ebook img

Biomaterials PDF

249 Pages·2014·4.491 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomaterials

BIOENGINEERING AND HEALTH SCIENCE SERIES Biomaterials Edited by Véronique Migonney Biomaterials Series Editor Marie-Christine Ho Ba Tho Biomaterials Edited by Véronique Migonney First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2014 The rights of Véronique Migonney to be identified as the author of this work have been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2014947880 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-585-6 Contents INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Véronique MIGONNEY CHAPTER 1. HISTORY OF BIOMATERIALS . . . . . . . . . . . . . . . . . 1 Véronique MIGONNEY 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. The evolution of biomaterials: several generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Was gold the first “biomaterial”? . . . . . . . . . . . . . . . . . . 4 1.4. The use of glass to replace eyes . . . . . . . . . . . . . . . . . . . 6 1.5. Wood, leather, stainless steel to replace amputated limbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CHAPTER 2. DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Véronique MIGONNEY 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2. Definitions of a “biomaterial” . . . . . . . . . . . . . . . . . . . . 12 2.2.1. Dictionary definitions . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2. Definitions of biomaterials from expert scientists of the domain . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3. Up-to-date definition of biomaterials . . . . . . . . . . . . . 14 2.2.4. Extensions of the biomaterials field . . . . . . . . . . . . . . 14 2.3. Biomedical device . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2. Definition of a medical device . . . . . . . . . . . . . . . . . 17 vi Biomaterials 2.3.3. Classes of medical devices . . . . . . . . . . . . . . . . . . . . 18 2.4. Other definitions: implant, prosthesis, organ, graft, etc. . . . . . 19 2.5. Tissue engineering, regenerative medicine, nanomedicine . . . 20 2.5.1. Tissue engineering . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2. Regenerative medicine . . . . . . . . . . . . . . . . . . . . . . 22 2.5.3. Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CHAPTER 3. MATERIALS USED IN BIOMATERIAL APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Géraldine ROHMAN 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2. Metals and alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1. Titanium and titanium-based alloys . . . . . . . . . . . . . . 32 3.2.2. Stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.3. Cobalt-based alloys . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.4. Shape–memory alloys . . . . . . . . . . . . . . . . . . . . . . 37 3.2.5. Tantalum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.6. Surface coating and finishing . . . . . . . . . . . . . . . . . . 39 3.3. Bioceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1. Nearly bioinert oxide-based ceramics . . . . . . . . . . . . . 42 3.3.2. Carbon-based implants . . . . . . . . . . . . . . . . . . . . . . 44 3.3.3. Bioactive ceramics . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.4. Resorbable ceramics . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.5. Glass-ionomers . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.6. Surface processing of ceramic materials . . . . . . . . . . . . 50 3.4. Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.1. Non-degradable synthetic polymers . . . . . . . . . . . . . . 52 3.4.2. Synthetic and natural degradable polymers . . . . . . . . . . 56 3.4.3. Biomedical elastomers . . . . . . . . . . . . . . . . . . . . . . 67 3.4.4. Shape–memory polymers . . . . . . . . . . . . . . . . . . . . 69 3.4.5. Conjugated polymer-based biomaterials . . . . . . . . . . . . 71 3.4.6. Polymer surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 CHAPTER 4. BIOCOMPATIBILITY AND NORMS . . . . . . . . . . . . . . . 83 Véronique MIGONNEY 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2. Definitions of “biocompatibility” . . . . . . . . . . . . . . . . . . 84 4.2.1. Introduction to biocompatibility . . . . . . . . . . . . . . . . 84 Contents vii 4.2.2. History of the definitions . . . . . . . . . . . . . . . . . . . . . 85 4.3. Discussion on biocompatibility . . . . . . . . . . . . . . . . . . . 86 4.4. Host response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5. Biocompatibility – how can we evaluate it? . . . . . . . . . . . . 89 4.6. Infection, sterilization, prevention of infection . . . . . . . . . . 91 4.7. Norms and biocompatibility?. . . . . . . . . . . . . . . . . . . . . 94 4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 CHAPTER 5. BIOACTIVE POLYMERS AND SURFACES: A SOLUTION FOR IMPLANT DEVICES . . . . . . . . . . . . . . . . . . . . 101 Véronique MIGONNEY 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3. Model “bioactive” polymers . . . . . . . . . . . . . . . . . . . . . 103 5.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.4. “Bioactive” prosthetic surfaces . . . . . . . . . . . . . . . . . . . 106 5.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4.2. Concept and feasibility of the grafting of “bioactive” polymers onto prosthetic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.3. Applications: (a) grafting of “bioactive” polymers onto LARS ligament prostheses and (b) grafting of “bioactive” polymers onto Ceraver total hip prostheses . . . . . . . . . . . . . . . . . . . . . . . 109 5.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 CHAPTER 6. FUNCTIONALIZATION OF BIOMATERIALS AND APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Céline FALENTIN-DAUDRE 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.1. “Grafting to” on stainless steel surfaces for antibacterial and antiadhesion properties . . . . . . . . . . . . . . . 121 6.2.2. Grafting of bioactive polymers onto titanium implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.3. Radical graft polymerization of bioactive polymers on poly(ethylene terephthalate) (PET) for anterior cruciate ligament applications . . . . . . . . . . . . . . 126 6.3. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 viii Biomaterials CHAPTER 7. BIOMATERIAL STRUCTURES FOR ANTERIOR CRUCIATE LIGAMENT REPLACEMENT . . . . . . . . . . . . . . . . . . . 135 Cédryck VAQUETTE 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2. Off the shelf ligaments . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2.1. Non-resorbable artificial ligaments . . . . . . . . . . . . . . . 136 7.2.2. Resorbable artificial ligaments . . . . . . . . . . . . . . . . . 139 7.2.3. Natural materials for ACL replacement . . . . . . . . . . . . 141 7.3. Tissue-engineered constructs . . . . . . . . . . . . . . . . . . . . . 142 7.3.1. Cell sheet technology . . . . . . . . . . . . . . . . . . . . . . . 142 7.3.2. Fibrous scaffolds . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.3.3. Knitted/braided scaffolds . . . . . . . . . . . . . . . . . . . . 144 7.4. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 CHAPTER 8. ANIMAL MODELS FOR ORTHOPEDIC APPLICATIONS OF TISSUE ENGINEERING . . . . . . . . . . . . . . . . . . 151 Véronique VIATEAU, Adeline DECAMBRON and Mathieu MANASSERO 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.2. Factors involved in choosing a model . . . . . . . . . . . . . . . 152 8.2.1. Model relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.2.2. Model objectivity and reproducibility . . . . . . . . . . . . . 159 8.2.3. Ethical considerations . . . . . . . . . . . . . . . . . . . . . . 160 8.2.4. Financial considerations . . . . . . . . . . . . . . . . . . . . . 161 8.2.5. Technical limitations . . . . . . . . . . . . . . . . . . . . . . . 161 8.3. The good model for the good question research: decision-making approach . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3.1. Evaluation of biocompatibility, degradation and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3.2. Mechanistic studies . . . . . . . . . . . . . . . . . . . . . . . . 164 8.3.3. Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 8.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 CHAPTER 9. CERAMIC MATERIALS FOR DENTAL PROSTHESES . . . . 181 Amélie MAINJOT 9.1. The place of ceramics in modern prosthetic dentistry . . . . . . 181 9.2. Dental ceramics systems . . . . . . . . . . . . . . . . . . . . . . . 183 9.3. Glass ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.3.1. Classical glass ceramics . . . . . . . . . . . . . . . . . . . . . 186

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.