(cid:2)0.103 r A ap r 4 (cid:1) A (cid:2)(cid:2)0.258 51 ur(cid:1)0.65J(G0r.603(cid:3)0.078C0) 1(cid:3)Ad r u (cid:1)0.46u (cid:2)0.0244 d r 5 (cid:1)A (cid:2)(cid:2)0.254 52 u (cid:1)(0.491(cid:2)0.498)J0.706 d Dl(cid:2)0.0684 r Gr A r ap r 6 (cid:1)J (cid:2)0.57(cid:1) A (cid:2) 45 u (cid:1)0.16 Gr 1(cid:3) d r J A 1r r u (cid:1)0.79u (cid:2)0.057 d r 7 u (cid:1)0.364J 53 r Gr 8 u Jn(cid:3)2/2(n(cid:3)1) 54 r (cid:1) Gr 1(cid:2)ur 23n(cid:3)1/n(cid:3)1nn(cid:3)2/2(n(cid:3)1)(cid:1)K(cid:2)1/2(n(cid:3)1)gn/2(n(cid:3)1)(cid:1)1(cid:3)Ad(cid:2)3(n(cid:3)2)/4(n(cid:3)1) q A 1 r 9 (cid:1)J l (cid:2)0.996(cid:1)q r3(cid:2)0.294(cid:1)D(cid:2)0.114 55 0.124 G 1 1 1 r u (cid:1) r1 gl14 D (1(cid:2)u)4 1(cid:2)0.276(1(cid:2)e(cid:2)0.0368Ma) 10 Fr 56 ur(cid:1) (cid:1)J (cid:3)J (cid:2)(cid:1)gq D2(cid:2)(cid:2)0.188 (cid:1)Dq(cid:2)0.0386 0.415(cid:3)4.27 Gr 1r 1 (cid:3)1.13Fr1.22Mo0.0386 (cid:3)gDr r1 q1 11 u (cid:1)J l (cid:2) (cid:1)D(cid:2)(cid:2)0.222(cid:1)q (cid:2)0.283 2 (1(cid:2)u)4(cid:1)0.16 rG 1 Mo(cid:2)0.283 Dr D1q *(1(cid:2)1.61(1(cid:2)e(cid:2)0.00565Ma))(cid:2)1 1 12 (cid:1)A(cid:2)4.2 57 u (cid:1)4.51•106Mo0.115 r u d A r d when (cid:1)A (cid:2)(cid:2)1.32 u (cid:2)0.0133 d r A r and (cid:4)(cid:1)A(cid:2)0.6 (cid:5)0.31Mo(cid:2)0.0273 u (cid:1)0.05Mo(cid:2)0.22 r u d A r d when (cid:1)A (cid:2)(cid:2)1.32 u (cid:3)0.0133 d r A r 13 (cid:4) 73.3(cid:2)r(cid:5) 58 u (cid:1)0.0057 (l (cid:2)l )2.75(cid:2)161 •J0.88 r 1 w 79.3(cid:2)r Gr 14 0.4Fr 57 u (cid:1) r (cid:1) J (cid:2) 1(cid:3)0.4Fr 1(cid:3) 1 J Gr 15 u(cid:1)0.24n(cid:2)0.6Fr0.84(cid:2)0.14nGa 59 gasseparator.Ifthisparameterisnottakenintoaccount, been sufficient to provide correlations or they may have then studies of the influence of the top clearance (42,65) beenill-balancedfromthestatisticalpointofview.Theob- areincompleteanddifficulttoextrapolatetootherdesigns. vious solution to this problem lies in the collection of a Thesamecanbesaidaboutthefillingfactor(66)givenby largeanddetailedbankofreliabledatathatwillconstitute theratioofthegasseparatorvolumetothetotalvolume. thebasisforcorrelationswithgreateraccuracyandvalid- Theforegoingdiscussionthusexplainswhyallthecor- ity. relationscoincideforsomerangesofthesesecondaryvari- Thesafestprocedureforthepredictionofthegasholdup ableswhileinotherrangestheymaydiverge.Inaddition, in an ALR under design is to take data provided by re- in some cases the number of experiments may not have searcherswhohavemadethemeasurementsinthatpar- BIOREACTORS,AIR-LIFTREACTORS 327 0.4 of the studies reported in the literature on holdup in Koide et al. (61) external-loop ALRs, total disengagement is attained. No ser 0.3 Li et al. (48) such data are available for the concentric tubes of split- ri Chisti et al. (51) vesselALRs,sincetotaldisengagementispossibleonlyat n up i 0.2 Vatai and Tekis (52) verSyelvoewraglaasuflthoworsra(3te7s,6.9–73)havepresentedtheirresults d ol ofgasholdupasthegasvelocityversusthesuperficialmix- h Gas 0.1 Popovic and tFuinredlvaeylo(c7i4ty),. bTahseesdeoanutthhoersdrdieftriflvuedx mgeondeerlalofexZpurbeesrsiaonnds Robinson (63) Kawase et al. (62) for prediction of the gas holdup and for interpretation of 0 experimentaldataapplicabletononuniformradialdistri- 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 butionsofliquidvelocityandgasfraction.Thedriftveloc- Superficial gas velocity (m/s) ityisdefinedasthedifferencebetweenthevelocityofthe particularphase(U)andthevolumetricfluxdensityofthe Figure7. Somecorrelationsproposedforpredictionofgasholdup mixture(J)where: in the riser of internal-loop ALRs (Table 1). Gas holdup (u) is r presentedasafunctionofsuperficialgasvelocity(J ).Otherpa- G rametersrelatedtogeometryandphysicochemicalpropertiesthat J (cid:1) J (cid:3) J (5) G L wereusedinthecalculationsareshownonthefigure. Thedriftvelocitiesofthegasandliquidphasesmaythus beexpressedas: ticulartypeofreactorwiththesamephysicochemicalprop- J (cid:1) U (cid:2) J (6) erties of the system. If this option is not available, then G G correlation9inTable1(55)isrecommendedforprediction JL (cid:1) UL (cid:2) J (7) ofthegasholdupintheriser. Gasholdupinthedowncomerislowerthanthatinthe ZuberandFindlay(74)derivedtherelationship[8],which riser.Theextentofthisdifferencedependsmainlyonthe has been shown to be more than adequate to provide a design of the gas separator (67). The downcomer gas correlationofgasholdupmeasurementsintowerreactors holdupislinearlydependentontheriserholdup,asacon- withhighliquidvelocities,suchasALRs(71): sequence of the continuity of liquid flow in the reactor. Manyexpressionsofthistypehavebeenpublished(68).At 1 (cid:6) u(U (cid:2) J)dA tlohwebguabsbflleoswharavteeesn,ouudgihs tuismuealtloydniseegnliggaibgleef,rsoimnctehmeloisqtuiodf UG (cid:1) JuG (cid:1) C0J (cid:3) A 1 (cid:6) G (8) inthegasseparator.Thisusuallyhappensatthelowgas u • dA A flowratesfrequentlyusedforanimalcellcultures. The gas holdup in the separator is very close to the whereAiscross-sectionalarea,C isdistributionparam- meangasholdupinthewholereactor(1)aslongasthetop 0 eter,Jissuperficialvelocity,J issuperficialgasvelocity, clearanceC isrelativelysmall(oneortwodiameters).For G t U lineargasvelocity,anduisgasholdup. larger top clearances, the behavior of the gas separator G Equation7describestherelationshipbetweenthegas beginstoresemblethatofabubblecolumn,andtheoverall velocity ina two-phaseflowandthevolumetricflowden- performanceofthereactorisinfluencedbythischange. sityofthemixture,J. As stressed by Zuber and Findlay (74), J has the ad- External-LoopAirliftReactors. Fromthepointofviewof vantageofbeingindependentonspacecoordinatesforboth fluid dynamics, neither the externalconfiguration(shape one-dimensional flow and multidimensional irrotational and architecture) nor the fact that both riser and down- flows.ThedistributionparameterC isgivenby(75): comer are easily accessible is the most important differ- 0 ence between external- and internal-loop reactors. The 1 (cid:6) most important point is that the gas separator of the uJ • dA external-loopALRisbuiltinsuchwaythatgasdisengage- C (cid:1) A A (9) mentisusuallymuchmoreeffectiveinthistypeofreactor. 0 (cid:4)1 (cid:6) J • dA(cid:5)(cid:4)1 (cid:6) u • dA(cid:5) ThiscanbeeasilyseeninFigure2.Inconcentrictubesor A A A A splitvessels,theshortestpaththatabubblehastocover from the riser to the downcomer is a straight line across ThevalueofC dependsmainlyontheradialprofileofthe 0 the baffle that separates the two sections. In the case of gasholdup.ZuberandFindlay(74)calculatedC (cid:1)1for 0 external-loopALRs,thereisusuallyaminimumhorizontal a flat profileandC (cid:1)1.5 fora parabolicprofile.Experi- 0 distancetobecovered,whichincreasesthechancesofdis- mentalvalueshavebeenreportedintherangeof1.03–1.2 engagementofthebubbles.Inthiscase,itisworthpoint- forupflow(69–73,76)and1.0–1.16fordownflow(70,73). ing out that if gas does appear in the downcomer, then Equation 9 shows that this parameter is a functionof mostofitwillbefreshairentrainedinthereactorbecause the profiles of velocities and holdup. The last term ofthe ofinterfacialturbulenceorvorticesthatappearinthegas right-handsideofequation8istheweightedmeanvalue separatorabovetheentrancetothedowncomer.Inmany ofthedriftvelocity: 328 BIOREACTORS,AIR-LIFTREACTORS U (cid:1) U (cid:2) J (10) 1 GI G Thedriftvelocityofaswarmofbubblescanbeevaluated byusingtheexpressiongivenbyZuberandFindlay(74). ϕ > β Homogenous U < U U (cid:1) 1.53 • (cid:4)rgDq(cid:5)0.25(1 (cid:2) u)1.5 (11) ϕ G L flow 2J q2 ϕ = β L U = U G L whereU2Jisthevelocityoftheswarmofbubbles,gisgrav- ϕ < β itationalacceleration,qListhedensityofliquid,Dqisthe U > U G L densitydifference,risthesurfacetension,anduisthegas holdup.Thisequationisvalidforbubblediametersofthe 0 0 1 order of 0.1 to 2 cm, which covers the populationusually β observedinALRs. Ithas,however,beenshown(71)thataplotofU versus G Figure8. Gasflowholdup(u)vs.flowingvolumetricconcentra- Jgivesastraightline,suggestingthataconstantvalueof tion (b). The different zones in the plane u–b identify the two- the drift velocity satisfactorily represents the two-phase phaseflow.AdaptedfromMerchukandBerzin(77). flowintheriserofanexternal-loopALR.Inthisplot,the distributionparameterwasC (cid:1)1.03,andU ,thevalue 0 GS oftheslipvelocityofabubble,wastakenasthemeandrift velocity. Siegel et al. (35) applied the same model for the A number of authors (71,76,78,79) have measuredthe study of gas recirculation in a split-vessel ALR and ob- localholdupprofilealongtheriserofanexternal-loopALR. tainedthevaluesofC (cid:1)1.11.Theslipvelocitythatthey In general, it was found that the holdup increases with 0 obtainedfittingtheirdatatoequation8was0.238m/s.It height. This findingconcurswiththeexpectedexpansion has been suggested (71) that this simplification holds as of gas bubbles as regions of lower pressure are reached. longascoalescenceisnotapredominantfactorinthepro- Common sense indicates that this situationmustbelim- cess. itedtoacertainrange;anincreaseinbubblesizewillen- It is very important to stress the difference between hance turbulence and result in an increase in bubbleen- holdup, u, and the flowing volumetric concentration (b), counters, leading eventually to bubble coalescence. The whichisdefinedas: largerbubbleswillrisemuchfaster,resultinginadecrease in holdup. Such a scenario was indeed observed by Mer- Q J chukandStein(71),asisillustratedinFigure9.Merchuk b (cid:1) G (cid:1) G (12) Q (cid:3) Q J and Stein(71)reporteda maximum intheholdupprofile G L for the case of a single-orifice gas distributor. For a Zuber–Findlay’sdriftfluxmodelallowsustoderivethe multiple-orifice sparger, producing a more homogeneous following equation, which establishes a connection be- bubble size distribution, a maximum was not observed tweenthegasholdupandb. withinthestudiedlengthoftheriser,whichwas4m. Literaturedatafromdifferentsourcesforgasholdupin b (cid:1) C (cid:3) Ub(cid:4) (13) the riser under conditions of little or no carryover of gas u 0 J fromtheseparatorintothedowncomerfordifferentA /A d r and top clearance C may be represented by the simple t whereC isthedistributionparameter,Jisthesuperficial 0 exponential: velocity, Ub(cid:4) is the terminal gas velocity, b is the flowing volumetricconcentration,anduisthegasholdup. Figure8givesarepresentationoftheu(cid:2)bplane.The 45(cid:1)lineindicatesthatu(cid:1)b,anequalitythatistrueonly 0.2 J = 20.33 cm/s G for nonslip flow, where the velocity of the gas is equal to JG = 17.20 cm/s J = 14.07 cm/s thevelocityoftheliquid.Suchasituationcanbevisualized 0.15 G fIonrtthhiesccaassee,ofthveerreyissmnaollibnuflbubelnecseinofaorneelapthivaesleyofanstthliequmido-. up (–) d 0.1 tion of the other. As indicated in Figure 8, all the points ol below the 45(cid:1) line indicate operation situations in which s h theliquidisdrivenbythegas: Ga 0.05 J = 10.96 cm/s G UG (cid:3) UL; u (cid:2) b (14) JG = 4.69 cm/s JG = 7.82 cm/s 0 ThishappensintheriserofALRs.Forallpointsabovethe 0 1 2 3 4 5 linetheoppositeistrue: Z (m) U (cid:2) U ; u (cid:3) b (15) Figure 9. Dependence of the riser gas holdup in a 4-m high G L external-loopALRwithamultiple-orificesparger(solidlines)and This latter condition reflects the operation of the down- asingle-orificesparger(brokenlines).AdaptedfromMerchukand comer. Stein(71). BIOREACTORS,AIR-LIFTREACTORS 329 u (cid:1) (cid:1)Jb (16) mentfromtheseparatortothedowncomeroccurs.Ifitis r G assumedthattherisercross-sectionalareaA remainsun- r wheretheconstant(cid:1)dependsonthefrictionlossesinthe changedandthedowncomercross-sectionalareaAdisin- loop, and b is usually a value between 0.6 and 0.7, as is creased,thenitcanbeexpectedthattheliquidvelocityin illustratedinFigure10(65).Thefactthatneitherthearea theriserwillincreaseasaresultofthesmallerresistance rationorthetopclearanceaffectsthegasholdupdemon- toflowintheloop,whichinturnleadstoadecreaseinthe stratestheroleofthegas–liquidseparatorindetermining risergasholdup.AnincreaseinAd/Arwillresultinade- the performanceofthereactoringeneral.Intheabsence creaseintheliquidvelocityinthedowncomer,whichleads of gas recirculation, there is no effect on these variables. toadecreaseinthegasrecirculation,sincefewerbubbles Moreover,thismeansthatunderconditionsofnogasen- areentrappedinthedowncomer.Thefinaloutcomeofin- trainmentfromtheseparatortothedowncomer,itispos- creasingAd/Aristhusadecreaseistherisergasholdup.A sible to predict the riser gas holdup as a function of the similar argument can be applied in the discussion of the riser superficial gas velocity alone, which is of great im- effectofreactorheightontherisergasholdup,thatis,an portancefordesignpurposes. increase in the height of the downcomer will result in a It is accepted that liquid velocity has a mild negative higherliquidvelocity,whichwillinturnleadtoadecrease, effectongasholdupintheriser.Thiseffectisusuallystud- asintheformercase,intheholdupintheriser.Incontrast, iedbyreducingtheliquidflow;thisisachievedbyadding anincreaseinAd/Arwillleadtoanincreaseintheextent resistance to the liquid loop bymeans ofavalveorother ofbubbleentrapmentinthedowncomer,whichwillserve controlledobstruction(71,78,82)underconditionsoflowor to inject some additional gas into the riser. On the other nil gas recirculation. Such experiments, which are rela- hand,anincreaseofgasholdupinthedowncomerdimin- tively simple in external-loop ALRs, indicate that the ishesthedrivingforceforrecirculation,asshowninequa- holdup decreases as the liquid velocity is increased from tion1,andthiswillmoderatetheincreaseofliquidvelocity zero(bubblecolumn)to0.3m/s(whichisclosetothebub- generatedbythelargerheight.Thisfeedbackcontrolofthe blefree-risevelocity).Forhighervelocities,theeffectofU liquid velocity is one of the characteristics particular to L is small. These findings add to our understanding of the ALRs. fluiddynamicsinthecolumn.Atliquidvelocitiesthatare Table2showsmostoftheexpressionspublishedforthe smaller than the bubble free-rising velocity, the liquid correlationofexperimentaldataobtainedinexternal-loop transportedinthewakeofthebubbles,whichmustreturn ALRs.SomeoftheseexpressionsarepresentedinFigure downward to balance the mass flux, is the cause of the 11.Thedifferencesbetweenthepredictionsobtainedwith meanderingandloopsthattypicallyappearinbubblecol- thedifferentcorrelationsareprobablyduetothedesignof umnoperation(83).Astheoverallliquidfluxincreases,the thegasseparator.TheequationgivenbyPopovicandRob- patterns straighten out, the bubbles beginto ascend ina inson (63) seems to give an average of the proposed cor- straightpattern,andtheholdupgoesdown.Whentheliq- relations. uidvelocityishigherthanthefree-risevelocityofthebub- bles, piston flow of bubbles ensues in the tube, and the decreaseinholdupforfurtherincreasesinliquidvelocity isduesolelytothechangeintheratioofgas–liquidvolu- Table2. GasHold-upinExternal-LoopALR metricflowrates. No. Formula Ref When there is gas recirculation, the area ratio A /A d r becomes an important variable affecting gasholdup.The 0.6q0.062q0.069l0.107 J0.936 1 u (cid:1) G 1 G • Gr 84 effect of Ad/Ar starts in the region in which gas entrain- r l01.053s01.185 (JGr(cid:3)J1r)0.474 (cid:1)J2(cid:2)0.56(cid:1) A (cid:2) 2 u (cid:1)0.16 G 1(cid:3) d 85 r J A 1r r u (cid:1)0.89ur d 0.1 WVeerillaaannd e(t4 a4l). (79) ur(cid:1)1.07Fr0.333 Verlaan et al. (80) 3 Fr(cid:1) J2G 62 Chisti (81) gD r Merchuk and Stein (71) 4 u(cid:1)0.55J0.78F0.2D0.42 66 Akita (53) Gr r ϕ V g 0.01 F(cid:1) 1s V 1 Fr0.31 (cid:1)J A(cid:2)0.74 5 u (cid:1)0.203 * Gr• r 86 r Mo0.012 J A 1r d g(q (cid:2)q ) (cid:1)8J (cid:2)4(n(cid:2)1)(cid:1)3n(cid:3)1(cid:2)4n Mo(cid:1) 1 G •K4 1r 0.001 r q2 D 4n 1 1 r 0.1 1 10 (J (cid:3)J )2 Jg (cm/s) Fr*(cid:1) 1rgDrGr 6 u (cid:1)0.997u 81 d r Figure10. Gasholdupreportedbyvarioussourcesfortheriser (cid:1)J (cid:2)0.56(cid:1) A (cid:2) ofairliftreactorsunderconditionsoflittleornogasrecirculation. 7 u (cid:1)0.16 Gr 1(cid:3) d 45 r J A ThedatacorrespondtodifferentA /A ratios. 1 r d r

Description:
Advantages of Airlift Bioreactors. Fluid Dynamics. Flow Configuration. Gas Holdup. Gas Recirculation. Liquid Velocity. Liquid Mixing. Mixing in the Gas Phase.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.