ebook img

Biomechanical changes during abdominal aortic aneurysm growth PDF

16 Pages·2017·6.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomechanical changes during abdominal aortic aneurysm growth

RESEARCHARTICLE Biomechanical changes during abdominal aortic aneurysm growth RaoulR.F.Stevens1,2,3,AndriiGrytsan3,JacopoBiasetti4,JoyRoy5,MoritzLindquist Liljeqvist5,T.ChristianGasser3* 1 DepartmentofBiomedicalEngineering,UniversityofTechnology,Eindhoven,TheNetherlands, 2 DepartmentofBiomedicalEngineering,MaastrichtUniversity,Maastricht,TheNetherlands,3 KTHSolid Mechanics,SchoolofEngineeringSciences,KTHRoyalInstituteofTechnology,Stockholm,Sweden, 4 DepartmentofMechanicalEngineering,JohnsHopkinsUniversity,Baltimore,UnitedStatesofAmerica, 5 DepartmentofMolecularMedicineandSurgery,KarolinskaInstitute,Stockholm,Sweden *[email protected] a1111111111 Abstract a1111111111 a1111111111 Thebiomechanics-basedAbdominalAorticAneurysm(AAA)ruptureriskassessmenthas a1111111111 gainedconsiderablescientificandclinicalmomentum.However,suchstudieshavemainly a1111111111 focusedoninformationatasingletimepoint,andlittleisknownabouthowAAAproperties changeovertime.Consequently,thepresentstudyexploredhowgeometry,wallstress- relatedandbloodflow-relatedbiomechanicalpropertieschangeduringAAAexpansion. Fourpatientswithatotalof23ComputedTomography-Angiography(CT-A)scansatdiffer- OPENACCESS enttimepointswereanalyzed.Ateachtimepoint,patient-specificpropertieswereextracted Citation:StevensRRF,GrytsanA,BiasettiJ,RoyJ, from(i)thereconstructedgeometry,(ii)thecomputedwallstressatMeanArterialPressure LindquistLiljeqvistM,GasserTC(2017) (MAP),and(iii)thecomputedbloodflowvelocityatstandardizedinflowandoutflowcondi- Biomechanicalchangesduringabdominalaortic tions.Testingcorrelationsbetweentheseparametersidentifiedseveralnonintuitivedepen- aneurysmgrowth.PLoSONE12(11):e0187421. https://doi.org/10.1371/journal.pone.0187421 dencies.Mostinterestingly,thePeakWallRuptureIndex(PWRI)andthemaximumWall ShearStress(WSS)independentlypredictedAAAvolumegrowth.Similarly,Intra-luminal Editor:JoseManuelGarciaAznar,Universityof Zaragoza,SPAIN Thrombus(ILT)volumegrowthdependedonboththemaximumWSSandtheILTvolume itself.Inaddition,ILTvolume,ILTvolumegrowth,andmaximumILTlayerthicknesscorre- Received:July5,2017 latedwithPWRIaswellasAAAvolumegrowth.Consequently,alargeILTvolumeaswell Accepted:October19,2017 asfastincreaseofILTvolumeovertimemaybeariskfactorforAAArupture.However,tai- Published:November7,2017 loredclinicalstudieswouldberequiredtotestthishypothesisandtoclarifywhethermonitor- Copyright:©2017Stevensetal.Thisisanopen ingILTdevelopmenthasanyclinicalbenefit. accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. Introduction DataAvailabilityStatement:Allrelevantdataare Degradationofelastin,collagenandapoptosisofSmoothMuscleCells(SMC)[1]mayleadto withinthepaperanditsSupportingInformation AbdominalAorticAneurysm(AAA)formationintheinfrarenalaorta,whichinturnmay files. resultinaorticrupture.ElectivesurgicalorendovascularAAArepairisofferedtoprevent Funding:Theauthorsreceivednospecificfunding suchcatastrophicevents,andrepairisindicatedassoonastheriskofaorticruptureexceeds forthiswork. theinterventionalrisks.Whiletherisksofinterventionarereasonablypredictable,assessing AAAruptureriskremainschallengingduringclinicaldecisionmaking.Presentclinicalguide- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. linesrecommendAAArepairassoonasthediameterreaches55mmorgrowsfasterthan PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 1/16 BiomechanicalchangesduringAAAgrowth 10mm/year[2,3],anddiameterremainsthemostimportantsurrogatemarkerofAAArisk[4]. However,aconsiderableportionofAAAsrupturebelowthesizeof55mm(especiallyinfemale patientsandcurrentsmokers[5]),whereasmanyaneurysmslargerthan55mmneverrupture [6–8].Consequently,amorerobustAAAruptureriskassessmentwouldbeofgreatclinical value. TheBiomechanicalRuptureRiskAssessment(BRRA)quantitativelyintegratesmany knownriskfactorsforAAArupture,allowingamoreholisticriskassessment.TheBRRAhas gainedconsiderablemomentum[9–18],butthederivedindicesareessentiallybasedoninfor- mationatasingletimepoint,andcurrentlylittleisknownabouthowAAAbiomechanical parameterschangeovertime. AlmostallclinicallyrelevantAAAscontainanintra-luminalthrombus(ILT)[19]com- posedoffibrinandbloodcells.TheroleofILTisstillcontentious,butitisthoughttoplayan importantroleinAAAprogression.DespiteILTtissuebeingseveraltimessofterthanthe AAAwall,itmaybelargeinvolume,andthushavingasignificantstructuralimpactonAAA biomechanics.Numerical[20,21]andin-vitroexperimental[22]studiesreportedILT’sstruc- turalimpact,andthelocationofPeakWallStress(PWS)hasbeenassociatedwiththesiteof smallestILTlayerthickness[23].Consequently,athrombuslayermayprotectthevesselwall fromrupturebyactingasastressbuffer[20,22],thusdecreasingtheruptureriskoftheaneu- rysm.However,whengrowingtoothick,theILTlayercancausethewalltoweaken,forexam- pleduetohypoxia[24].TheILTalsoprovidesanidealenvironmentforproteolyticagents [25].ThesechemicalscanbeconveyedthroughtheporousILT[26,27]anddiminishwall strengthbyproteolyticdegradationofelastinandcollagen.Suchawallweakeningmechanism couldexplainwhyathickILTlayer[28]andfastincreaseinILTvolume[29]havebeenlinked toAAArupturerisk.ArecentCT-A-basedstudy[30]reportedsomeconsequencesforAAA growththatmightbelinkedtobothaforementioned(competing)ILT-basedmechanisms.The studyfoundslowestAAAwallexpansionbehindanaboutsevenmillimeterthickILTlayer,i.e. ILT-basedstressbufferingseemstobefullycompensatedbyILT-basedwallweakeningonce theILTlayerreachedthisthickness. Thepresentstudyaimsatinvestigatinghowgeometry,wallstress-relatedandbloodflow- relatedbiomechanicalpropertieschangeduringAAAexpansion.Despitethefactthateffects ofbloodflowonAAAgrowthhavebeenreported[31],theinteractionbetweenthesefactorsis stillpoorlyunderstood.Knowledgeaboutthetimecourseofsuchparametersmayleadtoa betterestimateofAAAruptureriskandimprovemonitoringprotocolsofAAApatients. Materialsandmethods Patientcohort TheuseofanonymizedpatientdatawasapprovedbytheKarolinskaInstituteethicscommit- tee.AAApatientsfromKarolinskaUniversityHospital,Stockholm,Swedenwithatleastfive highresolutionComputedTomography-Angiography(CT-A)scanrecordingswithinthelast 10yearswereincluded.MostoftheCT-Ascanswereperformedfordiagnosticpurposesand AAAsurveillance.PatientcharacteristicsarelistedinTable1.Toavoidtemporalfluctuations, thebloodpressurewasaveragedoverallavailablemeasurements. Geometricalanalysis Theaortawassemi-automaticallysegmentedbetweentherenalarteriesandtheaorticbifurca- tion(A4clinicsResearchEdition,VASCOPSGmbH,Graz,Austria).Segmentedgeometries includedluminalandexteriorAAAsurfacesandusedapredefinedwallthicknessthat accountedforthereportedwallthinningbehindtheILT[28].Specifically,inordertoaccount PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 2/16 BiomechanicalchangesduringAAAgrowth Table1. PatientcharacteristicsandtimelineofComputedTomography-Angiography(CT-A)scans. PatientID Ageinyearsatbaseline Gender Bloodpressure(mmHg) NumberofCT-Ascans(n)andfollow-uptimesinyearsfrombaseline A 76 male 140/80 (5)0/0.7/2.2/2.7/3.9 B 64 female 207/113 (5)0/2.0/3.0/4.0/5.9 C 63 male 160/100 (7)0/0.6/1.5/2.7/4.2/5.3/8.4 D 73 female 140/80 (6)0/0.3/0.6/1.3/3.5/3.7 https://doi.org/10.1371/journal.pone.0187421.t001 foramoderatewallthinningbehindtheILTlayer,thewallthicknesswassettoH ¼ (cid:2) (cid:3) WALL max 1:5(cid:0) 0:17H mmwithH denotingthelocalthicknessoftheILTlayerinmillimeters. 25 ILT ILT Suchpredefinedvaluecomparesreasonablyto1.56mm,anaveragevaluereportedinthelitera- ture,seeTable2inanotherstudy[32].Thereproducibilityoftheappliedmethodhasbeen reportedpreviously[33–35],andatypicalAAAsegmentationisshowninFig1A.Themaxi- mumdiameter(d ),themaximumILTlayerthickness(H ),andluminal(V ), max ILTmax lum thrombus(V )andtotal(V )volumeswerecalculatedforeachaorticgeometry.SeeTable2 ILT tot forfurtherdetails. Structuralanalysis Non-linearFiniteElement(FE)modelswereusedtocomputethestressintheAAAwallat MeanArterialPressure(MAP).PeakWallStress(PWS),i.e.thehighestvonMisesstressinthe aneurysmwall,wasextractedfromeachsimulation(A4clinicsResearchEdition,VASCOPS GmbH,Graz,Austria).TheFEmodelusedhexahedral-dominatedfiniteelementsofQ1P0for- mulation[38]toavoidvolumelockingofincompressiblesolids.TheAAAwasfixedatthe Table2. Definitionofgeometricalandbiomechanicalparameters. Boldfacenotationdenotesvectorortensorquantities,andtheregionofinterestwas (manually)specifiedbetweenthelowerleveloftherenalarteriesandtheupperleveloftheaorticbifurcation,respectively. Notation Description Remark Geometricalparameters d Maximumouterdiameterperpendiculartotheluminalcenterline max H MaximumthicknessoftheIntra-LuminalThrombus(ILT)layer,i.e.maximumdistancebetweenwall-ILT ILTmax interfaceandtheluminalsurface V ,V V Volumesofthelumen,ILTandthetotalvessel. lum ILT, tot Structuralbiomechanicalparameters PWS PeakWallStress.HighestvonMisesstressinthewallallovertheAAA PWS=max[Wallstress] h i PWRI PeakWallRuptureIndex.Highestratiobetweenthecalculatedwallstressandtheestimatedwallstrength PWRI¼max Wallstress allovertheAAA. Wallstrength Hemodynamicbiomechanicalparameters v ,v , Minimal,maximalandmeanmagnitudeofthebloodflowvelocity.Themeanbloodflowvelocityisderived v =min[|v|]; min max min v byaveragingthemagnitudeofthebloodflowvelocityvoverthetimeTofthecardiaccycle,aswellasthe v =max[|v|]; mean mZax(cid:20) Z (cid:21) volumeofthelumenVlum v ¼1 T 1 Vlumjvjdv dt mean T 0 Vlum 0 g_ ;g_ Minimalandmaximalscalarshearratesoverthecardiaccycle.Thesequantitiesarederivedfromthe g_ ¼min½g_(cid:138); g_ ¼max½g_(cid:138) min max min pffiffiffiffiffimffiffiaffixffiffiffiffiffiffiffiffi spatialvelocitygradientgradv,i.e.aquantitythatdenoteshowfastthebloodvelocitychangesinspace. withg_ ¼ 2l l and symsym l =(gradv+gradTv)/2 sym WSS , MinimalandmaximalmagnitudeoftheWallShearStress(WSS)vectorWSSoverthecardiaccycle.WSS WSS =min[|WSS|] min min WSS denotesthemechanicalstressinducedbybloodflowontoblood-tissue(wallorILT)interface. WSS =max[|WSS|] max max (cid:0) (cid:1) OSI OscillatoryShearIndex.TheOSIiscomputedfromtheaveragedmagnitudeofWSSanditsmagnitude| OSI¼1 1(cid:0) jAWSSVj WSS|.TheOSIdenotesoscillatorybehavioroftheflowcausedbycomplexflowpatterns.Specifically,the withAWSS2¼1RTAWjWSSSSjdt extremecasesOSI=1andOSI=0denoteoscillatinganduni-directionalflows,respectively. T 0R andAWSSV¼1 TWSSdt T 0 https://doi.org/10.1371/journal.pone.0187421.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 3/16 BiomechanicalchangesduringAAAgrowth Fig1.Analysismethodperformedforeachpatientateachtimepoint.(a)LateralComputedTomography- Angiography(CT-A)slicewithsegmentedAbdominalAorticAneurysm(AAA).Yellow,blueandgreencurves denotetheluminalsurface,exteriorsurfaceandwall-thrombusinterface,respectively.(b)Ruptureriskindexplot derivedfromthestructuralbiomechanics-basedanalysisatMeanArterialPressure(MAP).(c)WallShearStress distributionatt=0.25softhecardiaccyclederivedfromaComputationalFluidDynamics(CFD)computation.At theinletandtheoutlets,theindicatedvolumeflowrateandpressureversustimeresponseswereprescribed [36,37]. https://doi.org/10.1371/journal.pone.0187421.g001 renalarteriesandattheaorticbifurcation,andnocontactwithsurroundingorganswascon- sidered.Isotropicconstitutivedescriptionsfortheaneurysmwall[39]andtheILT[27]were assignedtoeachmodelwiththeILTstiffnessgraduallydecreasingfromtheluminaltothe abluminalsites[27].Specifically,theAAAwallwasassumedtobehomogenousandmodeled bythetwo-parameterYeohstrainenergyfunctionψ=c (I −3)+c (I −3)2withI =trC 1 1 2 1 1 denotingthefirstinvariantoftherightCauchy-GreenstrainC.Here,thematerialparameters c =77kPaandc =1881kPahavebeenused,i.e.valuesidentifiedfromin-vitroAAAwall 1 2 P testing[39].TheILTwasmodeledbyanOgden-typestrainenergyfunctionc¼c 3 ðl4(cid:0) i¼1 i 1Þwithλ,i=1,2,3denotingtheprincipalstretches.TheconstitutivepropertiesoftheILTare i (cid:2) (cid:3) capturedbyc¼max 2:62(cid:0) 0:89H ;1:73 kPawithH denotingthelocalthicknessofthe 25 ILT ILT ILTlayerinmillimeters.Thisexpressionaccountsforthegradualdecreaseofstiffnessfrom theluminaltotheabluminallayer,i.e.asreportedfromin-vitrotestingofILTtissue[27].The wall-ILTinterfacewasrigid,i.e.ILTandAAAwalldisplacementsmatchedattheirinterface. AwallruptureriskindexwasdefinedbylocallydividingthevonMiseswallstresstoanesti- mateofwallstrength.AAAwallstrengthwasassignedinhomogeneouslyandestimatedbya scaledversion[18,34]ofthestrengthmodelproposedpreviously[12].Finally,thehighestwall riskindex,orPeakWallRuptureIndex(PWRI),wasextracted.Inordertoavoidpickingup PWRIartefacts,A4clinicsResearchEditionaveragesoverasufficientlylargenumberofFE nodes,i.e.locationswherethewallruptureriskindexiscomputed.Inaddition,PWRIlocation isindicatedinthesoftwarewindow,sothattheusercandisregardidentifiedartefacts.Fig1B illustratesthetypicaldistributionofthewallruptureriskindex,andTable2detailstheinvesti- gatedstructuralbiomechanicalparameters. Hemodynamicalanalysis RigidwallComputationalFluidDynamics(CFD)models(ANSYSCFX,ANSYSInc.US)with reportedinflowandoutflowconditions[36,37]wereusedtopredictthebloodflowvelocity. Specifically,attheinlet,aplugvelocityprofilewasderivedfromtheinflowvolumerate,andat PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 4/16 BiomechanicalchangesduringAAAgrowth bothoutlets,thepre-definedpressurewasused.Inflowvolumerateandoutletpressurewave havebeentakenfromtheliterature[37].Theno-slipboundaryconditionwasprescribedall alongtheluminalsurface.TheAAAlumenwasmeshedwithtetrahedralfinitevolumeele- ments(about2mminsize),andfivelayersofprismelements(layerthicknessrangingfrom 0.1mmto0.2mm)aimedatcaptureboundarylayerflow.Estimatesontherequiredmeshsize werebasedonourpreviousCFDwork[36].Specifically,ameshsensitivityanalysis[40]com- paredvelocity,pressure,andWSSattenpoints,toassesstherelationbetweendiscretization errorandelementsize. Thecontinuityandmomentumequationweresolvedwithinthesegmentofthevascular lumenthathasbeensegmentedfromCT-Aimages;intotalfivecardiaccycleswithbloodof densityr¼1050kg weresimulated.Inaddition,blood’sshear-thinningviscousproperties m3 werecapturedbytheCarreau-Yasudaviscositymodelm¼m þðm (cid:0) m Þ½1þðlg_Þa(cid:138)n(cid:0)a1. 1 0 1 Here,g_ denotesthescalarshearrate,andμ =0.16Pasandμ =0.0035Passpecifiedblood 0 1 viscosityatlowandhighshearrates,respectively.Inaddition,thetimeconstantλ=8.2s,the powerlawindexn=0.2128,andtheYasudaexponenta=0.64havebeenused.Theseparame- tersrepresentbloodviscosityofbloodat37degreesCelsius,andhavebeenusedpreviously [41,42].FurtherdetailsregardingtheappliedCFD,especiallyregardingverifyingtheplausibil- ityofthepredictions,aregivenelsewhere[43]. Hemodynamicsparameterswereextractedfromthefifthcalculatedcardiaccycleandinside theaneurysmaticvesseldomain(MATLAB,TheMathWorksInc.,Natick,Massachusetts, USA).Specifically,theminimal(v ),maximal(v )andmean(v )bloodflowvelocities, min max mean minimal(g_ )andmaximal(g_ )scalarshearrates,minimal(WSS )andmaximal min max min (WSS )WallShearStresses(WSS),aswellastheOscillatoryShearIndex(OSI)[28,44]were max computed.ThedefinitionoftheseparametersislistedinTable2,andFig1Cillustratesatypi- calWSSdistribution,forexample. Dataanalysis Dataanalysisofbiomechanicalparameterswascarriedoutwithintheaneurysmaticportions oftheaorta.Theproximalborderoftheaneurysmaticdomainwasdefinedbythevesselsec- tionatwhichtheaortawasatleast10%largerthanthenormal(nonaneurysmatic)aorta.The distalborderwasset2.0cmproximaltotheaorticbifurcation. Theratesofchangeovertimeofthegeometrical,structuralandhemodynamicalwerealso investigated.Atgiventimepoint,suchquantitieswerecalculatedasthearithmeticdifference betweentwoconsecutiveCT-Ascansanddividedbythetimebetweenthescans.Therateof changeofparameterXwasdenotedbyΔX. Pooleddatafromallpatientswerestatisticallyanalyzed(SPSS,IBMCorp.Released2013. IBMSPSSStatistics,Armonk,USA).AllparametersweretestedfornormalityusingtheSha- piro-Wilktest(significancelevel:p<0.05),andPearsonandSpearman’scorrelationtests(sig- nificancelevel:p<0.05)wereusedtoinvestigatesimplecorrelationamongnormalandnon- normaldistributedparameters,respectively.Analysisofvariance(ANOVA)wasusedtoassess thestatisticalsignificanceofmultivariatelinearregressions. Results Acompleteanalysisofasinglecaseatonetimepointtookabouttenhours.Figs2and3illus- tratethedevelopmentofthewallruptureriskindexandWSSovertimeforallfourpatients, respectively. PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 5/16 BiomechanicalchangesduringAAAgrowth Fig2.DevelopmentovertimeofthewallruptureriskindexatMeanArterialPressure(MAP)inallfourAbdominalAortic Aneurysm(AAA)patients. https://doi.org/10.1371/journal.pone.0187421.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 6/16 BiomechanicalchangesduringAAAgrowth Fig3.DevelopmentovertimeoftheWallShearStress(WSS)att=0.25softhecardiaccycle,i.e.atthetimeofpeakbloodinflow,inallfour AbdominalAorticAneurysm(AAA)patients.NotethatthistimepointdoesnotcorrelatewiththetimewhenWSSpeakswithintheaneurysmaticportion oftheaorta. https://doi.org/10.1371/journal.pone.0187421.g003 PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 7/16 BiomechanicalchangesduringAAAgrowth Fig4.Developmentofthemaximumdiameterd andthePeakWallRuptureIndex(PWRI)in max AbdominalAorticAneurysm(AAA)patientsAtoD.Eachtimepointislabeledwiththetimeinyearsfrom baseline.Forcomparison,theblacksolidcurvedenotesthePWRIversusd characteristicsthatinaverageis max seeninAAApatients.Dottedcurvesdenotethe5%and95%confidenceintervals,respectively. https://doi.org/10.1371/journal.pone.0187421.g004 Diameterandbiomechanicalruptureriskindex PWRIandd variedconsiderablyovertime(Fig4).AAACisratherstableandslightly max belowthemeanPWRIversusdiametercurve.Atbaseline,AAABhasaslightlysmallerdiame- terthanAAAC(49mmversus52mm)butahigherPWRI,andwithin5.9yearsitsdiameter growsupto60mm.Interestingly,PWRIincreasesrapidlyatfirstbutslightlydecreaseslater. CaseDisrathersmallatbaseline(42mm)ataPWRIbetweenthecasesBandC.After3.5years thediameterincaseDreaches48mm,butsubsequentlybothdiameterandPWRIreduce. AAAAisalreadylargeatbaseline(71mm),andwithin2.2yearsitsdiametergrowsto82mm, subsequentlyshrinkingbyabout4mm. Correlationanalysis Simplecorrelationanalysis. Tables3–6summarizetheresultsfromthesimplecorrela- tionanalysis,andFig5A–5Dillustrateskeyfindingswithrespecttod .Interestingly,d max max Table3. Correlationsofgeometricalandbiomechanicalparameterswiththemaximumdiameterd max (resultsarebasedonsimplecorrelationanalysis). Correlationcoefficient p-value H 0.755 <0.001 ILTmax V ;V ;V 0.968;0.936;0.822 <0.001;<0.001;<0.001 lum tot ILT PWS 0.891 <0.001 PWRI 0.672 0.002 γ_ ; γ_ -0.773;-0.554 <0.0010.014 min mean WSS ;WSS -0.698;-0.459 0.001;0.048 max mean OSI 0.768 <0.001 v ;v -0.695;-0.519 <0.001;0.023 min mean ΔV ;ΔV 0.646;0.501 0.003;0.029 tot ILT https://doi.org/10.1371/journal.pone.0187421.t003 PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 8/16 BiomechanicalchangesduringAAAgrowth Table4. CorrelationsofgeometricalandbiomechanicalparameterswiththeILTvolumeV (results ILT arebasedonsimplecorrelationanalysis). Correlationcoefficient p-value H 0.964 <0.001 ILTmax V ;V 0.804;0.941 <0.001;<0.001 lum tot PWS 0.640 0.003 PWRI 0.693 0.001 γ_ ; γ_ -0.866;-0.580 <0.001;0.009 min mean WSS ;WSS -0.829;-0.559 <0.001;0.013 max mean OSI 0.518 0.023 v -0.584 0.009 mean ΔV ;ΔV 0.750;0.605 <0.001;0.006 tot ILT https://doi.org/10.1371/journal.pone.0187421.t004 didnotcorrelatewithdiametergrowthΔd (Fig4A).Insteadd correlatedwithvolume max max growthΔV ,wallshearstressWSS ,andthebiomechanicalriskindexPWRI(Fig5B–5D). tot max Moreover,trivialcorrelationsbetweenthediameterandvolumes(V ,V andV )were lum tot ILT found. Thescalarshearratesg_ andg_ aswellasthewallshearstressesWSS (Fig5E)and min mean max WSS correlatednegativelywithV .Incontrast,thebiomechanicalriskindexPWRI(Fig mean ILT 5F)andtheOscillatoryShearIndexOSIshowedpositivecorrelationswithV .Inaddition, ILT themeanbloodflowvelocityv correlatednegativelywithV . mean ILT Withrespecttogrowthparameters,themaximumILTthicknessH correlatedwith ILTmax totalvolumegrowthΔV (Fig6C).Inaddition,PWRI(Fig6B)andOSIcorrelatedpositively, tot whileg_ (Fig6A)correlatednegativelywithΔV .Finally,simpleregressionwithrespectto min tot theILTgrowthΔV ,exhibitedcorrelationswithv ,PWRI(Fig6D),H (Fig6C)and ILT max ILTmax g_ (Table3). max Allidentifiedcorrelationsaregiveninthesupportinginformationsection. Multiplecorrelationanalysis. MultiplelinearregressionshowedthatbothWSS max (p=0.004)andPWRI(p=0.001)areindependentpredictorsofvesselvolumegrowth.Specifi- cally,volumegrowthincreasedwithlowWSS andhighPWRIfollowingtherelation max ΔV =a +a WSS +a PWRIwithparametersa =−47.2(CI :−89.4/−5.0),a =−0.411 tot 0 1 max 2 0 90% 1 (CI :−1.713/0.892)anda =124.1(CI :69.4/178.7),whereCI denotesthe90%confi- 90%) 2 90%) 90% denceinterval. Similarly,highWSS (p=0.023)andV (p<0.001)independentlypredictedILTvol- max ILT umegrowthaccordingtoΔV =b +b WSS +b V withtheparametersb =−48.38 ILT 0 1 max 2 ILT 0 Table5. CorrelationsofgeometricalandbiomechanicalparameterswiththechangeofAAAvolume ΔV overtime(resultsarebasedonsimplecorrelationanalysis). tot Correlationcoefficient p-value H 0.804 <0.001 ILTmax V ;V ;V 0.697;0.773;0.750 0.001;<0.001;<0.001 lum tot ILT PWS 0.584 0.009 PWRI 0.799 <0.001 γ_ -0.615 0.005 min WSS -0.577 0.010 max OSI 0.475 0.040 v -0.477 0.039 min ΔV 0.694 0.001 ILT https://doi.org/10.1371/journal.pone.0187421.t005 PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 9/16 BiomechanicalchangesduringAAAgrowth Table6. CorrelationsofgeometricalandbiomechanicalparameterswiththechangeofILTvolume ΔV overtime(resultsarebasedonsimplecorrelationanalysis). ILT Correlationcoefficient p-value H 0.627 0.004 ILTmax V ;V ;V 0.625;0.666;0.605 0.004;0.002;0.006 lum tot ILT PWS 0.524 0.021 PWRI 0.696 0.001 γ_ ; γ_ 0.548;-0.471 0.015;0.042 max min v 0.734 <0.001 max ΔV 0.694 0.001 tot https://doi.org/10.1371/journal.pone.0187421.t006 (CI :−75.73/−21.03),b =2.169(CI :0.859/3.479)andb =0.541(CI :0.346/0.736), 90% 1 90% 2 90% respectively. Discussion Clinicalandexperimentalobservationshaveindicatedthatbiomechanicalconditionsinflu- encetheprogressionofaneurysmdisease[45,46].Despitetheseobservations,afundamental understandingoftheseinteractionsisstillmissing,particularlytheroleoftheILTinAAA pathology[25]iscontroversiallydiscussed.TheILTisanactivebiochemicalentity[25]that influenceswallstrength[12,24]andAAAprogression[30],butalsomechanicallyunloadsthe stressinthewall[20–22].Specifically,clinicalstudieshavelinkedathickILTlayer[28]and fastincreaseinILTvolume[29]toincreasedAAArupturerisk.Thepresentbiomechanical studysupportstheseobservationsthroughastrongpositivecorrelationofthebiomechanical riskindexPWRIwithbothILTvolumeV anditschangeovertimeΔV .Consequently, ILT ILT thesuitabilityofmonitoringILTvolume,anditschangeovertime,asadditionalriskindica- torsshouldbeexploredinlargerclinicalstudies. ILTformationrequiresplateletaccumulation,andforplateletstobeabletoadheretothe vessel,plateletsmustspendsufficienttimeinthevicinityofthrombogenicsurfaces.Therefore, theadhesionofplateletsmightbepromotedatsitesoflowWSS[43],i.e.aninverserelation- shipbetweenWSSandaneurysmexpansionmayexist.Suchaninverserelationshipiscon- firmedbyourstudythroughthenegativecorrelationofΔV withWSS.Similarconclusions tot havebeendrawnfromclinicalobservations,experimentalAAAmodels[46],andsimulation studies[31] ThepresentstudyfoundthatPWRIandWSS independentlypredictedthegrowthof max totalAAAvolumeΔV .PWRIisstronglyrelatedtothestressinthewall,andourfindingis tot supportedbypreviousexperimentalstudies[30]showingthatthegrowthofsmallAAAsis especiallysensitivetowallstress.DuetothelackofendothelialcellsinAAAs[28],bloodflow propertiesmayonlyindirectlypromoteAAAgrowththroughstimulationofthebiochemical environmentwithintheILT.Forexample,ahighOSIcouldsupportpumpingproteolytic agentsthroughtheporousILT,whichinturncouldpromoteAAAgrowth. Contrarytointuition,ourdatashowedthatthebiomechanicalriskdoesnotalwaysincrease intime.WallstressisstronglylinkedtoAAAshapeparameterslikeitsasymmetry[47]or, moregenerally,tothesurfacecurvatures[41].Consequently,ifgrowthappearstoreduceAAA asymmetry,thebiomechanicalriskforrupturealsoreduces,i.e.theaneurysmgrowsintoa shapeoflowerriskforrupture.ThefluctuationsinPWRIcouldalsobeexplainedbyreleasing spotsofhighsurfacecurvaturesofthewallthrough“cracking”ofwallcalcificationsduring AAAexpansion,forexample. PLOSONE|https://doi.org/10.1371/journal.pone.0187421 November7,2017 10/16

Description:
Knowledge about the time course of such parameters may lead to a The reproducibility of the applied method has been Non-linear Finite Element (FE) models were used to compute the stress in the AAA aneurysm wall, was extracted from each simulation (A4clinics Research Edition, VASCOPS.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.