ebook img

Biopolymere und Biomechanik von Bindegewebssystemen: 7. wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärzte PDF

519 Pages·1974·21.708 MB·German-English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biopolymere und Biomechanik von Bindegewebssystemen: 7. wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärzte

7. wissenschaftliche Konferenz der Gesellschaft Deutscher N aturforscher und Arzte Biopolymere und Biomechanik von Bindegewebssystemen tIerausgegeben von Fritz tIartmann unter Mitarbeit von Christoph tIartung und tIenning Zeidler Mit 364 Abbildungen Springer-Verlag Berlin· tIeidelberg . New York 1974 Prof. Dr. med. Fritz Hartmann Dr. Ing. Christoph Hartung Dr. med. Henning Zeidler Medizinische Hochschule Hannover Medizinische Klinik D-3 Hannover-Kleefeld Karl-Wiechert-Allee 9 Library of Congress Cataloging in Publication Data Gesellschaft Deutscher Naturforscher und Arzte Biopolymere und Biomechanik von Bindegewebssystemen English or German. Bibliography: p. 1. Connective tissues-·Congresses. I. Hartmann, Fritz, 1920- ed. II. Hartung, C, ed. III. Zeidler, Hans, 1915- ed. IV. Title. QM563.G44 1974 611'.0182 74-14943 [SBN-13: 978-3-540-06927-0 e-ISBN-13: 978-3-642-65963-8 00[: 10.1007/978-3-642-65963-8 Das Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbesondere die der Dbersetzung, des Nachdruckes, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder ahnlichen Wege und der Speicherung in Datenverarbeitungsanlagen bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Bei Vervielfaltigungen fiir gewerbliche Zwecke ist gemaB $ 54 UrhG eine Vergiitung an den Verlag zu zahlen, deren H6he mit dem Verlag zu vereinbaren ist. © by Springer-Verlag Berlin' Heidelberg 1974. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daB solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten waren und daher von jedermann benutzt werden diirften. Offsetdruck und buchbinderische Verarbeitung: Julius Beltz, Hemsbach/Bergstr. Introductory Address on Biopolymers and Biomechanics of Connective Tissue Ladies and Gentlemen, In greeting you on behalf of the GDNA, I particularly wish to mention that Prof. BOCK, the chairman elect of our 109th Meeting, to be held in Stuttgart in 1976, is representing the Society here today. You may judge of our intentions in selecting this theme from our choice of invited delegates, whose disciplines include engineering, biophysics, anatomy, biochemistry, and the clinical disciplines of accident and emergency surgery, orthopedics, and rheumatology. Our theme forms the link in a chain between "The Macromolecule" (GDNA Meeting, held in Vienna in 1966 under the chairmanship of O. KRATZKY) and "Physics and Chemistry in the Service of Other Sciences" (to take place in Berlin in September 1974 under the chairmanship of MAIER-LEIBNITZ). Because of the nature of modern scientific research, we are today con fronted with a problem of communication. Whereas the subjects researched are very similar, there are enormous differences in our ways of thinking about them, in the concepts we use, and in the language in which the results are reported. We need to understand each other's scientific jar gon! This task presents even more difficulty than Germans have in over coming their inhibitions about talking English in public. Connective tissue for us here will be bringing together more things than the basic meaning of the term implies, i.e. that it unites cells, con nects muscle and bones and itself merges into capsules, plates, sheaths, valves, and tubes. For us, it is connecting scientific disciplines and methods, and experience in their application to various fields: machines, and human jOints, synthetic fibers, and the fabric of connective tissue. Our theme provides an opportunity for discussing under common assumptions, or at least comparable assumptions, tissues so diverse as tendons, cap sules, cartilage, skin, intervertebral discs the valves of the heart, lung and liver tissue, and vessels of various kinds. The general public is interested in medicine mainly from the point of view of the killer diseases, cancer and cardiovascular disease. However, the most frequent cause of days missed from work, early retirement be cause of invalidism and suffering among the elderly is deteriorationy of the connective-tissue systems of the joints and spine. This in itself is sufficient reason to research into the origin of such deterioration. Indeed, Lord ZUCKERMAN placed it among the four most urgent tasks of medical research. The term biopolymers is generally understood to apply to the carriers and transmitters of genetic information that are able to reproduce them selves; in effect, it includes all living organic polymers, i.e. those subject to continuous catabolism and metabolism, and whose biologic functions are associated with their tertiary and quaternary structure. The biological functions of the biopolymers of connective tissue depend upon their physical and physicochemical properties. These have to be redefined in terms of the physics and chemistry of natural and artificial high polymers. The biopolymers of connective tissue include polypeptides polymerized to fibers, forming typical tertiary structures with each other and metabolizing polysaccharides with lateral reticulation that form quaternary structures, or textures, with the fibers. VI At this conference we have given pride of place to the habits of thought and methods of mechanics, rheology, and tribology, in other words, the sciences of solid-state properties and lubrication of the moving parts of machinery. Any artifical replacement of worn connective-tissue systems must approximate to the properties described in the concepts of rheo logy and tribology. By connective tissue system we understand an ordered arrangement of fibrous elements with viscoelastic inclusions. The three basic types (Fig. 1) make it clear what are the basic elements and the variations in the ways in which they combine to form textures • . .. . " . .. . . lB . '. :.:::. ~ ::~ .:: :~':: . 0.: ....... . • ... ..... ... .eo .. : ... ..... ": .. : .0: 0° I "'0 - kollagene Fibrillen • Proteoglycane 1. Loose connective tissue consists of a few thin, very tortuous, loosely disposed fibers, together with a large amount of basic substance, rich in glucosamines and poor in sulfates, and containing variable amounts of water. Examples of this type are skin, lungs, and vessels. Numerous variations occur, for instance, in the skin in different parts of the body. 2. Rigid connective tissue consists of many thick, rigidly disposed half crystalline fiber bundles, together with a small amount of highly poly merized basic substance, rich in sulfates and containing very little water. Examples of this type are tendons, fasciae, dura mater, and fibrous rings. 3. Basic substance, having variable viscoelastic properties and enclosed by rigid connective tissue. Examples of this type are joints, intervertebral discs, and the eyes. The jOint provides a splendid example to illustrate where and how the rheologic and tribologic phenomena involved in sequential or alternating processes stand relative to the biochemical, enzymologic, and immunolo gic phenomena, and the physiology of muscle pains. The biopolymers and their interconnections can be damaged by oxygen deficiency, release of aggressive enzymes, precipitation of crystals, and muscular strain. Such immunopathologic phenomena as the precipitation and phagocytosis of an tigen-antibody complexes, mechanical attrition, or tearing of fibers induce the release of aggressive enzymes (Fig. 2). Connective-tissue systems are of very heterogeneous composition. For this reason, it is important to consider what property a system will have under the varying conditions that prevail at its natural site in the body. Let us take some examples. VII Sensibilisierte phocyten + + +- -..... t!j.--~---1~ . + Rhagocyten }I' 1t~F~~~~~~~~~y~F---~«( ~~--:----t"'-II iBebnJ Ch __ ~, RiB e--..,.~-::---:--:-:~ des co, ___________ Subchondrale Osleo>skllerc)se/ ~ ·r.1·+--=-=,,:,-=,=~r nach Mikrolrakluren , Lactat _ -------- ----0, ~ __ _ -- mechanische Elemente _=_ _I !I Substratarme. immunologische Elemenle schlackenreiche biochemische Elemente_ Synovia Example 1. Increasing pressure or traction imposes stress on various ele ments of the quaternary, tertiary, and secondary structures in turn. The curve representing changes in length is consequently not linear (Fig. 3). The speed of application of force can also change the elastic properties. The macromolecules require a certain tissue interval to change position or direction. A tendon to which a high-impact force is applied can break like glass, especially when it is already taut. A certain time is also necessary for it to resume its original shape and lenght after the force is removed. The time dependence of this molecular displacement is most clearly seen in the phenomenon of relaxation. Most connective tissues are not slack, but stressed in their resting position in the body. This normal state of tension is called turgor and is produced by the pressure of the proteoglycane gels enclosed between the fibers. It is a constant, Uingenanderung Faserwerk Fibrillen Peptidketten ~ ~Jj;¥lM t,. ~~ ~.'j h») .. 41 ~, !A1' ~. ~. ~ 0 . ).J ,-- - - - -=:-:...-:=--""""=-----' Dehnen FlieBen ReiBen P L-____________~ ~~~~~--~~ _ Dehnung } P ~ plastisches Element Zug + __ Entdehnung = Hysterese p ~ Verformungsrest nach Entlastung VIII and may even be a control system, but it is certainly a point at which pathologic changes can occur. Thus, we may say that at a given time each connective tissue will be found at a particular point on its pressure or traction curve. Stretching, gliding, flowing and tearing are determinded by the melting points of the fiber elements. These may, particularly under pathologic condittons, lie within the range of body temperature~. In heterogeneous systems, the rheologic curves are a function of the melting points of the macromolecular aggregates. It is of special importance to take these facts into consideration where connective tissues have to match the speed of rhythmic stresses without undue lag. Examples: arteries must work to the speed and frequency of the pulse; lungs must adapt to the depth and frequency of respiration; inter vertebral discs must stand up to walking, running, and jumping. It is rewarding to consider these motor systems from the viewpoint of biological controls. The macromolecular status of a connective tissue is not only that of a control system; it also comprises correcting elements, e.g. degree of polymerization, water content, number and thickness of the fibrils, and types of polysaccharides. Long-term adaptation, e.g. to growth, stress, and inactivity, has been studied, but short-term adap tation has yet to be researched. Example 2 concerns time and the influence of shearing speed on viscosity and thixotropy. Aggregates of macromolecules require a certain time to regroup so as to produce the viscosity that a certain shearing speed re quires. One could call this a biological time, for the viscoelastic sys tem regulates a mechanical property within a certain time interval to allow it to perform a biological function. For this reason it is neces sary to know the local speeds that can occur, e.g. on the surface of joints (Fig. 4). Viskositat o Schergeschwindigkeit Example 3 follows on from the foregoing. The Leeds Group (DOWSON, UNS WORTH and WRIGHT)have examined various types of lubrication. It is possible that under certain conditions they all occur, not just a single type. This then raises the question as to which solution is realized at a given pressure or speed. At various sites on the surface of the jOints, lubrication of a diffe rent type is found (Fig. 5). Most jOint surfaces are irregular in shape and the interface does not fit together snugly; in other words, they are incongruent. The distribution of forces and,during exercise, of lo cal speeds also fluctuates. It is important to be aware of this situa tion in order to understand why certain lesions always occur in the same place, e.g. thickening of the bone below the cartilage; outgrowth of cartilage or of new bone (osteophytes); penetration of intervertebral discs into the spinal column. IX I .. I I .. I =~:':~'i ~ ~\""~'-""'W»\~~\.'*~>'. Hydrodynamisch Elasto-hydrodynamisch Grenzflachen - Schmierung J .. l Steifes Element -L~~2·;£..~~J+ ~~~;.:.:; Hyalurono-Protein 3,f~~~f/t.~ i~!: Wasser Bewegte Flache ::=::=:: Knorpel .::~; ~:~r .!~i Druck-selbstgesteuerte DruckangepaBte .. Druck Schmierung Schmierung _ Scherung As these examples show, we still have a long way to go before we are able to measure with sufficient accuracy and completeness the processes that occur in living connective-tissue systems and until good models have been developed for the characterization and simulation of these processes. We shall have done what we set out to do, and fullfilled the intentions of our Society, when we have learned to apply research data in the diag nosis and treatment of pathologic conditions. I hope the work we are to do at this meeting will take us a step nearer this goal. Fritz Hartmann Inhaltsverzeichnis I. Die in GeZenken auftretenden Krafte/Foraes Oaauring in the Joints . ........................................................• H. GROH: Die Krafte bei menschlicher Korperbewegung................ 3 E.L. RADIN: Distribution of Pressure in Loaded Animal Joints ••••••• 13 II. Biomeahanik der GeZenke/ Biomeahanias of Joints ....... ........• 17 B. KUMMER: Biomechanik der Gelenke (Diarthrosen). Die Beanspruchung des Gelenkknorpels.............................................. 19 K. ALTMANN: Von der Entstehung gelenkkopfahnlicher, knorpelbedeck ter Gebilde auf den Stumpfenden der teilresezierten Rattenfibula im Experiment.................. •. ••..•••••••••• .•.•.• .••• .. .• .•• 29 A. UNSWORTH: Oberflachengestaltung und Lastverteilung in HUft- und Kniegelenk. . • . •• . . •. • . • • ••• • •. •• •• •• •• •• . . • . • . •• • . • . ••• . • . • . •• •. 49 E. ASANG: Individuelle Belastungs- und Verletzungsgrenzen des menschli chen Beins.............................................. 51 Zusarnrnenfassung der Diskussion zu I und II .••.•.•.•.•.•.•.•.•.•.•.• 58 III. BiorheoZogie der WirbeZsauZe/ BiorheoZogy of the Spine ........ 59 A. NACHEMSON: Lumbar Intradiscal Pressure. Results from in Vitro and in Vivo Experiments with Some Clinical Implications ••.••.•.. 61 A. NAYLOR, R.D. SHENTALL, and D.C. WEST: Current Investigations on the Biochemical Aspects of Intervertebral Disc Degeneration and Herniation. •• . . • . . • •• • . • . . . • . • •• • •• •• •• . • . • .• . • .• . • . • . • . • . • •• . . • 77 J.A. SZIRMAI: The Concept of the Chondron as a Biomechanical Unit .• 87 P. OTTE: Die Expansion des Discus intervertebralis bei Osteoporose. 93 J. KRKMER: Biomechanische Veranderungen im Zwischenwirbelabschnitt des Menschen und ihre Bedeutung fUr die Behandlung und Praven- tion bandscheibenbedingter Erkrankungen ••••...••..•••.••••..•.•• 101 Zusarnrnenfassung der Diskussion zu III .•.•••.•.•...•.•.••••.••.••.•• 109 IV. BiorheoZogie von Fasern/BiorheoZogy of Fibers ............. ..... 111 G. ARNOLD und M. ZECH: Biorheologie fast reiner Faserstrukturen im Vergleich mit ProbestUcken aus hyalinen Knorpel .•...•.•.....•••• 113 R. BOWITZ und Th. NEMETSCHEK: Struktur und Dehnungsverhalten von Kollagen •.•.•••••••.•..•••.•.•.••••...•.•..•..•.•.•.•.•.•.•.•.•• 125 R. BONART: Diskussionsbemerkungen zur Deutung der Rontgenklein winkeleffekte bei der Dehnung von nativ-feuchtem Kollagen ••••.•• 137 B. PFEIFFER: Piezoelectric Constants of the Calcified Collagen Fibril in Human Cortical Bone ••.••.•.•.•.•.•.•••••.•.•••.•.•••.• 143 R. FRICKE: Dependence of Relaxation of Rat Tail Tendons on the Milieu and on the Influence of a Cytostatic Treatment •.•..•.•.•• 149 M. JKGER: Biomechanical Examinations for the Usefulness of Grafts with Different Structural and Conservational Connective Tissue Properties in Orthopedic Surgery................................ 155 XII Zusarnrnenfassung der Diskussion zu IV............................... 159 V. BiorheoZogie von HerzkZappen/BiorheoZogy of Heart VaZves ......•. 161 M.I. IONESCU, B.C. PAKRASHI, D.A.S. MARY, and G.H. WOOLER: Biologi- cal Tissue Heart Valve Replacement ••••••••••••••.•••••••••.••••• 163 H. DALICHAU: Bio-Rheologie der durch autologes Bindegewebe ersetz ten Herzklappen. Mechanische und biologische Ursachen fur ihr Versagen. • • • • . • • . • • • • • • • . • • • • • • . • • • • • • . • • • • . • • • • • • • • . • • • . . • • • . •• 171 H. ADAMCZAK: Herzklappen aus kunstlichen Werkstoffen ••••••••.•••••• 179 VI. BiorheoZogie von Gefassen/BiorheoZogy of VesseZs ...... ......... 189 Y.C. FUNG: Biorheology of Loose Connective Tissues, Especially Blood Vessels •••••.•.••••••••••••••.•.••.•••••.••••••••••••••••• 191 C. HARTUNG: Vascular Tissues - a Twophase Material? ••••••••.••••.• 211 O.H. MAHRENHOLTZ: On the Flow of Viscous Fluids in Systems of Elastic Tubes................................................... 221 H.G. VOGEL: Composition and Properties of Skin During the Ageing Process and Under the Influence of Desmotropic Compounds •••••.•• 227 G. BUBLITZ: Veranderungen des Bindegewebes nach Einwirkung ionisie- render Strahlen •.••••••.••••.•••••••.•••••••••••••••.•.••••.•••• 231 Zusarnrnenfassung der Diskussion zu VI... • . • • • • • • • • • • • • • . • • • • . • • • • • •• 235 VII. AnormaZes FZie~verhaZten von HoahpoZymeren/AbnormaZ FZow Be- havior of High PoZymers ......................................•.. 237 J. KLEIN: Anormales FlieBverhalten von Hochpolymeren ••••••••••••••• 239 E. KUSS: The Pressure-Dependence of Viscosity and its Relation to Lubrication .••.••.••••.•••••••.••••.•.••••..•.•••••••.••••••••.• 241 E. KILLMANN: Zur Adsorption makromolekularer Stoffe •••••••••••..••• 249 Zusarnrnenfassung der Diskussion zu VII ••..••••••••.••••••••.•.•••••• 258 VIII. BiorheoZogisahe Eigensahaften des GeZenkknorpeZs/BiorheoZogia Properties of Joint CartiZage .. ...................•............. 259 C.A. McDEVITT and H. MUIR: A Biochemical Study of Experimental and Natural Osteoarthrosis ••••••••••••••••••.••••••.•••••••••••••••• 261 E.L. RADIN: Experimental Osteoarthrosis in Animals ••.•.•••.•••••••. 269 W. WEGNER: Zur Bio-Rheologie des Epiphysen- und Gelenkknorpels bei Tieren ..•••••••.•••••••.•.•.••.•.••.•.•.••...•.•.•.••••••..••••• 271 W. PUHL and W. REMUS: Correlation of Various Stress and Surface Contoures in Articular Cartilage .•••••.••••..•.••.•.•••.••••.•.• 283 I.-E. RICHTER: Oberflachen- und Schichtenstruktur gesunden und kranken Knorpels ••.••••.•••..•.••••.••••..••.••••.•.••••••.•••.• 291 H.J. REFIOR: Scanning Electron Microscopic Examinations of the Sur face Behavior of Healthy Articular Cartilage Under Pressure Forces .••.•.•.••.•••••••••.•..•.••••••.•.•••••••••••••••••••.••• 303 Zusarnrnenfassung der Diskussion zu VIII •••••••.••••••••.••••••.•••.. 307 IX. BiorheoZogisahe Eigensahaften der GeZenkfZussigkeit/BiorheoZo- gia Properties of Joint FZuid ................. ........•......... 309 H. GREILING: Biorheological Properties and the Proteo Hyaluronate Content of Synovial Fluid •.•.•.••••.••••••••••.••••••.•••••••••• 311

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.