ebook img

Bioprobes: Biochemical Tools for Investigating Cell Function PDF

387 Pages·2017·10.525 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bioprobes: Biochemical Tools for Investigating Cell Function

Hiroyuki Osada Editor Bioprobes Biochemical Tools for Investigating Cell Function Second Edition Bioprobes Hiroyuki Osada Editor Bioprobes Biochemical Tools for Investigating Cell Function Second Edition Editor HiroyukiOsada ChemicalBiologyResearchGroup RIKENCenterforSustainableResourceScience Wako,Saitama Japan ISBN978-4-431-56527-7 ISBN978-4-431-56529-1 (eBook) DOI10.1007/978-4-431-56529-1 LibraryofCongressControlNumber:2017936471 ©SpringerJapanKK2000,2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerJapanKK Theregisteredcompanyaddressis:ChiyodaFirstBldg.East,3-8-1Nishi-Kanda,Chiyoda-ku,Tokyo 101-0065,Japan Preface The first edition of this book Bioprobes was published in 2000. The term “bioprobe” was introduced then as the name for a chemical tool, a probe, to investigate biological functions. Eventually, the concept of the research inspired by the bioprobe was similar tothat of chemical biology and it became familiar to scientists.Theepoch-makingresearchresults,namely,thatFK506andcyclosporin inhibit the activity of phosphatase calcineurin by forming the ternary complexes FK506- FKBP12- calcineurin or cyclosporine-cyclophilin-calcineurin, opened a newdoorinchemicalbiology.Itwastypicalresearchinbasicchemicalbiology. ThenewtideofchemicalbiologyhasflowedfromtheInstituteofChemistryand Cell Biology (ICCB) at Harvard Medical School and has initiated the building of chemical biology-related centers in other parts of the world. One of the main activities of the centers is the screening of small bioactive compounds from chemical libraries. This tide merged into chemical genomics, which deals with the systematic screening on a large scale from chemical libraries to discover lead compoundsofdrugs. Based on this background, the present volume describes bioprobes that are mainly isolated from microorganisms, along with some synthetic compounds. Most of the bioprobes are not developed for clinical use yet, but they are useful aschemicalprobesaswellasleadcompoundsofdrugs. Thebookconsistsofsixchapters.Afterabriefintroductionofthedevelopment of bioprobes, the biological fields in which bioprobes affect the molecular targets are surveyed. These reviews cover the broad, advancing areas of the cell cycle, epigenetics, apoptosis–autophagy, and immunological responses. A final chapter containsimportantbioprobesthatareusefulforinvestigatingbiologicalstudies. InthissecondeditionofBioprobes,wedealwithsmallmoleculesisolatedfrom marine organisms in addition to microbial metabolites. I hope this book will v vi Preface contribute to the work of both natural product chemists and cell biologists, even- tuallyresultingintheprogressofbioproberesearch. Wako,Japan HiroyukiOsada March25,2017 Contents 1 TrendsinBioprobeResearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 HiroyukiOsada 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ScreeningofNewBioactiveCompounds. . . . . . . . . . . . . . . . . 2 1.3 TargetIdentificationofBioactiveCompounds. . . . . . . . . . . . . 4 1.4 TrendsandProspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 CellProliferationandDifferentiation. . . . . . . . . . . . . . . . . . . . . . 11 NobumotoWatanabeandHiroyukiOsada 2.1 CellGrowthSignalingPathway. . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 CellCycleRegulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 CellDifferentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Epigenetics. . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . . .. . . . .. . . . . 37 AkihiroItoandMinoruYoshida 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 HistoneAcetylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 HistoneMethylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 DNAMethylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 ApoptosisandAutophagy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 EtsuTashiro,MitsuhiroKitagawa,andMasayaImoto 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 ApoptosisModulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 AutophagyModulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 vii viii Contents 5 AdaptiveandInnateImmuneSystems. . . . . . . . . . . . . . . . . . . . . . 115 TakaoKataoka 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 AntigenReceptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3 Perforin/Granzymes. . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . 122 5.4 FasL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.5 TLRFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.6 NLRFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.7 RLRFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.8 CLRFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.9 TNFReceptorFamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 BioprobesataGlance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 HiroyukiKoshinoandTakeoUsui AuthorsandCollaborators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 Chapter 1 Trends in Bioprobe Research HiroyukiOsada Keywords Screening(cid:129)PPI(cid:129)TargetIdentification(cid:129)CellMorphology(cid:129)Profiling(cid:129) Proteome(cid:129)AffinityBeads(cid:129)DARTS(cid:129)CETSA 1.1 Introduction Theterm“bioprobe”wasusedforthefirsttimeinthepreviousversionofthisbook [1]. Bioprobes were defined as small molecules which are useful not only for biochemical research but also for the source of drug candidates with diverse activities. Historically, microbial metabolites have been quite useful not only as medicines but also as bioprobes. As a typical example, penicillin was originally discoveredasatherapeuticagentagainstbacterialinfectiousdiseases.Afterwards, researchonthemodeofactionofpenicillingaveustheinsightonthestructureand the biosynthesizing mechanism of the bacterial cell wall [2, 3]. Another well- known example is that the reverse transcriptase was discovered by the aid of daunomycin and actinomycin D. In the twentieth century, the central dogma of molecularbiologysuggestedthatthegeneticinformationflowsfromDNAtoRNA, and then finally to protein. However, some tumor viruses transcribe DNA from RNA by reverse transcriptase which is RNA-dependent DNA polymerase [4, 5]. Specific inhibitors of DNA and RNA synthesis were used to prove the templateofthepolymerase. Based on the above mentioned background, we especially focused on the microbial metabolites in the first version of Bioprobes and attempted to merge theinterestsoforganicchemistswhoareinterestedintheisolationofinhibitors,and molecularbiologistswhoareinterestedinthebiologicalfunctionofenzymes,into the same stream. The attempt was fulfilled as chemical biology. There are many success stories to prove the usefulness of microbial metabolites [6, 7]. The most recent glorious exampleis the development ofthe antiparasitic agentsavermectin and ivermectin by Omura and Campbell [8]. Unfortunately, pharmaceutical H.Osada(*) ChemicalBiologyResearchGroup,RIKENCenterforSustainableResourceScience, 2-1Hirosawa,Wako,Saitama351-0198,Japan e-mail:[email protected] ©SpringerJapanKK2017 1 H.Osada(ed.),Bioprobes,DOI10.1007/978-4-431-56529-1_1 2 H.Osada companies gave up natural products screening and shifted to high-throughput screening using small molecules synthesized by combinatorial chemistry. How- ever,theNobelPrize2015recalledtheusefulnessofthenaturalproducts. 1.2 Screening of New Bioactive Compounds 1.2.1 Cell-Based Screening To screen for bioactive small molecules, it is essential to establish a simple rapid bioassay system. Screening systems are roughly categorized into enzyme-, cell-, andanimal-basedassays,eachwithitsownprosandcons.Whenconstructinganew bioassay system, we make a point of verifying whether it meets the 4S (simple, speedy,sensitive,andspecific)and1D(distinctive)criteria[9].Inanotherwords,a good screening system provides an easy-to-follow assay protocol, a quick turn- around time for assay results, high sensitivity, high specificity, and easy interpre- tation of assay results. Regarding these criteria, enzyme-based assay is easy to transformtoahigh-throughputscreeningsystem.Conversely,cell-basedassaysare generallytimeconsumingandlaborious,therefore,cell-basedscreeningisdifficult to transform to high-throughput screening. However, phenotypic screening by usingcellsissuitablefornaturalproductsscreening[10]. Recently, high-content screening using mammalian cells is becoming popular because automatic microscope systems such as IN Cell Analyzer (GE Healthcare Life Science), Cell Voyager (Yokogawa Electric Corporation), Cell Insight (Thermo Fisher Science), Opera Phenix (Perkin Elmer), etc., are commercially available. With these visualization tools, it is now possible to analyze qualitative and quantitative cellular phenotypes such as morphological changes in a high- throughputmanner. Moreinterestingly,wefoundthatmammaliancancercellsalsoshowedspecific morphological changes in response to the mode of action of a drug. Thus, we constructedaphenotypicscreeningsystembasedonthehigh-contentcellmorpho- logicaldatabase“MorphoBase”[11].Afterseveralexperimentsusingvariouscell lines,wedecidedtousesrcts-NRK[12]andHeLacellsfortheassaysystem.Both cell lines exhibited a variety of changes in shape in response to various small molecules. To eliminate bias of individuals during observation, we performed automatedobservationsusingINCellAnalyzer.Specifically,wedesignedahigh- content imaging algorithm that segments an individual cell into three fragments (cell, nucleus, and granule) and quantified 12 morphological parameters. This system enables us to classify the mode of action of typical anticancer drugs and profile various molecular targets of bioactive compounds and even crude extracts [13,14].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.