ebook img

Bioinformatics Techniques for Drug Discovery PDF

66 Pages·2018·1.573 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bioinformatics Techniques for Drug Discovery

SPRINGER BRIEFS IN COMPUTER SCIENCE Aman Chandra Kaushik  Ajay Kumar · Shiv Bharadwaj  Ravi Chaudhary · Shakti Sahi Bioinformatics Techniques for Drug Discovery Applications for Complex Diseases SpringerBriefs in Computer Science Series editors Stan Zdonik, Brown University, Providence, Rhode Island, USA Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA Xindong Wu, University of Vermont, Burlington, Vermont, USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SouthAustralia,Australia David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA Xuemin Sherman Shen, University of Waterloo, Waterloo, Ontario, Canada Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA V. S. Subrahmanian, University of Maryland, College Park, Maryland, USA Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy Sushil Jajodia, George Mason University, Fairfax, Virginia, USA Newton Lee, Newton Lee Laboratories, LLC, Burbank, California, USA SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum offields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include: (cid:129) A timely report of state-of-the art analytical techniques (cid:129) A bridge between new research results, as published in journal articles, and a contextual literature review (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study or clinical example (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer’s eBook collection,withmillionsofusersworldwide.Inaddition,Briefswillbeavailablefor individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparationandformattingguidelines,andexpeditedproductionschedules.Weaim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts are considered for publication in this series. More information about this series at http://www.springer.com/series/10028 Aman Chandra Kaushik Ajay Kumar (cid:129) Shiv Bharadwaj Ravi Chaudhary (cid:129) Shakti Sahi Bioinformatics Techniques for Drug Discovery Applications for Complex Diseases 123 AmanChandra Kaushik RaviChaudhary Schoolof life Sciences Schoolof Biotechnology andBiotechnology Gautam BuddhaUniversity ShanghaiJiao Tong University Greater Noida, Uttar Pradesh Shanghai India China Shakti Sahi AjayKumar Schoolof Biotechnology Schoolof Engineering Gautam BuddhaUniversity Gautam BuddhaUniversity Greater Noida, Uttar Pradesh Greater Noida, Uttar Pradesh India India ShivBharadwaj Nanotechnology Research andApplication Center Sabanci University Tuzla, Istanbul Turkey ISSN 2191-5768 ISSN 2191-5776 (electronic) SpringerBriefs inComputer Science ISBN978-3-319-75731-5 ISBN978-3-319-75732-2 (eBook) https://doi.org/10.1007/978-3-319-75732-2 LibraryofCongressControlNumber:2018932352 ©TheAuthor(s)2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This book is an outgrowth or organized compilation of the recent bioinformatics approaches used for the drug discovery, and is designed primarily for the researchers and academicians in the respective field. It is not, however, an ele- mentary book and presupposes knowledge of computational biology for post- graduate level and research scholars. The authors have long held the view that the lackofknowledgeonthefundamentalaspectsofthevariouscomputationaltoolsis a serious shortcoming for the postgraduate education as well as research scholars. Hence, the inclusions of greater details then are usually found in texts for research scholarorpostgraduatespresumingtheexperimentincomputationalbiology.With the currentdemand of new drugs for complex diseases as well as the development of resistance in the diseases, computational tools have been recommended and successfully established as solution to the growing demands of drug for the phar- maceutical industries as well as research institutes. Chapters covering the recent computational aided drug discovery and drug designing approaches in expanding matter.Theusuallyrequiredmaterialhasbeenpresentedinaconciseform,andthen details on special aspects have been described in the form of addenda. It is hoped that this approach will meet the needs of beginners in the field of drug designing anddiscovery,andalsoprovideresourcefulinformationtotheresearch scholarsor researchers for more advanced study. Bioinformatics approach in drug designing is an interdisciplinary field that required sophisticated techniques and software tools to elucidate the hidden or complex biological data. The intellectual challenge involved in the study of drug discovery has attracted the scientists from fields of Computer Science, Biology, Mathematics and Engineering science, and the field today constitutes a frontier of computationalbiology.Allattemptshavebeenmadeinthepresentworktoprovide an integrated approach covering all the essential aspects on drug discovery using bioinformatics approach. If one visualizes the drug designing as an organized collection of different interactions between the drug molecules or inhibitor and target of interest, most commonly a protein, the emphasis given to the molecular docking,dynamicssimulationsandmodelstovalidatetheirinhibitoryabilityonthe target molecule in certain chapters will be understandable. The research scholars v vi Preface willbeimpressedwiththefactthatthefundamentalstrategiesindrugdiscoveryare the inhibition of target by blocking their active sites present in any complex dis- eases. This is to be expected since the evolutionary diversification and complexa- tion taken place in different diseases are much greater than that of agents or molecules metabolic activities or biochemical pathways. Chapter2givesinsightintotheligand-basedapproachfordrugdesigningusing thecomputationaltechniqueofthesubject.Chapter3describesthestructure-based approachfor drugdesigningusing computational technique and Chap.4integrates the information on three-dimensional (3D) pharmacophore modelling based drug designing by computational technique and other properties. Chapter 5 explains the molecular dynamics simulation approach to investigate dynamic behaviour of system through the application of Newtonian mechanics. Chapter 6 explains the receptor thermodynamics of ligand–receptor or ligand–enzyme association and Chap. 7 speaks about the thermodynamics cycles and their application in protein targets. Finally, Chap. 8 provides the insights into different computational approaches to understand the genomics and proteomics that help to predict the target of interest. Shanghai, China Aman Chandra Kaushik Greater Noida, India Ajay Kumar Istanbul, Turkey Shiv Bharadwaj Greater Noida, India Ravi Chaudhary Greater Noida, India Shakti Sahi Contents 1 Brief Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Brief Evolutionary History of In Silico Approaches . . . . . . . . . . 2 1.2 Computational Drug Discovery and Design . . . . . . . . . . . . . . . . 3 1.3 Epigenetics: Beyond the Sequence. . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Histones Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Ligand-Based Approach for In-silico Drug Designing. . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Molecular Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 2D QSAR Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 3D QSAR Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Multidimensional QSAR . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Constitutional Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Quantitative Structure–Activity Relationships . . . . . . . . . . . . . . . 14 2.5 Molecular Fingerprint and Similarity Searches . . . . . . . . . . . . . . 15 2.6 Similarity Searches in LB-CADD . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Similarity Networks and off Target Predictions. . . . . . . . . . . . . . 16 2.8 Fingerprint Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.9 Computational Methods for Biomolecular Docking. . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Structure-Based Approach for In-silico Drug Designing. . . . . . . . . . 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Protein Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Protein–Protein Docking. . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Protein–Ligand Docking. . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 vii viii Contents 4 Three-Dimensional (3D) Pharmacophore Modelling-Based Drug Designing by Computational Technique . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Pharmacophore Model . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 MolecularDynamicsSimulationApproachtoInvestigateDynamic Behaviour of System Through the Application of Newtonian Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Molecular Dynamics Simulations. . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Monte Carlo Research with Metropolis Criterion . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Receptor Thermodynamics of Ligand–Receptor or Ligand–Enzyme Association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2 Database Searching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2.1 De Novo Drug Design. . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3 State-of-the-Art Free Energy Calculations. . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 Thermodynamic Cycles and Their Application in Protein Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2 Protein Targets and Applications . . . . . . . . . . . . . . . . . . . . . . . . 44 7.3 4-Hydroxyphenylpyruvate Dioxygenase (HPPD). . . . . . . . . . . . . 45 7.4 Oligopeptide-Binding Protein a (OppA) . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 Genomics and Proteomics Using Computational Biology . . . . . . . . . 47 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.2 Peptide Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8.3 De Novo and Hybrid Algorithms. . . . . . . . . . . . . . . . . . . . . . . . 49 8.4 Sequence Database Search Algorithms. . . . . . . . . . . . . . . . . . . . 49 8.5 Scoring of Peptide Identifications. . . . . . . . . . . . . . . . . . . . . . . . 49 8.6 Peptide-Spectrum Match Scores and Common Thresholds. . . . . . 50 8.7 Fundamentals of Gene Transcription and Translation . . . . . . . . . 51 8.8 Genome Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.9 Definition of Genome Annotation . . . . . . . . . . . . . . . . . . . . . . . 53 8.10 Genome Annotation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.11 Proteogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 About the Authors Aman Chandra Kaushik He is a core computational biologistwithproclivityforbiologicaldatabasesandnature inspired algorithms. He holds Bachelor in Life Science (DDUUniversity,India);MasterinBioinformatics(CSJM University, India); Ph.D. in Bioinformatics (Indo-Israel collaborative Project) and Post-doctorate in computational biology from Ben Gurion University, Israel. Currently, he is Research assistant at Shanghai Jiao Tong University, China. He was a research fellow in Indian Council of Medical Research (ICMR) sponsored project. He has publishedresearcharticlesinvariousinternationaljournals ofrepute.Healsoattendednationalaswellasinternational conferences and presented his papers. He has also been awarded several scholarships and travel grants including Post-doc scholarship from Kreitman Postdoctoral Fellowship (PDF); Post-doc scholarship from Shanghai JiaoTongUniversitysponsoredbyMinistryofScienceand Technology, China; Travel grant and total expenses MCCMB 2017 Conference, Moscow, Russia from Kreitman, Israeli Ministry of Science, ISF; Travel grant and total expenses for “Worldwide innovative networking inpersonalizedcancermedicine”,WIN2017Symposium, Paris, France; Travel grant and total expenses for Joint ICGEB-ICTP-APCTP Workshop from ICTP which gov- ernedbyUNESCO,IAEAandItaly;4monthScholarship from Ministry of Science, Technology Space Israel and “Young Researcher Scholar Award” from GRDS International. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.