ebook img

Biomedical Optical Sensors: Differentiators for Winning Technologies PDF

243 Pages·2020·11.556 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomedical Optical Sensors: Differentiators for Winning Technologies

Biological and Medical Physics, Biomedical Engineering Richard De La Rue Hans Peter Herzig Martina Gerken   Editors Biomedical Optical Sensors Differentiators for Winning Technologies Biological and Medical Physics, Biomedical Engineering BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING Thisseriesisintendedtobecomprehensive,coveringabroadrangeoftopicsimportanttothestudyofthe physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs,andreferenceworkstoaddressthegrowingneedforinformation.Thefieldsofbiologicaland medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroadsoffrontierresearchinphysics,biology,chemistry,andmedicine. Booksintheseriesemphasizeestablishedandemergentareasofscienceincludingmolecular,membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata.Equallyimportantiscoverageofappliedaspectsofbiologicalandmedicalphysicsandbiomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principlesofrenewableenergyproduction,advancedprostheses,andenvironmentalcontrolandengineering. Editor-in-Chief BernardS.Gerstman,DepartmentofPhysics,FloridaInternationalUniversity,Miami,FL,USA SeriesEditors MasuoAizawa,TokyoInstituteTechnology,Tokyo, XiangYangLiu,DepartmentofPhysics,Facultyof Japan Sciences,NationalUniversityofSingapore,Singapore, Singapore RobertH.Austin,Princeton,NJ,USA DavidMauzerall,RockefellerUniversity,NewYork, JamesBarber,WolfsonLaboratories,ImperialCollegeof NY,USA ScienceTechnology,London,UK EugenieV.Mielczarek,DepartmentofPhysicsand HowardC.Berg, Cambridge,MA,USA Astronomy,GeorgeMasonUniversity,Fairfax,USA RobertCallender,DepartmentofBiochemistry,Albert MarkolfNiemz,MedicalFacultyMannheim,University EinsteinCollegeofMedicine,Bronx,NY,USA ofHeidelberg,Mannheim,Germany GeorgeFeher,DepartmentofPhysics,Universityof V.AdrianParsegian,PhysicalScienceLaboratory, California,SanDiego,LaJolla,CA,USA NationalInstitutesofHealth,Bethesda,MD,USA HansFrauenfelder,LosAlamos,NM,USA LindaS.Powers,UniversityofArizona,Tucson,AZ, IvarGiaever,RensselaerPolytechnicInstitute,Troy,NY, USA USA EarlW.Prohofsky,DepartmentofPhysics,Purdue PierreJoliot,InstitutedeBiologiePhysico-Chimique, University,WestLafayette,IN,USA FondationEdmonddeRothschild,Paris,France TatianaK.Rostovtseva,NICHD,NationalInstitutesof LajosKeszthelyi,BiologicalResearchCenter,Hungarian Health,Bethesda,MD,USA AcademyofSciences,Szeged,Hungary AndrewRubin,DepartmentofBiophysics,Moscow PaulW.King,BiosciencesCenterandPhotobiology, StateUniversity,Moscow,Russia NationalRenewableEnergyLaboratory,Lakewood,CO, MichaelSeibert,NationalRenewableEnergy USA Laboratory,Golden,CO,USA GianlucaLazzi,UniversityofUtah,SaltLakeCity,UT, NongjianTao,BiodesignCenterforBioelectronics, USA ArizonaStateUniversity,Tempe,AZ,USA AaronLewis,DepartmentofAppliedPhysics,Hebrew DavidThomas,DepartmentofBiochemistry,University University,Jerusalem,Israel ofMinnesotaMedicalSchool,Minneapolis,MN,USA StuartM.Lindsay,DepartmentofPhysicsand Astronomy,ArizonaStateUniversity,Tempe,AZ,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/3740 Richard De La Rue Hans Peter Herzig (cid:129) (cid:129) Martina Gerken Editors Biomedical Optical Sensors Differentiators for Winning Technologies 123 Editors Richard DeLaRue Hans PeterHerzig Optoelectronics Research Group STI-DO University of Glasgow EcolePolytechnique Federale Lausan Schoolof Engineering Neuchâtel, Switzerland Glasgow, UK Martina Gerken Faculty of Engineering Kiel University Kiel, Schleswig-Holstein, Germany ISSN 1618-7210 ISSN 2197-5647 (electronic) Biological andMedical Physics, Biomedical Engineering ISBN978-3-030-48385-2 ISBN978-3-030-48387-6 (eBook) https://doi.org/10.1007/978-3-030-48387-6 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Biomedical sensing is an increasingly important domain of research and develop- ment activity across many countries, with the potential to have widespread impact acrosstheglobe.Biomedicineisitselfofcentralimportanceforthehumanraceand the development of advanced civilisation, because it not only addresses the ever-growingneedforreliableandsustainablehealthcareofaworldpopulationthat continues to expand, but also because it is likely to be required (i.e. have an essential role) when humanity faces the challenges that will inevitably arise in the future—and have already arisen to a large extent. The increasing importance of biomedicalsensorsisdirectlylinkedtothedevelopmentofmedicaltechnologies— andmedicinemoregenerally.Biomedicalsensorsarealreadybeingusedtoincrease thereliabilityandspeedofmedicaldiagnosis,bothpriortoandaftermedicalevents experienced by individual human beings and, potentially, by large numbers of human beings at the same time, as well as sequentially. This book is intended to form a useful, but limited, introduction to the topic of biomedical sensing based on optical or photonic techniques. The light that is available for purposes such as biomedical sensing—and has been demonstrated as useful—covers a very wide (multi-octave) spectrum, including parts of the Ultra-Violet (UV) spectrum, all of the visible spectrum and much of the infrared spectrum—and frequencies as low as the TeraHertz (THz) region of the electro- magnetic spectrum. The utility of light in biomedical sensing arises, in part, from thefactthatthewavelength(andthereforethefrequencyandphotonenergy)ofthe light can be selected, with considerable precision, to match the characteristic res- onantfrequenciesofthebio-molecules,e.g.proteins,ofinterest.Inthiscontext,we note that the bond vibration spectrum of many biological molecules lies in the Mid-Infrared Region (MIR) of the electromagnetic spectrum. This mid-infrared region is readily accessible using standard laboratory apparatus such as Fourier-Transform Infrared (FTIR) spectrometers, together with weak and spec- trallybroadlightsources.Alternatively,coherentlightsourcessuchasdiodelasers can be tuned to well-defined target wavelengths—and useful identification and measurement of biomaterial may be obtained using a specific single optical wavelength or a specific set of different wavelengths. Such identification may be v vi Preface obtainedviatheuseoffluorescentlabellingofcharacteristicbio-moleculesorcells —and by means of label-free specific binding processes. Our intention, in the following chapters, is to identify scientific and techno- logicalconceptsthatarebothintellectuallyinterestingandpotentiallyapplicablein biomedicine. Inevitably there will be some overlap between the material that is treated in any one chapter and material appearing in one or more other chapters. Chapters 1–3 are concerned with optical/photonic sensors that are based on planar optical waveguide techniques. Chapter 4 is also concerned with biosensors that typically exploit planar fabrication techniques based on flat substrates, but the interactionofthelightwiththesensoristypicallynotthroughwaveguidingaction. ThephotoniccrystalstructurescoveredinChap.5mayberealisedinvariousways. In many cases, the photonic crystal structures are realised by planar fabrication techniques.Butotherfabricationtechniqueshavealsobeenused,e.g.therealisation ofsyntheticopalstructuresbycolloidaldepositionofapproximatelysphericalsilica micro-balls from solution. This last technique can be used in situations where the substrate for the photonic crystal structure is non-planar, e.g. the walls of a cylindrical tube. Chapter1‘TowardsRefractiveIndexSensingUsingNanoscaleSlotWaveguide Cavities’ identifies convincingly themerits of theslot waveguide configurationfor bio-sensing applications. Chapter 2 specifically addresses the topic of waveguide biosensors based on plasmonictechniques—exploiting,inparticular,theadvantagesthatresultfromthe useoflong-rangeplasmonpropagation.Theapplicationofthisapproachtodisease detection in complex fluids is also discussed. Chapter 3 explores the merits of using spectroscopy based on the collective modal characteristics of multimode planar optical waveguides—where the hybrid modes of plasmonic–dielectric structures can be exploited. Chapter 4 has the title: ‘Refractive Index Sensing with Anisotropic Hyperbolic Metamaterials’—and it addresses the more general topic of refractive index (change) based sensing—but includes bio-sensing as a lead application. Chapter 5 covers the topic of ‘Photonic Crystal Biosensors’ in essentially three distinct categories: (a) sensor surfaces based on 1D and 2D periodic slabs—and their application in Photonic Crystal Enhanced Microscopy (PCEM), (b) devices basedonboth2Dand1Dphotoniccrystalstructuresrealisedinplanarwaveguides and (c) primarily 3D photonic crystal structures, but also closely related 2D pho- tonic crystal structures. In this third part, non-planar, modified or partially planar fabricationprocessesplayasignificantrole.Notably,becauseofitsdistinctnature, the topic of ‘photonic crystal fibers’ is not addressed in this chapter. It is however covered, to some extent, in the following chapter. Chapter 6 is concerned with ‘Optical Fiber Sensors’. Optical fibers are the predominant optical waveguide technology that is in current use. Their use in moderntelecommunicationshasbecomenearlyuniversal—andtheyhavemanifold other applications, including various types of sensor. Preface vii Chapter7hasthetitle:‘PlanarOptofluidicsforOn-ChipParticleManipulation’. Delivery of biomaterial via micro-fluidics and, possibly, nano-fluidics (locally) is arguably the norm for optics based bio-sensing. For cells, in particular, or small enough biomaterial-loaded beads, optical techniques—including optical tweezing and trapping—are of great interest. This chapter is particularly concerned with usingthetransferofmomentumfromphotonstobio-particlesanditsapplicationin bio-sensing. Chapter 8 ‘New Directions in Sensing Using Raman Analysis on Paper and Microfluidic Platforms’. Raman scattering provides a powerful technique for biomedical sensing. An important example, because of its potential for very large levels of sensitivity enhancement, is the Surface-Enhanced Raman Scattering (SERS) process. Glasgow, UK Richard De La Rue Neuchâtel, Switzerland Hans Peter Herzig Kiel, Germany Martina Gerken Contents 1 Towards Refractive Index Sensing Using Nanoscale Slot Waveguide Cavities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Elsie Barakat, Gaël Osowiecki, and Hans Peter Herzig 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Existing Interferometers as Optical Sensors . . . . . . . . . . . . . . . . . 2 1.2.1 Michelson Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Fabry–Pérot Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Microring Resonators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Plasmonic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Integrated Plasmonic Refractive Index Sensor . . . . . . . . . . 11 1.4 Periodic Plasmonic Slots Excited with a Waveguide. . . . . . . . . . . 12 1.4.1 From Multimode to Monomode Waveguide Coupling . . . . 13 1.4.2 Plasmonic Slot Waveguide Cavity (PSWC) on a Single Mode Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.3 Light Management in the PSWC . . . . . . . . . . . . . . . . . . . 19 1.4.4 Field Enhancement and Sensitivity . . . . . . . . . . . . . . . . . . 22 1.4.5 Bulk and Local Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Long-Range Plasmonic Waveguide Sensors . . . . . . . . . . . . . . . . . . . 29 Oleksiy Krupin and Pierre Berini 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Sensing Platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Sensor Structure and Fluidic Integration . . . . . . . . . . . . . . 31 2.2.2 Sensor Fabrication and Properties. . . . . . . . . . . . . . . . . . . 32 2.2.3 Optical and Fluidic Integration . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 35 ix x Contents 2.3 Sensing Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 Bulk Sensing Using Straight Plasmonic Waveguides . . . . . 36 2.3.2 Cell Sensing Using Straight Plasmonic Waveguides. . . . . . 38 2.3.3 Protein Sensing Using Straight Waveguides (SWGs) . . . . . 41 2.3.4 Disease Detection Using Straight Plasmonic Waveguides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.5 Bulk Sensing on Mach–Zehnder Interferometers (MZIs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Multimode Spectroscopy in Optical Biosensors. . . . . . . . . . . . . . . . . 57 Farshid Bahrami, J. Stewart Aitchison, and Mo Mojahedi 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Self-referenced Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Hybrid Plasmonic Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Plasmon Waveguide Resonance . . . . . . . . . . . . . . . . . . . . 64 3.3.2 PWR Sensor: Affinity Sensing . . . . . . . . . . . . . . . . . . . . . 69 3.4 Dielectric Grating SPR Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Metallic Grating SPR Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Refractive Index Sensing with Anisotropic Hyperbolic Metamaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Nikolaos Vasilantonakis, Gregory A. Wurtz, and Anatoly V. Zayats 4.1 Introduction to Sensing with Plasmonic Metamaterials . . . . . . . . . 81 4.2 Differences Between Isotropic and Anisotropic Materials for Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 Comparison of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.2 Comparison of Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Refractive Index Sensing with Hyperbolic Metamaterials . . . . . . . 88 4.3.1 Effective Permittivity Sensitivity to Geometry and Refractive Index Variations . . . . . . . . . . . . . . . . . . . . 90 4.3.2 Mode Frequency Dependence on the Refractive Index of the Analyte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.3 Sensitivity Dependence on the Thickness of the Metamaterial Transducer . . . . . . . . . . . . . . . . . . . . 95 4.3.4 Sensing Variations of the Real Part of the Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.3.5 Sensing via Variations in the Imaginary Part of the Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . 98

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.