ebook img

Biometric Image Discrimination Technologies PDF

290 Pages·14.38 MB·English
by  Zhang D.Jing X.YangJ.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biometric Image Discrimination Technologies

Biometric Image Discrimination Technologies by David Zhang, Xiaoyuan Jing and Jian Yang Idea Group Publishing © 2006 (374 pages) ISBN:159140830X With a focus on linear projection analysis, the issues this book addresses are highly relevant to many fundamental concerns of both researchers and practitioners of BID in biometric applications. Biometric Image Discrimination Technologies David Zhang Biometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong Xiaoyuan Jing Bio-Computing Research Centre, ShenZhen Graduate School of Harbin Institute of Technology, China Jian Yang Biometrics Research Centre, The Hong Kong Polytechnic University, Hong Kong IDEA GROUP PUBLISHING Acquisitions Editor: Michelle Potter Development Editor: Kristin Roth Senior Managing Editor: Amanda Appicello Managing Editor: Jennifer Neidig Copy Editor: Julie LeBlanc Typesetter: Sharon Berger Cover Design: Lisa Tosheff Published in the United States of America by Idea Group Publishing (an imprint of Idea Group Inc.) 701 E. Chocolate Avenue Hershey PA 17033 Tel: 717-533-8845 Fax: 717-533-8661 E-mail: [email protected] Web site: http://www.idea-group.com and in the United Kingdom by Idea Group Publishing (an imprint of Idea Group Inc.) 3 Henrietta Street Covent Garden London WC2E 8LU Tel: 44 20 7240 0856 Fax: 44 20 7379 0609 Web site: http://www.eurospanonline.com © 2006 Idea Group Inc. All rights reserved. No part of this book may be reproduced, stored or distributed in any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher. Product or company names used in this book are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Zhang, David, 1949- 1 Biometric image discrimination technologies / David Zhang, Xiaoyuan Jing and Jian Yang. p. cm. Summary: "The book gives an introduction to basic biometric image discrimination technologies including theories that are the foundations of those technologies and new algorithms for biometrics authentication"—Provided by publisher. Includes bibliographical references and index. 1-59140-830-X (hardcover)—ISBN 1-59140-831-8 (softcover)—ISBN 1-59140-832-6 (ebook) 1. Pattern recognition systems. 2. Identification—Automation. 3. Biometric identification. I. Jing, Xiaoyuan. II. Yang, Jian. III. Title. TK7882.P3Z 44 2006 006.4—dc22 2005032048 British Cataloguing in Publication Data A Cataloguing in Publication record for this book is available from the British Library. All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the authors, but not necessarily of the publisher. About the Authors David Zhang graduated in computer science from Peking University (1974). He earned his MSc and PhD in computer science from the Harbin Institute of Technology (HIT) (1982 and 1985, respectively). From 1986 to 1988, he was a postdoctoral fellow at Tsinghua University and then an associate professor at the Academia Sinica, Beijing. In 1994, he received his second PhD in electrical and computer engineering from the University of Waterloo, Ontario, Canada. Currently, he is a chair professor at The Hong Kong Polytechnic University, where he is the founding director of the Biometrics Technology Centre (UGC/CRC) supported by the Hong Kong SAR government. He also serves as an adjunct professor at Tsinghua University, Shanghai Jiao Tong University, Beihang University, HIT and the University of Waterloo. He is founder and editor-in-chief of the International Journal of Image and Graphics (IJIG), book editor of the Kluwer International Series on Biometrics (KISB), and program chair of the International Conference on Biometrics Authentication (ICBA). He is also the associate editor of more than 10 international journals, including IEEE Transactions on SMC-A/SMC-C and Pattern Recognition. He is the author of more than 10 books and 160 journal papers related to his research areas. These include biometrics, image processing, and pattern recognition. He is a current Croucher senior research fellow and distinguished speaker of the IEEE Computer Society. Xiaoyuan Jing graduated in computer application from the Jiangsu University of Science and Technology (1992). He earned his MSc and PhD in pattern recognition from the Nanjing University of Science and Technology (1995 and 1998, respectively). From 1998 to 2001, he was a manager of the Image Technology Department of E-Com Company. From 2001 to 2004, he was an associate professor at the Institute of Automation, Chinese Academia of Sciences, Beijing, and a visiting scholar at Hong Kong Polytechnic University and Hong Kong Baptist University. Currently, he is a professor and doctor supervisor at ShenZhen Graduate School of Harbin Institute of Technology, Shenzhen, China. He serves as a member of the Intelligent Systems Applications Committee of IEEE Computational Intelligence Society. He is a reviewer of several international journals such as IEEE Transactions and Pattern Recognition. His research interests include pattern recognition, computer vision, image processing, information fusion, neural network and artificial intelligence. Jian Yang was born in Jiangsu, China, June 1973. He earned his BS in mathematics at the Xuzhou Normal University (1995). He then completed an MS degree in applied mathematics at the Changsha Railway University (1998) and his PhD at the Nanjing University of Science and Technology (NUST) in the Department of Computer Science on the subject of pattern recognition and intelligence systems (2002). In 2003, he was a postdoctoral researcher at the University of Zaragoza. In the same year, he was awarded the RyC program Research Fellowship, sponsored by the Spanish Ministry of Science and Technology. Currently, he is a professor in the Department of Computer Science of NUST and a postdoctoral research fellow at The Hong Kong Polytechnic University. He is the author of more than 30 2 scientific papers in pattern recognition and computer vision. His current research interests include pattern recognition, computer vision and machine learning. Acknowledgments Our sincere thank goes to professor Zhaoqi Bian of Tsinghua University, Beijing, and professor Jingyu Yang of Najing Polytechnic University, Najing, China, for their advice throughout this research. We would like to thank our team members, Dr. Hui Peng, Wangmeng Zuo, Dr. Guangming Lu, Dr. Xiangqian Wu, Dr. Kuanquan Wang and Dr. Jie Zhou for their hard work and unstinting support. In fact, this book is the common result of their many contributions. We would also like to express our gratitude to our research fellows, Michael Wong, Laura Liu and Dr. Ajay Kumar for their invaluable help and support. Thanks are also due to Martin Kyle, Dr. Zhizhen Liang, Miao Li and Xiaohui Wang for their help in the preparation of this book. The financial support of the CERG fund from the HKSAR Government, the central fund from the Hong Kong Polytechnic University and NFSC funds (No. 60332010 and No. 60402018) in China are, of course, also greatly appreciated. We owe a debt of thanks to Jan Travers and Kristin Roth of Idea Group Inc., for their initiative in publishing this volume. David Zhang, Biometrics Research Centre The Hong Kong Polytechnic University, Hong Kong E-mail: [email protected] Xiaoyuan Jing, Bio-Computing Research Centre ShenZhen Graduate School of Harbin Institute of Technology, China E-mail address: [email protected] Jian Yang, Biometrics Research Centre The Hong Kong Polytechnic University, Hong Kong E-mail address: [email protected] 3 Contents Biometric Image Discrimination Technologies ........................................................... 1 Contents ........................................................................................................................................ 4 Preface ........................................................................................................................................... 9 Chapter I: An Introduction to Biometrics Image Discrimination (BID).................... 14 DEFINITION OF BIOMETRICS TECHNOLOGIES .................................................................. 14 Finger-Scan Technology........................................................................................................ 14 Voice-Scan Technology ........................................................................................................ 15 Face-Scan Technology .......................................................................................................... 15 Palm-Scan Technology .......................................................................................................... 15 Iris-Scan Technology ............................................................................................................. 15 Signature-Scan Technology ................................................................................................... 16 Multiple Authentication Technologies .................................................................................. 16 APPLICATIONS OF BIOMETRICS ........................................................................................... 16 Law Enforcement .................................................................................................................. 16 Banking .................................................................................................................................. 16 Computer Systems (or Logical Access Control) ................................................................... 17 Physical Access ..................................................................................................................... 17 Benefit Systems ..................................................................................................................... 17 Immigration ........................................................................................................................... 17 National Identity .................................................................................................................... 17 Telephone Systems ................................................................................................................ 17 Time, Attendance and Monitoring ........................................................................................ 17 BIOMETRICS SYSTEMS AND DISCRIMINATION TECHNOLOGIES ................................ 17 WHAT ARE BID TECHNOLOGIES? ......................................................................................... 18 High Dimensionality ............................................................................................................. 18 Large Scale ............................................................................................................................ 19 Small Sample Size ................................................................................................................. 19 HISTORY AND DEVELOPMENT OF BID TECHNOLOGIES ................................................ 19 OVERVIEW: APPEARANCE-BASED BID TECHNOLOGIES ................................................ 21 BOOK PERSPECTIVE ................................................................................................................. 22 References ............................................................................................................................. 23 Section I: BID Fundamentals ........................................................................................ 29 Chapter II: Principal Component Analysis ................................................................ 30 INTRODUCTION ......................................................................................................................... 30 DEFINITIONS AND TECHNOLOGIES ..................................................................................... 30 Mathematical Background of PCA ....................................................................................... 30 Principal Component Analysis (PCA) ................................................................................... 33 NON-LINEAR PCA TECHNOLOGIES ...................................................................................... 39 An Introduction to Kernel PCA ............................................................................................. 39 Background Mathematics ...................................................................................................... 40 Methods ................................................................................................................................. 40 SUMMARY .................................................................................................................................. 42 References ............................................................................................................................. 42 Chapter III: Linear Discriminant Analysis ....................................................................... 45 INTRODUCTION ......................................................................................................................... 45 The Two-Category Case ........................................................................................................ 45 The Multicategory Case......................................................................................................... 47 Generalized Linear Discriminant Functions .......................................................................... 48 LDA DEFINITIONS ..................................................................................................................... 50 Fisher Linear Discriminant .................................................................................................... 50 Multiple Discriminant Analysis ............................................................................................ 53 4 NON-LINEAR LDA TECHNOLOGIES ...................................................................................... 56 SUMMARY .................................................................................................................................. 59 References ............................................................................................................................. 59 Chapter IV: PCA/LDA Applications in Biometrics .................................................... 62 INTRODUCTION ......................................................................................................................... 62 FACE RECOGNITION ................................................................................................................. 62 Eigenface ............................................................................................................................... 63 Fisherface............................................................................................................................... 64 Experimental Results ............................................................................................................. 66 PALMPRINT IDENTIFICATION ............................................................................................... 72 Fisherpalm ............................................................................................................................. 72 Eigenpalm .............................................................................................................................. 79 GAIT APPLICATION .................................................................................................................. 83 Overview of Approach .......................................................................................................... 83 Feature Extraction.................................................................................................................. 84 Recognition ............................................................................................................................ 87 Experiments ........................................................................................................................... 88 Remarks ................................................................................................................................. 91 EAR BIOMETRICS ...................................................................................................................... 91 Introduction ........................................................................................................................... 91 PCA in Ear Recognition ........................................................................................................ 93 Remarks ................................................................................................................................. 94 SPEAKER IDENTIFICATION .................................................................................................... 94 Introduction ........................................................................................................................... 94 Eigenspace Training Techniques ........................................................................................... 95 Experiments ........................................................................................................................... 96 Remarks ................................................................................................................................. 98 IRIS RECOGNITION ................................................................................................................... 98 Introduction ........................................................................................................................... 98 Image Preprocessing .............................................................................................................. 99 Feature Extraction.................................................................................................................. 99 Remarks ............................................................................................................................... 102 SIGNATURE VERIFICATION ................................................................................................. 103 Introduction ......................................................................................................................... 103 Signature Processing and Segmentation .............................................................................. 103 Flexible Matching and Stable Segments Extraction ............................................................ 105 PCA and MCA .................................................................................................................... 106 Experiment Results .............................................................................................................. 107 Remarks ............................................................................................................................... 107 SUMMARY ................................................................................................................................ 108 References ........................................................................................................................... 108 Section II: Improved BID Technologies ................................................................ 116 Chapter V: Statistical Uncorrelation Analysis ........................................................ 117 INTRODUCTION ....................................................................................................................... 117 BASIC DEFINITION .................................................................................................................. 117 UNCORRELATED OPTIMAL DISCRIMINATION VECTORS ............................................. 118 Fisher Vector ....................................................................................................................... 118 Foley-Sammon Discriminant Vectors ................................................................................. 118 Uncorrelated Discriminant Vectors ..................................................................................... 118 A Theorem on UODV ......................................................................................................... 119 IMPROVED UODV APPROACH ............................................................................................. 119 Approach Description .......................................................................................................... 119 5 Generalized UODV Theorem .............................................................................................. 121 EXPERIMENTS AND ANALYSIS ........................................................................................... 124 Experiments on 1D Data...................................................................................................... 125 Experiments on 2D Data...................................................................................................... 126 SUMMARY ................................................................................................................................ 127 References ........................................................................................................................... 127 Chapter VI: Solutions of LDA for Small Sample Size Problems ............................ 129 INTRODUCTION ....................................................................................................................... 129 OVERVIEW OF EXISTING LDA REGULARIZATION TECHNIQUES ............................... 130 A UNIFIED FRAMEWORK FOR LDA .................................................................................... 131 Theoretical Framework for LDA in Singular Case ............................................................. 131 Essence of LDA in SSS Cases ............................................................................................. 134 A COMBINED LDA ALGORITHM FOR SSS PROBLEM ..................................................... 134 Strategy of Finding Two Categories of Optimal Discriminant Vectors .............................. 135 Properties of the Two Categories of Optimal Discriminant Vectors................................... 137 Combined LDA Algorithm (CLDA) ................................................................................... 138 Comparison to Existing LDA Methods ............................................................................... 138 EXPERIMENTS AND ANALYSIS ........................................................................................... 140 Experiment Using the ORL Database ................................................................................. 140 Experiment Using the NUST603 Database ......................................................................... 147 Experimental Conclusions and Analysis ............................................................................. 150 SUMMARY ................................................................................................................................ 151 References ........................................................................................................................... 151 Chapter VII: An Improved LDA Approach ............................................................... 153 INTRODUCTION ....................................................................................................................... 153 DEFINITIONS AND NOTATIONS ........................................................................................... 154 APPROACH DESCRIPTION ..................................................................................................... 155 Improving the Selection of Discrimination Vectors ............................................................ 155 Improving the Statistical Uncorrelation of Discrimination Vectors .................................... 155 Improving the Selection of Principal Components ............................................................. 156 ILDA Approach ................................................................................................................... 158 EXPERIMENTAL RESULTS .................................................................................................... 159 Introduction of Databases .................................................................................................... 159 Experiments on the Improvement of Discrimination Vectors Selection ............................. 160 Experiments on the Improvement of Statistical UODV ...................................................... 161 Experiments on the Improvement of Principal Components Selection ............................... 161 Experiments on All of the Improvements............................................................................ 162 SUMMARY ................................................................................................................................ 163 References ........................................................................................................................... 164 Chapter VIII: Discriminant DCT Feature Extraction ................................................ 166 INTRODUCTION ....................................................................................................................... 166 APPROACH DEFINITION AND DESCRIPTION ................................................................... 166 Select DCT Frequency Bands by Using a 2D Separability Judgment ................................ 166 Recognition Procedure ........................................................................................................ 168 Theoretical Analysis ............................................................................................................ 169 EXPERIMENTS AND ANALYSIS ........................................................................................... 171 Experiments with the Yale Face Database .......................................................................... 171 Experiments with the ORL Face Database .......................................................................... 173 Experiments with the Palmprint Database........................................................................... 174 Analysis of Threshold Setting ............................................................................................. 175 SUMMARY ................................................................................................................................ 177 References ........................................................................................................................... 177 6 Chapter IX: Other Typical BID Improvements ......................................................... 179 INTRODUCTION ....................................................................................................................... 179 DUAL EIGENSPACES METHOD ............................................................................................ 179 Introduction to TEM ............................................................................................................ 179 Algebraic Features Extraction ............................................................................................. 179 Face Recognition Phase ....................................................................................................... 180 Experimental Results ........................................................................................................... 181 POST-PROCESSING ON LDA-BASED METHOD ................................................................. 181 Introduction ......................................................................................................................... 181 LDA-Based Facial Feature Extraction Methods ................................................................. 181 Post-Processing on Discriminant Vectors ........................................................................... 182 Experimental Results and Discussions ................................................................................ 183 SUMMARY ................................................................................................................................ 186 References ........................................................................................................................... 186 Section III: Advanced BID Technologies ............................................................. 188 Chapter X: Complete Kernel Fisher Discriminant Analysis ................................... 189 INTRODUCTION ....................................................................................................................... 189 THEORETICAL PERSPECTIVE OF KPCA ............................................................................. 190 A NEW KFD ALGORITHM FRAMEWORK: KPCA PLUS LDA .......................................... 191 Fundamentals ............................................................................................................................... 191 Strategy for Finding Fisher Optimal Discriminant Vectors in Feature Space ..................... 192 Idea of Calculating Fisher Optimal Discriminant Vectors .................................................. 193 A Concise KFD Framework: KPCA Plus LDA .................................................................. 194 COMPLETE KFD ALGORITHM .............................................................................................. 195 Extraction of Two Kinds of Discriminant Features............................................................. 195 Fusion of Two Kinds of Discriminant Features for Classification ...................................... 196 Complete KFD Algorithm ................................................................................................... 197 Relationship to Other KFD (or LDA) Algorithms .............................................................. 197 EXPERIMENTS .......................................................................................................................... 198 SUMMARY ................................................................................................................................ 204 References ........................................................................................................................... 205 Chapter XI: 2D Image Matrix-Based Discriminator ................................................. 207 INTRODUCTION ....................................................................................................................... 207 2D IMAGE MATRIX-BASED PCA .......................................................................................... 207 IMPCA Method ................................................................................................................... 207 IMPCA-Based Image Reconstruction ................................................................................. 208 Relationship to PCA ............................................................................................................ 208 Minimal Mean-Square Error Property of IMPCA ............................................................... 209 Comparison of PCA-and 2DPCA-Based Image Recognition Systems ............................... 211 Experiments and Analysis ................................................................................................... 213 2D IMAGE MATRIX-BASED LDA .......................................................................................... 219 Fundamentals ....................................................................................................................... 219 Orthogonal IMLDA (O-IMLDA) ........................................................................................ 221 Uncorrelated IMLDA (U-IMLDA) ..................................................................................... 222 Correlation Analysis ............................................................................................................ 223 Experiments and Analysis ................................................................................................... 224 SUMMARY ................................................................................................................................ 226 References ........................................................................................................................... 227 Chapter XII: Two-Directional PCA/LDA ................................................................... 229 INTRODUCTION ....................................................................................................................... 229 BDPCA Method .................................................................................................................. 229 BDPCA Plus LDA Method ................................................................................................. 230 7 BASIC MODELS AND DEFINITIONS .................................................................................... 231 Classical PCA's Over-Fitting Problem ................................................................................ 231 Previous Work in Solving PCA's Over-Fitting Problem ..................................................... 232 Modular PCA ............................................................................................................................... 234 BDPCA with Assembled Matrix Distance Metric .............................................................. 234 Overview of PCA Techniques for 2D Image Transform ............................................................ 238 General Idea of 2D Image Transform.................................................................................. 238 Holistic PCA: Inseparable Image Model Based Technique ................................................ 239 2D-KLT: Separable Image Model Based Technique ........................................................... 240 BDPCA: A Face-Image-Specific 2D-KLT Technique ........................................................ 240 TWO-DIRECTIONAL PCA PLUS LDA ................................................................................... 241 BDPCA +LDA: A New Strategy for Facial Feature Extraction ......................................... 241 EXPERIMENTAL RESULTS .................................................................................................... 243 Experiments with the ORL Database for BDPCA .............................................................. 243 Experiments with the PolyU Palmprint Database for BDPCA ........................................... 247 Experiments on the ORL Database for BDPCA+LDA ....................................................... 250 Experiments on the UMIST Database for BDPCA+LDA .................................................. 253 Experiments on the FERET Database for BDPCA+LDA ................................................... 254 SUMMARY ................................................................................................................................ 256 References ........................................................................................................................... 256 Chapter XIII: Feature Fusion Using Complex Discriminator .................................. 261 INTRODUCTION ....................................................................................................................... 261 SERIAL AND PARALLEL FEATURE FUSION STRATEGIES ............................................. 262 COMPLEX LINEAR PROJECTION ANALYSIS ..................................................................... 263 Fundamentals ....................................................................................................................... 263 Complex PCA ...................................................................................................................... 263 Complex LDA ..................................................................................................................... 263 FEATURE PREPROCESSING TECHNIQUES ........................................................................ 265 SYMMETRY PROPERTY OF PARALLEL FEATURE FUSION ........................................... 267 BIOMETRIC APPLICATIONS .................................................................................................. 269 Complex PCA-Based Color Image Representation ............................................................ 269 Complex LDA-Based Face Recognition ............................................................................. 271 SUMMARY ................................................................................................................................ 275 References ........................................................................................................................... 276 Index ........................................................................................................................................... 278 List of Figures ............................................................................................................ 281 List of Tables ............................................................................................................. 287 8 Preface Personal identification and verification both play a critical role in our society. Today, more and more business activities and work practices are computerized. E-commerce applications, such as e-banking, or security applications, such as building access, demand fast, real-time and accurate personal identification. Traditional knowledge-based or token-based personal identification or verification systems are tedious, time-consuming, inefficient and expensive. Knowledge-based approaches use "something that you know" (such as passwords and personal identification numbers) for personal identification; token-based approaches, on the other hand, use "something that you have" (such as passports or credit cards) for the same purpose. Tokens (e.g., credit cards) are time-consuming and expensive to replace. Passwords (e.g., for computer login and e-mail accounts) are hard to remember. A company may spend $14 to $28 (U.S.) on handling a password reset, and about 19% of help-desk calls are related to the password reset problem. This may suggest that the traditional knowledge-based password protection is unsatisfactory. Since these approaches are not based on any inherent attribute of an individual in the identification process, they are unable to differentiate between an authorized person and an impostor who fraudulently acquires the "token" or "knowledge" of the authorized person. These shortcomings have led to biometrics identification or verification systems becoming the focus of the research community in recent years. Biometrics, which refers to automatic recognition of people based on their distinctive anatomical (e.g., face, fingerprint, iris, etc.) and behavioral (e.g., online/off-line signature, voice, gait, etc.) characteristics, is a hot topic nowadays, since there is a growing need for secure transaction processing using reliable methods. Biometrics-based authentication can overcome some of the limitations of the traditional automatic personal identification technologies, but still, new algorithms and solutions are required. After the Sept. 11, 2001 terrorist attacks, the interest in biometrics-based security solutions and applications has increased dramatically, especially in the need to spot potential criminals in crowds. This further pushes the demand for the development of different biometrics products. For example, some airlines have implemented iris recognition technology in airplane control rooms to prevent any entry by unauthorized persons. In 2004, all Australian international airports implemented passports using face recognition technology for airline crews, and this eventually became available to all Australian passport holders. A steady rise in revenues is predicted from biometrics for 2002-2007, from $928 million in 2003 to $4.035 million in 2007. Biometrics involves the automatic identification of an individual based on his physiological or behavioral characteristics. In a non-sophisticated way, biometrics has existed for centuries. Parts of our bodies and aspects of our behavior have historically been used as a means of identification. The study of finger images dates back to ancient China; we often remember and identify a person by his or her face, or by the sound of his or her voice; and signature is the established method of authentication in banking, for legal contracts and many other walks of life. However, automated biometrics has only 40 years' history. As everyone knows, matching finger images against criminal records is always an important way for law enforcers to find the criminal. But the manual process of matching is laborious and uses too much manpower. In late 1960s, the Federal Bureau of Investigation (FBI) began to automatically check finger images, and by the mid-1970s, a number of automatic finger scanning systems had been installed. Among these systems, Identimat is the first commercial system, as part of a time clock at Shearson Hamill, a Wall Street investment firm. This system measured the shape of hand and looked particularly at finger length. Though the production of Identimat ceased in late 1980s, its use pioneered the application of hand geometry and set a path for biometrics technologies as a whole. Besides finger and hand, some other biometrics techniques have also been developed. For example, fingerprint-based automatic checking systems were widely used in law enforcement by the FBI and other U.S. government departments. Advances in hardware, such as faster processing power and greater memory capacity, made biometrics more viable. Since the 1990s, iris, retina, face, voice, signature, DNA and palmprint technologies have joined the biometric family. From 1996, and especially in 1998, more funds had been given to biometrics technology research and development. Therefore, research on biometrics became more active and exceeded the stage of separate research dispersed in pattern recognition, signal processing, image processing, computer vision, computer security and other subjects. By its distinguished features, such as live scan, identical person maximum likelihood and different person minimum likelihood, biometrics grew into an independent research field. A series of prominent events also shows that biometrics is garnering much more attention 9 in both academia and industry. For example, in September 1997, Proceedings of IEEE published a special issue on automated biometrics; in April 1998, the BioAPI Consortium was formed to develop a widely available and accepted API (application program interface) that will serve for various biometrics technologies. Today, biometrics-based authentication and identification are emerging as a reliable method in our international and interconnected information society. With rapid progress in electronics and Internet commerce, there has been a growing need for secure transaction processing using biometrics technology. This means that biometrics technology is no longer only the high-tech gadgetry of Hollywood science-fiction movies. Many biometrics systems are being used for access control, computer security and law enforcement. The future of biometrics technology is promising. More and more biometrics systems will be deployed for different applications in our daily life. Several governments are now, or will soon be, using biometrics technology, such as the U.S. INSPASS immigration card or the Hong Kong ID card, both of which store biometric features for authentication. Also, banking and credit companies have applied biometrics technology to their business processes. In active use by some airports and airlines even before the Sept. 11, 2001 disaster, more are seriously considering the use of bio-metric authentication in the wake of these events. Now, biometrics technology not only protects our information and our property, but also safeguards our lives and our society. Automated biometrics deal with image discrimination for a fingerprint, palmprint, iris, hand or face, which can be used to authenticate a person's claim to identity or establish an identity from a database. In other words, image discrimination is an elementary problem in the area of automated biometrics. With the development of biometrics and its applications, many classical discrimination technologies are borrowed and applied to deal with biometric images. Among them, principal component analysis (PCA, or K-L transform) and Fisher linear discriminant analysis (LDA) turns out to be very successful, in particular for face image recognition. Also, these methods have been greatly improved with respect to the specific biometric image analysis and applications. Recently, non-linear projection analysis technology represented by kernel principal component analysis (KPCA) and kernel Fisher discriminant (KFD), also show great potential in dealing with biometric problems. In fact, discrimination technologies can play an important role in the implementation of biometric systems. They provide methodologies for automated personal identification or verification. In turn, the applications in biometrics also facilitate the development of discrimination methodologies and technologies, making discrimination algorithms more suitable for image feature extraction and recognition. Since image discrimination is an elementary problem in the area of automated biometrics, biometric image discrimination (BID) should be developed. Now, many researchers not only apply the technology to BID, but also improve these useful approaches, even develop many related new methods. However, according to the authors' best knowledge, so far, very few books have been found exclusively devoted to such technology of BID. In fact, BID technologies can be briefly defined as automated methods of feature extraction and recognition based on given biometric images. It should be stressed that the BID technologies are not the simple application of classical discrimination techniques to biometrics, but the improved or reformed discrimination techniques that are more suitable (e.g., more powerful in recognition performance or computational more efficient for feature extraction or classification) for biometrics applications. In other words, BID technologies should be with respect to the characteristics of BID problems, and find effective ways to solve these problems. In general, BID problems have the following three characteristics: (1) High dimensional—This is due to the high-dimensional characteristic of biometric images, which make the direct classification in image space almost impossible, because the similarity calculation is computationally very expensive, as well as the large amounts of storage is required, let alone the performance of classification in varying lighting condition. So, a dimension reduction technique is necessary prior to recognition. (2) Large scale—In real- world applications, there are a number of typical large-scale BID problems. Given an input biometric sample, a large-scale BID identification system determines if the pattern is associated with any of a large number of enrolled identities, and these large-scale BID applications require high-quality BID technologies with good generalization power. (3) Small sample size—Differing from optical character recognition (OCR) problems, the training samples per class are always very limited, even one sample available for each individual, in real-world BID problems. The characteristics of high-dimensionality and small sample size make the BID problems become the so-called small sample size problems. In these problems, the within-class scatter matrix is always singular because the training sample size is generally less than the space dimension. On BID problems, above all, we should determine how to represent the biometric images. The objectives of image representation are twofold. One is for a better identification (or verification), and the other is for 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.