ebook img

Biological Signals Classification and Analysis PDF

389 Pages·2015·16.437 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biological Signals Classification and Analysis

Lecture Notes in Bioengineering Kamran Kiasaleh Biological Signals Classification and Analysis Lecture Notes in Bioengineering More information about this series at http://www.springer.com/series/11564 Kamran Kiasaleh Biological Signals fi Classi cation and Analysis 123 Kamran Kiasaleh Department ofElectrical Engineering TheUniversity of Texasat Dallas Richardson, TX USA ISSN 2195-271X ISSN 2195-2728 (electronic) Lecture Notesin Bioengineering ISBN978-3-642-54878-9 ISBN978-3-642-54879-6 (eBook) DOI 10.1007/978-3-642-54879-6 LibraryofCongressControlNumber:2015942236 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) This book is dedicated to my beloved wife, Tae, and my children Brandon, Kristen, and Alison. I am forever indebted to my mother for her endless support and to my late father for his love of knowledge. Preface Biological systems have been known for many decades to produce measurable signals,whichoftenrevealnontrivialinformationabouttheunderlyingprocessesat work. It is the hope of the scientific community that from the observation and processing of various biologically-generated signals one can draw unambiguous conclusions regarding the state of a biological system. This “state” is of outmost importance to a variety of applications, including disease diagnosis and detection oftheonsetofmanydeadlydiseases,includingheartattack,stroke,cancer,among otherillnessesplaguingmankindtoday.Thistextwillmakeanattempttoshedlight on the concept of signals and systems not only from the “man-made” perspective, butalsofromtheangleofnature-madeorbiologically-madeviewpoint.Ultimately, the goal of this text is to enable the reader to bring to bear the vast knowledge of digitalsignalprocessingtotacklethebiologicalsignalsinordertoextractimportant information of clinical value. To achieve this goal, one has to acquire a healthy knowledge of non-biological signals and systems as well as signal processing techniques before embarking on an endeavor that brings into focus the need for somewhat different types of signal processing mechanisms, concerned with non- stationarysignalsimpairedbynonlinearandevenchaoticeffects.Itistheintention heretoenablethereadertoexaminebiologicalsignalsandsystemsfromthedigital signal processing perspective while keeping an eye on some of the shortcomings ofthesignalprocessingsystemsinusetoday,whichrelyheavilyonthe“linearity” assumption (or approximation) in order to arrive at implementable architectures. It isnoteworthythat,throughoutthistext,weusetheterm“biologicalsignals”torefer to signals originating from a biological entity. Rather seamlessly, we use the expression “biomedical signal processing” to refer to the signal processing tools that one brings to bear to study the behavior of biological signals. Although this text is intended for an introductory class on biomedical signal processing for senior-level undergraduate or first-year graduate students, the text can readily serve as a reference textbook for professionals in the field concerned with the development of biomedical devices. To that end, many examples are vii viii Preface providedwhereverpossibletohelpthepracticingengineerwhomaynotbefamiliar withbiologicalsignalsandsystemsorapracticingbiologistwithsolidbackground in the field of biology who may lack an engineering insight to enhance his or her understanding of key concepts in signal processing. Contents 1 Non-Biological Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Discrete- and Continuous-Time Determinist Signals . . . . . . . . . . 2 1.2.1 Sampling Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Upsampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Downsampling and Decimation . . . . . . . . . . . . . . . . . . . 12 1.2.4 Anti-Aliasing Filter (AAF). . . . . . . . . . . . . . . . . . . . . . . 12 1.2.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.6 Delta Modulation (DM). . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.7 Sigma-Delta (Σ(cid:1)ΔÞ Modulation. . . . . . . . . . . . . . . . . . 20 1.3 Discrete- and Continuous-Time Random Signals . . . . . . . . . . . . 23 1.3.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.3 Energy and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.3.4 Ergodicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.3.5 Power Spectrum Density (PSD) . . . . . . . . . . . . . . . . . . . 57 1.3.6 Signal Space Representation . . . . . . . . . . . . . . . . . . . . . 69 1.3.7 Mean-Square Sense Sampling Theorem. . . . . . . . . . . . . . 82 2 Linear and Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.1 Linear Systems Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.1.1 System Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.1.2 Response of Linear Systems to Random Signals. . . . . . . . 91 2.2 Response of Nonlinear Systems to Random Signals . . . . . . . . . . 104 2.2.1 Nonlinear Processing of Gaussian Signals . . . . . . . . . . . . 105 2.2.2 Nonlinear Processing of WSS Gaussian Processes . . . . . . 113 2.2.3 Output PSD of DM Devices with WSS Gaussian Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.3 Systems with Signal + Noise. . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.3.1 Signal-to-Noise Ratio (SNR) . . . . . . . . . . . . . . . . . . . . . 124 2.3.2 Matched and Optimum Filtering. . . . . . . . . . . . . . . . . . . 126 ix x Contents 3 Biological Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.1 Electrocardiogram (ECG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 3.1.1 QRS Complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 3.1.2 The P Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.1.3 The PR Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.1.4 The QRS Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.1.5 The ST Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.1.6 The T Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.2 Electroencephalogram (EEG). . . . . . . . . . . . . . . . . . . . . . . . . . 144 3.2.1 δ Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.2.2 θ Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.2.3 α Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.2.4 β Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.2.5 γ Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.2.6 EEG Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 3.3 Electromyogram (EMG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 4 Signal Processing Methods for Biological Signals. . . . . . . . . . . . . . 175 4.1 Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 4.1.1 Uncorrelated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 4.1.2 Orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.2 Is It Gaussian?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.2.1 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 4.2.2 Entropy and Negentropy. . . . . . . . . . . . . . . . . . . . . . . . 180 4.2.3 Mutual Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.3 “Distance” Between Two PDFs . . . . . . . . . . . . . . . . . . . . . . . . 186 4.3.1 Kolmogorov-Smirnov (KS) Distance. . . . . . . . . . . . . . . . 187 4.3.2 Hellinger Distance (HD) . . . . . . . . . . . . . . . . . . . . . . . . 187 4.3.3 Kullback-Leibler (KL) Divergence . . . . . . . . . . . . . . . . . 188 4.4 Detection and Estimation Methods . . . . . . . . . . . . . . . . . . . . . . 200 4.4.1 Signal Detection Using Hypothesis Testing (HT) . . . . . . . 200 4.4.2 Specificity and Sensitivity. . . . . . . . . . . . . . . . . . . . . . . 208 4.4.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 238 4.4.4 Whittle Likelihood Test (WLT) . . . . . . . . . . . . . . . . . . . 252 4.4.5 Frequency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 258 5 Signal Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 5.1 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 277 5.2 Independent Component Analysis. . . . . . . . . . . . . . . . . . . . . . . 288 5.2.1 Infomax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 5.3 Wavelet Decomposition (WD) . . . . . . . . . . . . . . . . . . . . . . . . . 301 5.3.1 Short Term Fourier Transform (STFT) . . . . . . . . . . . . . . 302 5.3.2 Continuous WT (CWT). . . . . . . . . . . . . . . . . . . . . . . . . 314 5.3.3 Father Wavelet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.