Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Biological hydrogen production by anaerobic fermentation Wen-Hsing Chen Iowa State University Follow this and additional works at:https://lib.dr.iastate.edu/rtd Part of theEnvironmental Engineering Commons Recommended Citation Chen, Wen-Hsing, "Biological hydrogen production by anaerobic fermentation " (2006).Retrospective Theses and Dissertations. 1863. https://lib.dr.iastate.edu/rtd/1863 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please [email protected]. Biological hydrogen production by anaerobic fermentation by Wen-Hsing Chen A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Civil Engineering (Environmental Engineering) Program of Study Committee: Shihwu Sung (Major Professor) Kenneth J. Koehler Say Kee Ong Timothy Ellis Dennis Bazylinski Iowa State University Ames, Iowa 2006 Copyright © Wen-Hsing Chen, 2006. All rights reserved. UMI Number: 3243819 UMI Microform3243819 Copyright2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii TABLE OF CONTENTS LIST OF FIGURES...........................................................................................................iv LIST OF TABLES.............................................................................................................vi ABSTRACT......................................................................................................................vii CHAPTER 1. INTRODUCTION.......................................................................................1 1.1 Research Background................................................................................................1 1.2 Research Goals..........................................................................................................3 1.3 References.................................................................................................................5 CHAPTER 2. LITERATURE REVIEW............................................................................8 2.1 Hydrogen Production................................................................................................8 2.1.1 Water electrolysis...............................................................................................8 2.1.2 Thermal-chemical hydrogen production............................................................9 2.1.3 Biological hydrogen production......................................................................10 2.2 Dark Fermentation..................................................................................................11 2.2.1 Fundamentals of dark fermentation.................................................................11 2.3 Environmental Factors Affecting Hydrogen Production........................................14 2.3.1 Inocula and start-up..........................................................................................14 2.3.2 Substrate...........................................................................................................15 2.3.3 pH.....................................................................................................................16 2.3.4 Hydraulic retention time..................................................................................17 2.3.5 Product inhibition.............................................................................................18 2.4 Fluorescence in situ Hybridization..........................................................................19 2.4.1 Hybridization reaction kinetics........................................................................20 2.4.2 Technical aspects of FISH...............................................................................21 2.4.3 FISH application on wastewater treatment......................................................23 2.5 References...............................................................................................................25 CHAPTER 3. KINETIC STUDY OF BIOLOGICAL HYDROGEN PRODUCTION BY ANAEROBIC FERMENTATION............................................................40 3.1 Abstract...................................................................................................................40 3.2 Introduction.............................................................................................................41 3.3 Materials and Methods............................................................................................44 3.3.1 Seed microorganisms.......................................................................................44 3.3.2 Hydrogen production experiments...................................................................44 3.3.3 Analysis............................................................................................................45 3.3.4 Data analysis....................................................................................................45 3.4 Results and Discussion............................................................................................46 3.4.1 Kinetic analysis of hydrogen production.........................................................46 3.4.2 Variations of biomass, pH and carbohydrate at different substrate concentrations..................................................................................................48 3.4.3 Growth kinetics of hydrogen-producing bacteria for three different substrates..........................................................................................................49 3.5 Conclusions.............................................................................................................51 3.6 References...............................................................................................................52 iii CHAPTER 4. BIOLOGICAL HYDROGEN PRODUCTION IN ANAEROBIC SEQUENCING BATCH REACTOR........................................................68 4.1 Abstract...................................................................................................................68 4.2 Introduction.............................................................................................................69 4.3 Materials and Methods............................................................................................71 4.3.1 Seed sludge and substrate preparation.............................................................71 4.3.2 Reactor operation.............................................................................................72 4.3.3 Analysis............................................................................................................73 4.4 Results and Discussion............................................................................................74 4.4.1 Effect of HRT..................................................................................................74 4.4.2 Effect of pH......................................................................................................77 4.4.3 Effect of substrate concentration.....................................................................81 4.4.4 Effect of cyclic duration...................................................................................85 4.5 Conclusions.............................................................................................................87 4.6 References...............................................................................................................88 CHAPTER 5. DIAGNOSIS OF HYDROGEN FERMENTATION BY FLUORESCENCE IN SITU HYBRIDIZATION...................................103 5.1 Introduction...........................................................................................................103 5.2 Materials and Methods..........................................................................................105 5.2.1 Reactor operation...........................................................................................105 5.2.2 FISH...............................................................................................................105 5.2.3 Microscopy and quantificantion analysis.......................................................106 5.3 Results and Discussion..........................................................................................107 5.3.1 Hybridization performance from different 16S rDNA probes.......................107 5.3.2 Quantification of bacteria community...........................................................109 5.4 Conclusions...........................................................................................................110 5.5 References.............................................................................................................110 CHAPTER 6. CONCLUSIONS......................................................................................120 6.1 Closing Statements................................................................................................120 6.2 Recommendations for Future Work......................................................................123 ACKNOWLEDGEMENTS.............................................................................................125 iv LIST OF FIGURES Figure 2.1 Catabolic pathway of Clostridia in hydrogen fermentation (Jones and Woods, 1989; Mitchell, 2001).....................................................................................39 Figure 3.1 Cumulative hydrogen production with time: (a) sucrose, (b) NFDM, and (c) food waste......................................................................................................61 Figure 3.2 Hydrogen yield at different S/X ratios: (a) sucrose, (b) NFDM, and (c) food waste..............................................................................................................62 Figure 3.3 Specific hydrogen production rate at different S/X ratios: (a) sucrose; (b) NFDM; and (c) food waste............................................................................63 Figure 3.4 Metabolism of hydrogen-producing bacteria at different sucrose concentrations: (a) mixed liquor volatile suspended solid concentration, (b) final pH, (c) removed carbohydrate concentration, and (d) carbohydrate removal efficiency..........................................................................................64 Figure 3.5 Metabolism of hydrogen-producing bacteria at different NFDM concentrations: (a) mixed liquor volatile suspended solid concentration, (b) final pH, (c) removed carbohydrate concentration, and (d) carbohydrate removal efficiency..........................................................................................65 Figure 3.6 Metabolism of hydrogen-producing bacteria at different food waste concentrations: (a) mixed liquor volatile suspended solid concentration; (b) final pH; (c) removed carbohydrate concentration; and (d) carbohydrate removal efficiency..........................................................................................66 Figure 3.7 Effect of substrate concentration on the hydrogen production rate from different substrate...........................................................................................67 Figure 4.1 Performance of ASBR operated at HRT of 16 h with pH controlled of 6.7: (a) Gas production rate; (b) gas content; (c) acid concentration; and (d) solvent concentration.....................................................................................98 Figure 4.2 Performance of hydrogen fermentation at different pHs: (a) hydrogen yield; (b) hydrogen conversion efficiency; (c) hydrogenic activity; (d) carbohydrate removal efficiency..........................................................................................99 Figure 4.3 Variation of soluble microbial product concentration and MLVSS concentration at different pHs: (a) soluble microbial product concentration; (b) HBu/HAc ratio; and (c) MLVSS concentration.....................................100 Figure 4.4 (a) MLVSS and effluent VSS concentrations; (b) SRT; and (c) F/M ratio at different sucrose concentration....................................................................101 Figure 4.5 Effect of batch feeding on substrate concentration at different cyclic duration in ASBR (Sung and Dague, 1995)...............................................................102 v Figure 5.1 Hydrogen-producing sludge hybridized with the EUB338 probe and stained with DAPI. Scale bars. 5 µm......................................................................116 Figure 5.2 Clostridium pasteurianum hybridized with the ARC915 probe and stained with DAPI. Scale bars, 5 µm......................................................................117 Figure 5.3 Escherichia coli hybridized with the ARC915 probe and stained with DAPI. Scale bars, 5 µm...........................................................................................118 Figure 5.4 (a) Hydrogen-producing sludge hybridized with the CLOST I probe labeled by Oregon-green, and stained with DAPI; (b) hydrogen-producing sludge hybridized with the CLOST I probe labeled by Texas-red, and stained with DAPI; and (c) Clostridium pasteurianum hybridized with the CLOST I probe labeled by Texas-red, and stained with DAPI. Scale bars, 5 µm................119 vi LIST OF TABLES Table 1.1 Life time of fossil fuels with the current consumption rate (Lodhi, 1997)......7 Table 2.1 Summary of hydrogen production from thermo-chemical reactions (Sørensen, 2005)..............................................................................................................37 Table 2.2 Comparison of biological hydrogen production processes (Nath and Das, 2004)..............................................................................................................38 Table 3.1 Characteristics of NFDM and food waste......................................................57 Table 3.2 Components of the food waste (on wet weight basis) (Li et al., 2003).........58 Table 3.3 Estimated parameters of Gompertz equation for hydrogen production.........59 Table 3.4 Summary of growth kinetics of hydrogen-producing bacteria......................60 Table 4.1 Summary of experimental design..................................................................94 Table 4.2 Results of hydrogen production at different HRT.........................................95 Table 4.3 Hydrogen production and soluble microbial products in ASBR at each influent sucrose concentration.......................................................................96 Table 4.4 Cyclic effect on hydrogen production and soluble microbial products in ASBR.............................................................................................................97 Table 5.1 16S rDNA oligonucleotide probes used for hybridization...........................114 Table 5.2 Summary of the percentage of EUB338 to DAPI at different operating conditions.....................................................................................................115 vii ABSTRACT Considering the energy security and the global environment, there is a pressing need to develop non-polluting and renewable energy sources. Alternatively, hydrogen is a clean energy carrier, producing water as its only by-product when it burns. Anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that not only stabilizes the waste/wastewater, but also generates a benign renewable energy carrier. The purposes of this study were to determine the kinetics of hydrogen production using different characteristics of substrates and to evaluate hydrogen production potential from different operating conditions in continuous operation. The growth kinetics of hydrogen-producing bacteria using three different substrates including sucrose, non-fat dry milk (NFDM), and food waste were investigated through a series of batch experiments. The results demonstrated that hydrogen production potential and hydrogen production rate increased with an increasing substrate concentration. The maximum hydrogen yields from sucrose, NFDM, and food waste were 234, 119, and 101 mL/g COD, respectively. The low pH (pH < 4) inhibited hydrogen production and resulted in lower carbohydrate fermentation at high substrate concentrations. The Michaelis-Menten equation was employed to model the hydrogen production rate at different substrate concentrations. The equation gave a good approximation of the maximum hydrogen production rate and the half saturation constant (K ) with correlation coefficient (R2) over 0.85. The values of half saturation constant S (K ) for sucrose, NFDM, and food waste were 1.4, 6.6, and 8.7 g COD/L, respectively. S Based on the Ks values, the substrate affinity of the enriched hydrogen-producing culture viii was found to depend on the carbohydrate content of the substrate. The substrate containing high carbohydrates showed a lower K value. The maximum hydrogen S production rate was governed by the complexity of carbohydrates in the substrate. Biological hydrogen production from sucrose-rich substrate was investigated in an anaerobic sequential batch reactor (ASBR). The goal of this study was to investigate the effect of different hydraulic retention times (HRT) (8, 12, 16, 24, and 48 h), pHs (4.9, 5.5, 6.1, and 6.7), substrate concentrations (15, 25, and 35 g COD/L), and cyclic durations (4, 6, and 8 h) on biological hydrogen production. The maximum hydrogen yield of 2.53 mol H /mol sucrose consumed and the maximum hydrogenic activity of 538 mL H /g 2 2 VSS-d were obtained at HRT of 16h, pH 4.9, sucrose concentration of 25 g COD/L, and feeding cycle of 4 h. Methane was detected in the biogas when solids retention time (SRT) exceeded 100 h at pH of 6.7. Based on the low ethanol concentration of nearly 300 mg/L, the metabolic pathway shift to solvent fermentation was not observed at pH of 4.9. The ratios of butyrate (HBu) to acetate (HAc) decreased from 1.25 to 0.54 mol/mol, when the sucrose concentration was increased from 15 to 35 g COD/L. This suggests that the metabolic pathway of acetate fermentation was predominant at higher sucrose concentrations. Hydrogen production was found to improve at a shorter feeding cycle of 4 h. Fluorescent in situ hybridization (FISH) was applied for identifying and quantifying the specific microbial populations in the study. Most bacteria successfully identified by an EUB338 probe were counted and the percentages of 16S rDNA of EUB338 to DAPI at different reactor operating conditions were determined. Due to the false positive hybridization results, the ARC915 probe was found unsuitable for
Description: