ebook img

Biomolecular Information Processing: From Logic Systems to Smart Sensors and Actuators PDF

368 Pages·2012·5.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomolecular Information Processing: From Logic Systems to Smart Sensors and Actuators

Editedby EvgenyKatz BiomolecularInformationProcessing RelatedTitles Katz,Evgeny(Ed.) Cosnier,S.,Karyakin,A.(Eds.) MolecularandSupramolecular Electropolymerization InformationProcessing Concepts,MaterialsandApplications FromMolecularSwitchestoLogicSystems 2010 2012 ISBN:978-3-527-32414-9 ISBN:978-3-527-33195-6 Matta,C.F.(Ed.) Katz,Evgeny(Ed.) QuantumBiochemistry InformationProcessingSet 2010 2Volumes ISBN:978-3-527-32322-7 (comprising‘‘BiomolecularInformation Processing’’and‘‘Molecularand SupramolecularInformationProcessing’’) Wolf,E.L. QuantumNanoelectronics 2012 ISBN:978-3-527-33245-8 AnIntroductiontoElectronic NanotechnologyandQuantumComputing Samori,P.,Cacialli,F.(Eds.) 2009 Functional Supramolecular ISBN:978-3-527-40749-1 Architectures Stolze,J.,Suter,D. forOrganicElectronicsand Nanotechnology QuantumComputing 2011 AShortCoursefromTheorytoExperiment ISBN:978-3-527-32611-2 2008 ISBN:978-3-527-40787-3 Feringa,B.L.,Browne,W.R.(Eds.) MolecularSwitches Helms,V. Second,CompletelyRevisedandEnlarged PrinciplesofComputationalCell Edition Biology 2011 FromProteinComplexestoCellular ISBN:978-3-527-31365-5 Networks 2008 ISBN:978-3-527-31555-0 Edited by Evgeny Katz Biomolecular Information Processing From Logic Systems to Smart Sensors and Actuators TheEditor AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, editors,andpublisherdonotwarrantthe Prof.Dr.EvgenyKatz informationcontainedinthesebooks, ClarksonUniversity includingthisbook,tobefreeoferrors. DepartmentofChemistry Readersareadvisedtokeepinmindthat andBiomolecularScience statements,data,illustrations,procedural 8,ClarksonAvenue detailsorotheritemsmayinadvertentlybe Potsdam,NY13699-5810 inaccurate. USA Cover LibraryofCongressCardNo.:appliedfor Thecoverpagepicturewasdesignedby Dr.VeraBocharova(Clarkson BritishLibraryCataloguing-in-Publication University)andrepresentsartisticvision Data ofthechapter‘‘BioelectronicDevices Acataloguerecordforthisbookisavailable ControlledbyEnzyme-BasedInformation fromtheBritishLibrary. ProcessingSystems’’byEvgenyKatz. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothek liststhispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2012Wiley-VCHVerlag&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,orany othermeans–nortransmittedortranslated intoamachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. Composition LaserwordsPrivateLimited, Chennai,India PrintingandBinding MarkonoPrintMedia PteLtd,Singapore CoverDesign AdamDesign,Weinheim PrintISBN:978-3-527-33228-1 ePDFISBN:978-3-527-64550-3 ePubISBN:978-3-527-64549-7 mobiISBN:978-3-527-64551-0 oBookISBN:978-3-527-64548-0 PrintedinSingapore Printedonacid-freepaper V Contents Preface XIII ListofContributors XV 1 BiomolecularComputing:FromUnconventionalComputingto‘‘Smart’’ BiosensorsandActuators – EditorialIntroduction 1 EvgenyKatz References 5 2 Peptide-BasedComputation:Switches,Gates,andSimple Arithmetic 9 ZehavitDadon,ManickasundaramSamiappan,NathanielWagner, NuritAshkenasy,andGonenAshkenasy 2.1 Introduction 9 2.2 Peptide-BasedReplicationNetworks 10 2.2.1 Template-AssistedReplication 10 2.2.2 TheoreticalPredictionoftheNetworkConnectivity 11 2.2.3 DenovoDesignedSyntheticNetworks 12 2.3 LogicGateswithinTernaryNetworks 13 2.3.1 UniformDesignPrinciplesofAllTwo-InputGates 13 2.3.2 ORLogic 14 2.3.3 ANDLogic 15 2.3.4 NANDLogic 15 2.3.5 XORLogic 15 2.4 SymmetryandOrderRequirementsforConstructingtheLogic Gates 16 2.4.1 SymmetryandOrderinPeptide-BasedCatalyticNetworks 16 2.4.2 HowSymmetryandOrderAffecttheReplicationofRNA Quasispecies 17 2.5 TakingtheStepstowardMoreComplexArithmetic 19 2.5.1 ArithmeticUnits 19 2.5.2 NetworkMotifs 20 VI Contents 2.6 ExperimentalLogicGates 21 2.6.1 ORLogic 21 2.6.2 NOT,NOR,andNOTIFLogic 21 2.6.3 AdditionalLogicOperations 23 2.7 AdaptiveNetworks 24 2.7.1 ChemicalTriggering 24 2.7.2 LightTriggering 24 2.7.3 Light-InducedLogicOperations 25 2.8 Peptide-BasedSwitchesandGatesforMolecularElectronics 28 2.9 SummaryandConclusion 29 Acknowledgments 30 References 30 3 BiomolecularElectronicsandProtein-BasedOpticalComputing 33 JordanA.Greco,NicoleL.Wagner,MatthewJ.Ranaghan, SanguthevarRajasekaran,andRobertR.Birge 3.1 Introduction 33 3.2 BiomolecularandSemiconductorElectronics 34 3.2.1 SizeandSpeed 34 3.2.2 Architecture 36 3.2.3 NanoscaleEngineering 37 3.2.4 Stability 38 3.2.5 Reliability 38 3.3 BacteriorhodopsinasaPhotonicandHolographicMaterial forBioelectronics 40 3.3.1 TheLight-InducedPhotocycle 40 3.3.2 TheBranchedPhotocycle 42 3.4 FourierTransformHolographicAssociativeProcessors 42 3.5 Three-DimensionalOpticalMemories 45 3.5.1 Write,Read,andEraseOperations 46 3.5.2 EfficientAlgorithmsforDataProcessing 48 3.5.3 MultiplexingandErrorAnalysis 50 3.6 GeneticEngineeringofBacteriorhodopsinforDevice Applications 51 3.7 FutureDirections 53 Acknowledgments 54 References 54 4 BioelectronicDevicesControlledbyEnzyme-BasedInformation ProcessingSystems 61 EvgenyKatz 4.1 Introduction 61 4.2 Enzyme-BasedLogicSystemsProducingpHChanges asOutputSignals 62 Contents VII 4.3 InterfacingoftheEnzymeLogicSystemswithElectrodesModified withSignal-ResponsivePolymers 64 4.4 SwitchableBiofuelCellsControlledbytheEnzymeLogicSystems 68 4.5 BiomolecularLogicSystemsComposedofBiocatalytic andBiorecognitionUnitsandTheirIntegrationwithBiofuelCells 70 4.6 ProcessingofInjuryBiomarkersbyEnzymeLogicSystemsAssociated withSwitchableElectrodes 74 4.7 SummaryandOutlook 77 Acknowledgments 78 References 78 5 EnzymeLogicDigitalBiosensorsforBiomedicalApplications 81 EvgenyKatzandJosephWang 5.1 Introduction 81 5.2 Enzyme-BasedLogicSystemsforIdentificationofInjury Conditions 82 5.3 MultiplexingofInjuryCodesfortheParallelOperationofEnzyme LogicGates 85 5.4 ScalingUptheComplexityoftheBiocomputingSystemsfor BiomedicalApplications – MimickingBiochemicalPathways 89 5.5 ApplicationofFilterSystemsforImprovingDigitalization oftheOutputSignalsGeneratedbyEnzymeLogicSystems forInjuryAnalysis 94 5.6 ConclusionsandPerspectives 96 Acknowledgments 98 Appendix 98 References 99 6 InformationSecurityApplicationsBasedonBiomolecular Systems 103 GuinevereStrack,HeatherR.Luckarift,GlennR.Johnson, andEvgenyKatz 6.1 Introduction 103 6.2 MolecularandBio-molecularKeypadLocks 104 6.3 AntibodyEncryptionandSteganography 108 6.4 Bio-barcode 113 6.5 Conclusion 114 Acknowledgments 114 References 114 7 Biocomputing:ExploreItsRealizationandIntelligent LogicDetection 117 MingZhouandShaojunDong 7.1 Introduction 117 7.2 DNABiocomputing 119 VIII Contents 7.3 AptamerBiocomputing 121 7.4 EnzymeBiocomputing 124 7.5 ConclusionsandPerspectives 128 References 129 8 SomeExperimentsandModelsinMolecularComputing andRobotics 133 MilanN.StojanovicandDarkoStefanovic 8.1 Introduction 133 8.2 FromGatestoProgrammableAutomata 133 8.3 FromRandomWalkertoMolecularRobotics 139 8.4 Conclusions 142 Acknowledgments 143 References 143 9 BiomolecularFiniteAutomata 145 TamarRatner,SivanShoshani,RonPiran,andEhudKeinan 9.1 Introduction 145 9.2 BiomolecularFiniteAutomata 146 9.2.1 TheoreticalModelsofaMolecularTuringMachine 146 9.2.2 TheFirstRealizationofanAutonomousDNA-Based FiniteAutomaton 150 9.2.3 Three-Symbol-Three-StateDNA-BasedAutomata 155 9.2.4 MolecularCryptosystemforImagesbyDNAComputing 157 9.2.5 MolecularComputingDeviceforMedicalDiagnosis andTreatmentInVitro 159 9.2.6 DNA-BasedAutomatonwithBacterialPhenotypeOutput 161 9.2.7 MolecularComputingwithPlantCellPhenotype 163 9.3 BiomolecularFiniteTransducer 167 9.4 ApplicationsinDevelopmentalBiology 172 9.5 Outlook 176 References 178 10 InVivoInformationProcessingUsingRNAInterference 181 YaakovBenenson 10.1 Introduction 181 10.1.1 RegulatoryPathwaysasComputations 181 10.1.2 AComputationVersusaComputer 182 10.1.3 PriorWorkonSyntheticBiomolecularComputingCircuits 182 10.2 RNAInterference-BasedLogic 183 10.2.1 GeneralConsiderations 183 10.2.2 LogicCircuitBlueprint 184 10.2.3 ExperimentalConfirmationoftheComputationalCore 188 10.3 BuildingtheSensoryModule 189 10.3.1 DirectControlofsiRNAbymRNAInputs 191 Contents IX 10.3.2 ComplexTranscriptionalRegulationUsingRNAi-BasedCircuits 194 10.4 Outlook 195 References 197 11 BiomolecularComputingSystems 199 HarishChandran,SudhanshuGarg,NikhilGopalkrishnan, andJohnH.Reif 11.1 Introduction 199 11.1.1 OrganizationoftheChapter 199 11.2 DNAasaToolforMolecularProgramming 200 11.2.1 DNAStructure 200 11.2.2 ReviewofDNAReactions 200 11.3 BirthofDNAComputing:Adleman’sExperiment andExtensions 203 11.3.1 NP-CompleteProblems 203 11.3.2 HamiltonianPathProblemviaDNAComputing 204 11.3.3 OtherModelsofDNAComputing 204 11.3.4 ShortcomingsandNonscalabilityofSchemesUsingDNA ComputationtoSolveNP-CompleteProblems 204 11.4 ComputationUsingDNATiles 205 11.4.1 TAM:anAbstractModelofSelf-Assembly 205 11.4.2 AlgorithmicAssemblyviaDNATilingLattices 206 11.4.2.1 SourceofErrors 206 11.4.3 AlgorithmicErrorCorrectionSchemesforTilings 207 11.5 ExperimentalAdvancesinPurelyHybridization-Based Computation 209 11.6 ExperimentalAdvancesinEnzyme-BasedDNAComputing 212 11.7 BiochemicalDNAReactionNetworks 217 11.8 Conclusion:ChallengesinDNA-BasedBiomolecular Computation 218 11.8.1 ScalabilityofBiomolecularComputations 218 11.8.2 EaseofDesignandProgrammabilityofBiomolecular Computations 220 11.8.3 InVivoBiomolecularComputations 220 11.8.4 Conclusions 220 Acknowledgments 221 References 221 12 EnumerationApproachtotheAnalysisofInteractingNucleic AcidStrands 225 SatoshiKobayashiandTakayaKawakami 12.1 Introduction 225 12.2 DefinitionsandNotationsforSetandMultiset 226 12.3 ChemicalEquilibriumandHybridizationReactionSystem 227 12.4 SymmetricEnumerationMethod 230 X Contents 12.4.1 EnumerationGraph 230 12.4.2 PathMappings 231 12.4.3 EnumerationScheme 232 12.4.4 AnExampleofEnumerationScheme – Folding ofanRNAMolecule 233 12.4.5 ConvexProgrammingProblemforComputingEquilibrium 235 12.5 ApplyingSEMtoNucleicAcidStrandsInteraction 236 12.5.1 TargetSecondaryStructures 237 12.5.2 IntroducingBasicNotations 237 12.5.3 DefinitionofEnumerationGraphStructure 239 12.5.4 AssociatedWeightFunctions 241 12.5.5 SymmetricProperties 242 12.5.6 ComplexityIssues 242 12.6 Conclusions 243 References 244 13 RestrictionEnzymesinLanguageGeneration andPlasmidComputing 245 TomHead 13.1 Introduction 245 13.2 WetSplicingSystems 246 13.3 DrySplicingSystems 249 13.4 SplicingTheory:ItsOriginalMotivationandItsExtensive UnforeseenDevelopments 252 13.5 ComputingwithPlasmids 253 13.6 FluidMemory 254 13.7 ExamplesofAqueousComputations 255 13.8 FinalCommentsaboutComputingwithBiomolecules 260 References 261 14 DevelopmentofBacteria-BasedCellularComputingCircuits forSensingandControlinBiologicalSystems 265 MichaelaA.TerAvest,ZhongjianLi,andLargusT.Angenent 14.1 Introduction 265 14.2 CellularComputingCircuits 267 14.2.1 GeneticToolbox 267 14.2.1.1 EngineeredGeneRegulation 267 14.2.1.2 QuorumSensing 269 14.2.2 Implementations 269 14.2.2.1 Oscillators 269 14.2.2.2 Switches 270 14.2.2.3 ANDLogicGates 270 14.2.2.4 EdgeDetector 271 14.2.2.5 ComplexLogicFunctionswithMultipleStrains 272 14.2.3 TransitiontoInSilicoRationalDesign 273

Description:
Content: Chapter 1 Biomolecular Computing: From Unconventional Computing to “Smart” Biosensors and Actuators – Editorial Introduction (pages 1–8): Prof. Dr. Evgeny KatzChapter 2 Peptide?Based Computation: Switches, Gates, and Simple Arithmetic (pages 9–32): Zehavit Dadon, Manickasundaram S
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.