ebook img

Biochemistry of Dioxygen PDF

289 Pages·1985·7.646 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Biochemistry of Dioxygen

Biochemistry of Dioxygen BIOCHEMISTRY OF THE ELEMENTS Series Editor: Earl Frieden Florida State University Tallahassee, Florida Volume 1 BIOCHEMISTRY OF NONHEME IRON Anatoly Bezkorovainy Volume 2 BIOCHEMISTRY OF SELENIUM Raymond J. Shamberger Volume 3 BIOCHEMISTRY OF THE ESSENTIAL UL TRAT RACE ELEMENTS Edited by Earl Frieden Volume 4 BIOCHEMISTRY OF DIOXYGEN Lloyd L. Ingraham and Damon L. Meyer Volume 5 PHYSICAL METHODS FOR INORGANIC BIOCHEMISTRY John R. Wright, Wayne A. Hendrickson, Shigemasa Osaki, and Gordon T. James A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher. Biochemistry of Dioxygen Lloyd L. Ingraham and Damon L. Meyer University of California, Davis Davis, California PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Ingraham, Lloyd, L. Biochemistry of dioxygen. (Biochemistry of the elements; v. 4) Includes bibliographies and index. 1. Oxygen-Metabolism. I. Meyer, Damon, L.II. Title. III. Series. QP535.01146 1985 599'.019214 85-12055 ISBN-13: 978-1-4612-9501-3 e-ISBN-13: 978-1-4613-2475-1 DOl: 10.1007/978-1-4613-2475-1 ©1985 Plenum Press, New York Softcover reprint of the hardcover 1s t edition 1985 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher Preface This book is written for the research biochemist who needs to know more about the particular field of dioxygen metabolism, whether this be for designing lectures for a graduate level course or for his or her own research needs. We hope researchers in a given area of dioxygen metabolism will gain knowledge of related fields of dioxygen metabolism. We have decided to use the term dioxygen to distinguish molecular oxygen from divalent oxygen in water and organic compounds, dioxygen being a simpler term than molecular oxygen. We do not intend to review the metabolism of all compounds that contain oxygen, since this would include all of biochemistry. An understanding of dioxygen chemistry is essential to the discussion of the biochemistry of dioxygen. While this statement could be made about any biochemical constituent, the chemistry of dioxygen is so unusual that interpre tations without detailed chemical background are futile. Prediction of dioxygen reaction products by analogy with other oxidants is impossible. The partial reduction products of dioxygen, superoxide ion and peroxides, develop naturally in the chemistry of dioxygen. It would be difficult to discuss dioxygen biochemistry without first discussing these partial reduction products. The first chapters stress the chemistry of dioxygen. These are followed by chapters that delve into the intricacies of dioxygen metabolism. This procedure has tended to divide the book into two sections. The sections are purposely not well defined because certain biological reactions of dioxygen and the reduction products of dioxygen are better discussed in the early chemical chapter. After an introductory chapter, the discussion is focused on the chemistry and physical properties of ground-state triplet dioxygen. An important aspect of dioxygen chemistry is the kinetic barrier to oxidations by dioxygen. Because of this kinetic barrier, there is a need for a mechanism to activate dioxygen before it can oxidize most substrates. The activation of dioxygen in biological systems is usually accomplished by a metalloenzyme. These form metal-dioxygen complexes that are commonly diamagnetic. These (singlet-state) metal-dioxygen complexes perform the great majority of the biological oxidations. Singlet metal dioxygen complexes react v vi Preface much more like singlet dioxygen than like ground-state dioxygen, so that knowl edge of singlet-dioxygen chemistry facilitates an understanding and appreciation of dioxygen biochemistry. The reactions of singlet dioxygen that may have relevance to biological dioxygen metabolism are discussed thoroughly in Chapter 3. There are also many reactions of singlet dioxygen that have no relevance to biological reactions at this time, but the potential importance of these reactions to dioxygen metabolism dictates that they be included. These reactions are in cluded as an addendum designated Chapter 21. The discussion of triplet and singlet dioxygen is followed by a discussion of the chemistry of the reduction products of dioxygen, superoxide ion and peroxides. Superoxide dismutase and prostaglandins very naturally fit into these chapters. The assumption is made that the reader is aware of the physiological function of prostaglandins but wishes to know more about the chemistry and biosynthesis. Discussions of catalases and peroxidases logically follow the chem istry and biochemistry of peroxides. A familiarity with the enzyme intermediates in catalase and peroxidase is helpful in the understanding of enzyme intermediates in dioxygen reactions. The discussion returns to dioxygen again to focus on the important problem of activation. Activation by metals makes an easy transition to metal carriers for dioxygen, both models and actual biological carriers. Once dioxygen is activated, it can react in three different ways: (1) as a one-, two-, or four-electron acceptor from the substrate; (2) as a two-electron acceptor plus an oxygen atom donor; or (3) as a donor of two oxygen atoms. These are discussed in order beginning with the four-electron oxidases. The two electron-plus-oxygen-atom donors are called monooxygenases. These are clas sified for discussion with respect to the cofactor involved: flavins, pterins, copper, and iron. The monooxygenases are followed by the enzymes that donate two oxygen atoms, the dioxygenases. The next two chapters discuss the special topics of bioluminescence and toxicity, followed by the remainder of the singlet dioxygen chemistry in Chapter 21. lt is hoped that the reader will have time to read the whole book in order to appreciate the complete story of dioxygen metabolism. However, this book should be useful as a reference book when the reader desires information on a given aspect of dioxygen chemistry or metabolism. Lloyd L. Ingraham Damon L. Meyer Contents 1. Introduction 1 1.1 Chemical Reactions of Dioxygen ...................... 1 1.2 Biological Reactions of Dioxygen ...................... 2 1.3 Reduction Products of Dioxygen ....................... 3 1.4 Dioxygen Enzymes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Oxygen-17 Nuclear Magnetic Resonance Spectroscopy of Oxygen ......................................... 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Ground-State Dioxygen 7 2.1 Properties of Dioxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Reactions of Dioxygen ............................... 11 2.3 Chain Reactions of Dioxygen ......................... 13 2.4 Examples of Dioxygen Chain Reactions ................. 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3. Singlet Dioxygen 21 3.1 Physical Properties and Generation ..................... 21 3.2 Detection of Singlet Dioxygen . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Organic Reactions of Singlet Dioxygen ................. 33 3.4 Singlet Dioxygen-Tocopherol Reaction ................. 36 3.5 Metathesis......................................... 36 3.6 Phototaxis ......................................... 38 3.7 Singlet Sigma Dioxygen ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Summary... . . ... . . . . . . . . . .. . . . . ... . . ... . . .... . . ... 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4. Superoxide Ion 45 4.1 Properties, Sources, and Stability ...................... 45 4.2 Detection of Superoxide Ion .......................... 50 vii viii CONTENTS 4.3 Haber-Weiss Reaction ............................... 51 4.4 Detection of 'OH Radicals ............................ 53 4.5 Reactions of Superoxide Ion with Organic Compounds ................................. 55 4.6 Superoxide Dismutase ............................... 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5. Dialkyl Peroxides 75 5.1 Introduction........................................ 75 5.2 Naturally Occurring Dialkyl Peroxides other than Prostaglandin Intermediates ........................... 75 5.3 Prostaglandin....................................... 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6. Catalases and Peroxidases 91 6.1 Catalase........................................... 91 6.2 Peroxidase......................................... 92 6.3 Mechanisms of Catalase and Peroxidase. . . . . . . . . . . . . . . . . 94 6.4 Chloroperoxidase ................................... 99 6.5 Glutathione Peroxidase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7. Dioxygen as a Terminal Oxidant and the Formation of Dioxygen 107 7.1 Fitness of Dioxygen as a Terminal Oxidant .............. 107 7.2 Formation of Dioxygen .............................. 110 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8. Metal-Dioxygen Complexes 113 8.1 Metal-Dioxygen Bonding ............................ 113 8.2 Activation of Dioxygen .............................. 116 8.3 Classification of Metal-Dioxygen Complexes ............ 116 8.4 Bonding vs. Oxidation ............................... 118 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9. Biological Iron Dioxygen Carriers 121 9.1 Hemoglobin and Myoglobin .......................... 121 9.2 Hemoglobin Models ................................. 125 9.3 Hemerythrin ....................................... 129 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 CONTENTS ix 10. Hemocyanin: A Biological Copper Dioxygen Carrier 135 10.1 General Properties ................................ 135 10.2 Hemocyanin Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 11. Oxidases 139 11.1 Introduction...................................... 139 11. 2 Laccase......................................... 139 11.3 Ceruloplasmin.................................... 140 11. 4 Ascorbic Acid Oxidase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 11. 5 Amine Oxidases .................................. 141 11.5.1 Monoamine Oxidase-Copper Enzyme ........ 141 11.5.2 Monoamine Oxidase-Flavin Enzyme ......... 142 11.5.3 Diamine Oxidase .......................... 142 11.6 Galactose Oxidase ................................ 143 11.7 Cytochrome Oxidase .............................. 144 11.8 Xanthine Oxidase... . . . . . .... . . ... . . ... .... . . .... . 145 11. 9 D-Amino Acid Oxidase ............................ 147 11.10 Glucose Oxidase .................................. 149 11.11 Lactate Oxidase .................................. 149 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12. Flavin Monooxygenases 157 12.1 Introduction...................................... 157 12.2 Salicylate Hydroxylase ............................. 157 12.3 m-Hydroxybenzoate Hydroxylase .................... 158 12.4 m-Hydroxybenzoate 4-Hydroxylase ................... 158 12.5 p-Hydroxybenzoate Hydroxylase ..................... 159 12.6 Melilotic Hydroxylase ............................. 160 12.7 Phenol Hydroxylase ............................... 160 12.8 Orcinol Hydroxylase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.9 Kynurenine 3-Hydroxylase . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12.10 Imidazoylacetate Monooxygenase .................... 161 12.11 Amine Oxidase ................................... 161 12.12 p-Cresol Methyl Hydroxylase ....................... 162 12.13 Mechanisms of Hydroxylation ....................... 162 12.14 Baeyer-Villiger Enzymes. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.15 Lactic Monooxygenase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.16 Lysine Monooxygenase ............................ 169 12.17 Arginine Monooxygenase . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 x CONTENTS 12.18 Oxalic Acid Oxidase 170 12.19 Mechanism of Oxidative Decarboxylation ............ . 170 References ...................................... . 171 13. Pterin Monooxygenases 175 13.1 Introduction ..................................... . 175 13.2 Phenylalanine Hydroxylase ........................ . 175 13.3 Tyrosine Hydroxylase ............................. . 177 References ...................................... . 178 14. Copper Hydroxylases 179 14.1 Tyrosine ... .................................... . 179 14.2 Dopamine-~-Hydroxylase ......................... . 181 References ...................................... . 182 15. Cytochrome P-450 185 15. 1 Properties .. .................................... . 185 15.2 Reaction Mechanisms ............................. . 187 15.3 Model Studies ................................... . 190 15.4 Oxides and Amine Dealkylation .................... . 191 References ...................................... . 193 16. Other Iron Monooxygenases 199 16.1 Heme Oxidation ................................. . 199 16.2 Tryptophan Side-Chain Oxidation ................... . 201 16.3 Indolyl-l,3-alkane a-Hydroxylase ................... . 201 References ...................................... . 201 17. Ribulose Bisphosphate Oxygenase 203 17. 1 Introduction ..................................... . 203 17.2 Chemical Analysis ............................... . 204 17.3 Effectors and Inhibitors ........................... . 205 17 .4 Reaction Mechanism ............................. . 205 References ...................................... . 208 18. Dioxygenases 211 18.1 Lipoxygenase ................................... . 211 18.2 Lipoxygenase Mechanism ......................... . 213 18.3 Other Lipoxygenases ............................. . 218 18.4 Prostaglandin Synthetase .......................... . 219 18.5 Pyrrolases ...................................... . 222 18.6 Tryptophan Dioxygenase .......................... . 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.