ebook img

Biology and Mathematics: History and Challenges PDF

247 Pages·2019·2.403 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biology and Mathematics: History and Challenges

Biology and Mathematics Series Editor Marie-Christine Maurel Biology and Mathematics History and Challenges Roger Buis First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2019 The rights of Roger Buis to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2019943329 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-483-4 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Chapter 1. On the Status of Biology: On the Definition of Life . . . . . . . . 1 1.1. Causality in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1. Vitalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.2. Teleology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2. Variability in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1. Time-dependence of biological processes . . . . . . . . . . . . . . . . . . 15 1.2.2. Environment-dependence of biological processes . . . . . . . . . . . . . . 17 Chapter 2. On the Nature of the Contribution Made by Mathematics to Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1. On the affinity of mathematics with biology . . . . . . . . . . . . . . . . . . . 20 2.2. Mathematics, an instrument of work and thought on biology . . . . . . . . . . 25 Chapter 3. Some Historical Reference Points: Biology Fashioned by Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1. The first remarkable steps in biomathematics . . . . . . . . . . . . . . . . . . . 37 3.1.1. On the continuous in biology . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2. On the discrete in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.3. The notion of laws in biology . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4. The beginning of classical science: Descartes and Pascal . . . . . . . . . . 44 3.1.5. Buffon and hesitations relating to the utility of mathematics in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vi Biology and Mathematics 3.2. Some pertinent contributions from mathematics in the modern era . . . . . . . 48 3.2.1. The laws of growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2. Formal genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3. Introduction of the notion of a probabilistic model in biology . . . . . . . . . . 56 3.4. The physiology of C. Bernard (1813–1878): the call to mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5. The principle of optimality in biology . . . . . . . . . . . . . . . . . . . . . . . 60 3.6. Introduction of the formalism of dynamic systems in biology . . . . . . . . . . 61 3.7. Morphogenesis: the need for mathematics in the study of biological forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7.1. General principles from D’Arcy Thompson . . . . . . . . . . . . . . . . . 64 3.7.2. Turing’s reaction–diffusion systems (1952): morphogenesis, a “break of symmetry” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8. The theory of automatons and cybernetics in biology . . . . . . . . . . . . . . 70 3.8.1. The theory of automatons . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.8.2. The contribution of cybernetics . . . . . . . . . . . . . . . . . . . . . . . . 73 3.8.3. The case of L-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.8.4. Petri’s networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.9. Molecular biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.9.1. On genetic information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.9.2. The linguistic model in biology . . . . . . . . . . . . . . . . . . . . . . . . 83 3.10. Information and communication, important notions in biology . . . . . . . . 84 3.11. The property of self-organization in biology . . . . . . . . . . . . . . . . . . . 86 3.11.1. Structural self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.11.2. Self-reproductive hypercycle . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.12. Systemic biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.12.1. On the notion of system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.12.2. Essay in relational biology . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.12.3. Emergence and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.12.4. Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.12.5. Order, innovation and complex networks . . . . . . . . . . . . . . . . . . 104 3.13. Game theory in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.14. Artificial life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.14.1. Biomimetic automatons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.14.2. Psychophysiology and mathematics: controls on learning . . . . . . . . . 111 3.15. Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Chapter 4. Laws and Models in Biology . . . . . . . . . . . . . . . . . . . . . . 115 4.1. Biological laws in literary language . . . . . . . . . . . . . . . . . . . . . . . . 118 4.1.1. The law of Cuvier’s organic correlations (1825) . . . . . . . . . . . . . . 118 4.1.2. The fundamental biogenetic law . . . . . . . . . . . . . . . . . . . . . . . . 118 Contents vii 4.2. Biological laws in mathematical language . . . . . . . . . . . . . . . . . . . . . 119 4.2.1. Statistical laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3. Theoretical laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.3.1. Formal genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.3.2. Growth laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.3.3. Population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Chapter 5. Mathematical Tools and Concepts in Biology . . . . . . . . . . . . 135 5.1. An old biomathematical subject: describing and/or explaining phyllotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2. The notion of invariant and its substrate: time and space . . . . . . . . . . . . 140 5.2.1. Physical time/biological time . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.2. Metric space/non-metric space . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.3. Multi-scale processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3. Continuous formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.1. Dynamics of a univariate process . . . . . . . . . . . . . . . . . . . . . . . 148 5.3.2. Structured models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.3. Oscillatory dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.3.4. On the stability of dynamic systems . . . . . . . . . . . . . . . . . . . . . . 154 5.3.5. Multivariate structured models . . . . . . . . . . . . . . . . . . . . . . . . 160 5.3.6. Dynamics of spatio-temporal process . . . . . . . . . . . . . . . . . . . . . 163 5.3.7. Multi-scale models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.4. Discreet formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.5. Spatialized models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.5.1. Multi-agent models: dynamics of a biological association of the individual-centered type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.5.2. Electrophysiological models: transmission of electrical signals . . . . . . 176 5.6. Random processes in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.6.1. Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.6.2. Birth–death processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.7. Logic kinetics of regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Foreword Roger Buis, professor emeritus at the University of Toulouse (INP – Institut National Polytechnique) – already the author of a considerable amount of research into the biomathematics of growth1 – delivers here a true panorama of the relationships between biology and mathematics over time, and in particular over the course of the last century, accompanied by a series of profound epistemological thoughts, thereby creating a book of great rarity and value. As we know, mathematics is ancient, just like the interest taken in living things. But the word “biology” only appeared at the beginning of the 19th Century and, whilst E. Kant has already confirmed – and as Roger Buis rightly reminds us – a piece of knowledge is scientific insofar as mathematics has been integrated into it, the explicit idea of applying mathematics to biology is found only with C. Bernard2 – one of the great references in the book. In contrast with physics, biology resists mathematization, for understandable reasons: the variability of living things, their dependence on time and on the environment, diversity and the complexity of biological processes, the diffuse aspect of causality (sometimes circular) and the difficulty of mastering the operational conditions of experiments have made obtaining consistencies problematic. Hence, 1 Buis, R. (2016). Biomathématiques de la croissance, le cas des végétaux. EDP-Sciences, Les Ulis. 2 Let us note that, previously, G.-L. Buffon regretted that qualitative mathematics remained in limbo and could not be applied in natural sciences. “Everything that has an immediate relationship with a position is totally missing from mathematical sciences. The art that Leibniz coined Analysis situs has not yet come to light and yet this art that would allow us to discover the relationships of position between things would also be useful and perhaps more necessary for natural sciences than the art whose only objective is the size of things; because we more often need to know the form than the matter.” Refer to Buffon, G.-L. (1774). Œuvres complètes, vol. IV, chap. IX. Imprimerie Royale, Paris, 73.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.