ebook img

Biomass-Derived Carbon Materials: Production and Applications PDF

344 Pages·2023·13.452 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biomass-Derived Carbon Materials: Production and Applications

Biomass-Derived Carbon Materials Production and Applications Edited by Alagarsamy Pandikumar, Perumal Rameshkumar, and Pitchaimani Veerakumar Editors AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Dr.AlagarsamyPandikumar publisherdonotwarranttheinformation ElectroOrganicandMaterials containedinthesebooks,includingthisbook, ElectrochemisryDivision tobefreeoferrors.Readersareadvisedtokeep (CSIR)-CentralElectrochemical inmindthatstatements,data,illustrations, ResearchInstitute proceduraldetails,orotheritemsmay Karaikudi-630003,TamilNadu inadvertentlybeinaccurate. India LibraryofCongressCardNo.:appliedfor Dr.PerumalRameshkumar DepartmentofChemistry BritishLibraryCataloguing-in-PublicationData KalasalingamAcademyofResearchand Acataloguerecordforthisbookisavailable Education,Krishnankoil-626126 fromtheBritishLibrary. TamilNadu India Bibliographicinformationpublishedby theDeutscheNationalbibliothek Dr.PitchaimaniVeerakumar TheDeutscheNationalbibliotheklists InstituteofAtomicandMolecular thispublicationintheDeutsche SciencesAcademiaSinica(IAMS) Nationalbibliografie;detailedbibliographic NationalTaiwanUniversity,10617 dataareavailableontheInternetat Taipei <http://dnb.d-nb.de>. Taiwan ©2023WILEY-VCHGmbH,Boschstraße12, Cover:©From“RecentAdvanceson 69469Weinheim,Germany PorousCarbonMaterialsfor ElectrochemicalEnergyStorage”by Allrightsreserved(includingthoseof LibinWangandXianluoHu,Chem. translationintootherlanguages).Nopartof AsianJ.10.1002/asia.201800553, thisbookmaybereproducedinanyform–by CopyrightWiley-VCHGmbH. photoprinting,microfilm,oranyother Reproducedwithpermission. means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.,usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34926-5 ePDFISBN:978-3-527-83289-7 ePubISBN:978-3-527-83291-0 oBookISBN:978-3-527-83290-3 Typesetting Straive,Chennai,India iii Contents Preface xi Acknowledgments xiii 1 IntroductiontoBiomass-DerivedCarbonMaterials 1 A.Sivakami,R.Sarankumar,S.Vinodha,andL.Vidhya 1.1 Introduction 1 1.2 BiomassResourcesandComposition 3 1.2.1 Plant-BasedBiomass 4 1.2.2 Fruit-BasedBiomass 5 1.2.3 Microorganism-BasedBiomass 7 1.2.4 Animal-BasedBiomass 7 1.3 ConditionforPrecursorSelectionofBiomass-DerivedCarbon 8 1.4 ProductionMethodsofBiomass-DerivedCarbon 8 1.4.1 Carbonization 9 1.4.1.1 HydrothermalCarbonization 9 1.4.1.2 Pyrolysis 10 1.5 Biomass-DerivedCarbons(B-d-CMs)ActivationMethods 11 1.5.1 PhysicalActivation 11 1.5.2 ChemicalActivation 13 1.5.3 CombinationofPhysicalandChemicalActivation 14 1.5.4 ModificationandStructuralControlofB-d-CMs 14 1.5.4.1 SurfaceModificationandHeteroatomDopingofB-d-CMs 15 1.5.4.2 B-d-CMsSurfaceLoadingofMetalOxidesorHydroxides 15 1.5.4.3 SurfaceIncorporationwithDifferentNanostructures 17 1.6 ProductionProcessDescription 17 1.7 CostAnalysis 19 1.8 Summary 19 References 20 2 IntroductiontoBiowaste-DerivedMaterials 27 ThangaveluKokulnathan,BalasubramanianSriram,Sabarison Pandiyarajan,SubramanianRamanathan,andThangaveluSakthiPriya 2.1 Introduction 27 iv Contents 2.2 Synthesis 28 2.2.1 ActivationMechanismofBW-ACbyPhysicalActivation 28 2.2.2 ActivationMechanismofBW-ACsbyChemicalActivation 29 2.2.2.1 InfluenceofAlkalineActivatingAgents 30 2.2.2.2 InfluenceofAcidicActivatingAgents 31 2.2.2.3 InfluenceofNeutralActivatingAgents 31 2.2.2.4 InfluenceofSelf-ActivatingAgents 32 2.3 Characterization 32 2.3.1 ElectronMicroscopes 32 2.3.2 HR-TEMAnalysis 34 2.3.3 FTIRSpectroscopy 35 2.3.4 RamanSpectroscopy 36 2.3.5 XPSAnalysis 38 2.3.6 XRDPatterns 39 2.3.7 BETAnalysis 41 2.4 Properties 43 2.4.1 SurfaceDefectsinBW-AC 43 2.4.2 CharacterizationsofCarbonDefects 46 2.4.3 IntrinsicCarbonDefectsActivity 47 2.4.4 HeteroatomDopingDefects(or)ExtrinsicCarbonDefectsActivity 48 2.4.5 ElectronicBandStructureProperties 48 2.5 Summary 50 References 50 3 Biomass-derivedCarbon-basedMaterialsforMicrobicidal Applications 63 SelvamuthuPreethi,ArunachalamArulraj,RamalingaViswanathan Mangalaraja,VelayuthamRavichandran,andNatesanSubramanian 3.1 Introduction 63 3.2 BiomassMaterials 64 3.2.1 CarbonandItsDerivatives 65 3.3 Microbicidal 66 3.3.1 MechanismofAction 67 3.3.2 MicrobicidalResistance 68 3.3.3 FactorsAffectingMicrobicidalResistance 68 3.4 MicrobicidalPerformanceofBiomass-DerivedCarbonaceous Materials 69 3.4.1 RoleofMaterialPhysicochemicalProperties 70 3.4.1.1 StructuralDestruction 70 3.4.1.2 OxidativeStress 73 3.4.1.3 WrappingEffect 76 3.4.1.4 PhotothermalEffect 77 3.4.1.5 ExtractionofLipid 78 3.4.1.6 MetabolicInhibitoryEffect 79 3.5 BioengineeringProspectiveTowardCarbonaceousMaterials 79 Contents v 3.5.1 WoundDressing 80 3.5.2 SurfaceModifications(Coating)onMedicalDevices 81 3.5.3 NanoantibioticFormulations 82 3.6 Biosafety 83 3.7 ConclusionandFuturePerspectives 84 Acknowledgment 85 References 85 4 Carbon-BasedNanomaterialsPreparedfromBiomassfor Catalysis 93 A.Rajeswari,E.JackcinaStobelChristy,andAnithaPius 4.1 Introduction 93 4.2 PreparationofBiomass-DerivedCarbon-BasedNanomaterials 94 4.3 Graphene 95 4.3.1 PreparationofGraphene 95 4.3.2 GraphenefromDifferentSources 95 4.4 CarbonNanotubes(CNTs) 99 4.4.1 SynthesisofCNTs 99 4.4.2 SynthesisofCNTsUsingBiomassMaterials 99 4.5 CarbonQuantumDots(CQDs) 102 4.5.1 CQDsfromBiomass 102 4.6 CatalyticApplicationsofCarbon-BasedNanomaterials 104 4.6.1 PotentialAdvantagesinUsingCarbon-BasedNanomaterialsfor AdvancedCatalysts 104 4.6.2 Photocatalysts 105 4.6.3 ElectroCatalysts 107 4.7 Conclusions,FutureOutlook,andChallenges 107 Acknowledgments 107 References 108 5 Biomass-DerivedCarbonQuantumDotsforFluorescence Sensors 113 SomasundaramAnbuAnjugamVandarkuzhali,JeyabalanShanmugapriya, ChinnaAyyaSwamyP,SubramanianSingaravadivel,andGandhiSivaraman 5.1 Introduction 113 5.2 CharacterizationofCDs 114 5.3 OpticalProperties 115 5.3.1 Absorbance 115 5.3.2 Fluorescence 115 5.4 MethodsfortheSynthesisofCDs 115 5.4.1 HydrothermalCarbonizationMethod 116 5.4.2 MicrowaveMethod 116 5.4.3 ChemicalOxidationMethod 116 5.4.4 Pyrolysis 117 5.5 ApplicationofCDs 117 vi Contents 5.5.1 MetalIonSensing 117 5.5.1.1 Mercury(Hg2+)Sensor 118 5.5.1.2 Iron(Fe3+)Sensor 119 5.5.1.3 Lead(Pb2+)Sensor 120 5.5.1.4 Copper(Cu2+)Sensor 120 5.5.1.5 MiscellaneousMetalIons 122 5.5.2 AnionSensors 122 5.5.3 MiscellaneousMolecules 123 5.6 ConclusionandFuturePerspectives 123 References 124 6 Biomass-DerivedMesoporousCarbonNanomaterialsforDrug DeliveryandImagingApplications 129 BalajiMaddiboyina,RamyaKrishnaNakkala,andGandhiSivaraman 6.1 Introduction 129 6.2 DrugDeliverySystemsBasedonMCNs 130 6.2.1 Immediate-releaseDDS 130 6.2.2 Sustained-releaseDDS 130 6.2.3 Controlled/TargetedDDS 131 6.3 PhotothermalTherapy 131 6.3.1 SynergisticTherapy 135 6.3.2 CellLabeling 135 6.3.3 RemovalofToxicSubstances 139 6.3.4 TransmembraneDelivery 139 6.3.5 PhotoacousticImaging 139 6.3.6 TherapeuticBiomoleculeDelivery 140 6.3.7 Biosensing 140 6.3.8 MagneticResonance(MR)Imaging 142 6.4 ConclusionandFuturePerspectives 143 References 143 7 MesoporousCarbonSynthesizedfromBiomassasAdsorbent forToxicChemicalRemoval 147 BabuCadiamMohan,SrinivasanVinjuVasudevan,RamkumarVanaraj, SundaravelBalachandran,andSelvamaniArumugam 7.1 Introduction 147 7.2 SynthesizedMethodsofMesoporousCarbonsfromBiowasteor Biomass 148 7.3 ApplicationofMesoporousActivatedCarbons 149 7.3.1 RemovalofDyes 149 7.3.1.1 GWACasanAdsorbentforMethyleneBlueandMetanilYellow 150 7.3.1.2 RiceHusk(RH)-DerivedMesoporousActivatedCarbon(AC)for MethyleneBlue(MB)DyeRemoval 151 7.3.1.3 ActivatedCarbonfromRattanWasteforMethyleneBlue(MB) Removal 152 Contents vii 7.3.1.4 ActivatedCarbonfromCattailBiomass(CAC)forMalachiteGreen(MG) Removal 152 7.3.1.5 WoodSawdustWasteActivatedCarbon(WACF-P)forXylenolOrange (XO)Removal 152 7.3.1.6 MesoporousActivatedCarbonfromAgriculturalWasteforMethylene BlueRemoval 153 7.3.1.7 MesoporousActivatedCarbonfromEdibleFungiResidue(EFR-AC)for ReactiveBlack5Removal 153 7.3.1.8 MesoporousActivatedCarbonfromPlantWastesforMethyleneBlue (MB)Removal 153 7.3.1.9 MesoporousActivatedCarbonfromCorozooleiferaShellforMethylene Blue(MB)Removal 154 7.3.1.10 MesoporousActivatedCarbonfromCoconutCoirDustforMethylene Blue(MB)andRemazolYellow(RY)Removal 154 7.3.1.11 MesoporousActivatedCarbonfromMacadamiaNutShell(MNS)Waste forMethyleneBlue(MB)Removal 155 7.3.1.12 MesoporousActivatedCarbonfromNeobalanocarpusHeimiiWood Sawdust(WSAC)forMethyleneBlue(MB)Removal 155 7.3.2 RemovalofMetalIons 155 7.3.2.1 UseofChickenFeatherandEggshelltoSynthesizeaNovelMagnetized ActivatedCarbonforSorptionofHeavyMetalIons 157 7.3.2.2 Meso/micropore-ControlledHierarchicalPorousCarbonDerivedfrom ActivatedBiocharasaHigh-PerformanceAdsorbentforCopper Removal 158 7.3.3 RemovalofPhenolicCompounds 158 7.4 ConclusionandFutureOutlooks 165 References 165 8 Biomass-derivedCarbonasElectrodeMaterialsfor Batteries 171 P.Vengatesh,C.KarthikKumar,T.S.Shyju,andM.Paulraj 8.1 Introduction 171 8.1.1 Batteries 172 8.1.2 ClassificationofBatteries 172 8.1.3 CharacteristicsofBatteries 172 8.2 RoleofCarbonwithMechanismofRechargeableBatteries(RBs) 174 8.2.1 Li-IonBatteries(LIBs) 174 8.2.2 Li-SBatteries(Li-S) 175 8.2.3 Na-IonBatteries(SIBs) 176 8.2.4 Zn-AirBatteries(ZABs) 178 8.3 Biomass-derivedCarbonaceousMaterials 179 8.4 ElectrochemicalPerformancesofRBsusingBiomass-derivedCarbon Electrodes 181 8.4.1 Li-IonBatteries(LIBs) 181 8.4.1.1 Biomass-derivedUndopedCarbonElectrodes 181 viii Contents 8.4.1.2 MetalOxides@Biomass-derivedCarbonNanocomposite Electrodes 186 8.4.1.3 MetalSulfides@Biomass-derivedCarbonNanocomposite Electrodes 188 8.4.2 Na-IonBatteries(SIBs) 189 8.4.2.1 Biomass-derivedUndopedCarbonElectrodes 190 8.4.3 Li-Sbatteries 195 8.4.3.1 Biomass-derivedCarbonHosts 198 8.4.4 Zn-AirBatteries 199 8.5 Biomass-derivedHeteroatom-DopedCarbonElectrodesforRBs 201 8.5.1 Single-Heteroatom-DopedCarbonElectrodes 202 8.5.2 Dual-Heteroatom-DopedCarbonElectrodes 204 8.6 SummaryandFutureProspectives 206 References 207 9 RecentAdvancesinBio-derivedNanostructuredCarbon-based MaterialsforElectrochemicalSensorApplications 215 AkshatMathur,JayashankarDas,andSushmaDave 9.1 Introduction 215 9.2 ConclusionandFuturePerspectives 224 References 225 10 PorousCarbonDerivedFromBiomassforFuelCells 229 A.Sivakami,AristatilGanesan,P.Sakthivel,KishoreSridharan, SabarinathanVenkatachalam,andSudhagarPitchaimuthu 10.1 Introduction 229 10.2 FuelCells–TheoryandFundamentals 233 10.3 CatalystSupportMaterials 234 10.3.1 AsaCatalyst 236 10.3.2 SynthesisMethodsofPorousCarbonfromBiomass 236 10.4 PorousCarbonSynthesisfromDifferentBiomass 237 10.4.1 OxygenReductionReaction(ORR) 237 10.5 SynthesisofBiomass-DerivedORRCatalystforFuelCell 238 10.6 FutureOutlook 245 10.7 Summary 245 References 246 11 Biomass-DerivedCarbon-BasedMaterialsforSupercapacitor Applications 253 G.Murugadoss,M.Rajaboopathi,M.RajeshKumar,and A.M.KamalanKirubaharan 11.1 Introduction 253 11.1.1 Capacitor 253 11.1.2 Battery 254 11.2 Supercapacitor 255 Contents ix 11.2.1 TypesofSupercapacitors 255 11.2.2 ElectricalDouble-LayerCapacitors(EDLC) 256 11.2.3 Pseudocapacitor 257 11.2.4 HybridCapacitors 258 11.3 ActivatedCarbonObtainedfromBiomassforSupercapacitor Application 259 11.3.1 EssentialforCarbon-basedElectrodes 259 11.4 ElectrochemicalMeasurements 262 11.5 StructuralDiversitiesofBiomass-DerivedCarbonforSupercapacitor Applications 262 11.5.1 SphericalStructure 263 11.5.2 FibrousStructure 263 11.5.3 TubularStructure 263 11.5.4 SheetStructure 263 11.5.5 PorousStructure 265 11.5.6 MesocrystalStructure 268 11.6 ConclusionandFuturePerspectives 269 References 269 12 Biomass-DerivedCarbonforDye-SensitizedandPerovskite SolarCells 275 N.Santhosh,P.Vijayakumar,M.SenthilPandian,andP.Ramasamy 12.1 Introduction 275 12.2 DSSCWorkingPrinciple 276 12.3 DSSCComponents 277 12.3.1 TransparentConductingSubstrate(TCO) 277 12.3.2 Photoanode 277 12.3.3 DyeSensitizer 277 12.3.4 Electrolyte 278 12.3.5 CounterElectrode 278 12.4 PerovskiteSolarCells 278 12.5 TunabilityofBandgapEnergy 280 12.6 DevelopmentofPerovskiteSolarCellsfromDye-SensitizedSolar Cells 280 12.6.1 WorkingPrincipleofPSC 281 12.6.2 PerovskiteSolarCellsArchitecture 281 12.6.3 HoleTransportMaterial 282 12.7 Biomass-DerivedCarbonCounterElectrodeforDSSC 283 12.7.1 PerformanceofDSSCwithCounterElectrodeviaBio-derived Carbon 284 12.7.2 Biomass-DerivedCarbonasaCounterElectrodeforPerovskite SolarCells 285 12.8 ConclusionandFuturePerspectives 287 References 287

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.