ebook img

Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium sp. UJNMF0008 PDF

14 Pages·2017·2.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium sp. UJNMF0008

marine drugs Article Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium sp. UJNMF0008 JieBao1,HuijuanZhai1,KongkaiZhu1,Jin-HaiYu1,YuyingZhang1,YinyinWang1, Cheng-ShiJiang1 ID,XiaoyongZhang2,YunZhang3andHuaZhang1,* 1 SchoolofBiologicalScienceandTechnology,UniversityofJinan,336WestRoadofNanXinzhuang, Jinan250022,China;[email protected](J.B.);[email protected](H.Z.);[email protected](K.Z.); [email protected](J.-H.Y.);[email protected](Y.Z.);[email protected](Y.W.); [email protected](C.-S.J.) 2 CollegeofMarineSciences,SouthChinaAgriculturalUniversity,483WushanRoad,Guangzhou510642, China;[email protected] 3 KeyLaboratoryofTropicalMarineBio-ResourcesandEcology,SouthChinaSeaInstituteofOceanology, ChineseAcademyofSciences,164WestXingangRoad,Guangzhou510301,China;[email protected] * Correspondence:[email protected];Tel.:+86-531-8973-6199 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:29April2018;Accepted:18May2018;Published:22May2018 Abstract: Eightnew4-hydroxy-2-pyridonealkaloidsarthpyronesD–K(1–8),alongwithtwoknown analoguesapiosporamide(9)andarthpyroneB(10),wereisolatedfromadeep-sea-derivedfungus Arthriniumsp. UJNMF0008. Thestructuresoftheisolatedcompoundswereelucidatedonthebasis of spectroscopic methods with that of 1 being established by chemical transformation and X-ray diffractionanalysis. Compounds1and2boreanesterfunctionalitylinkingthepyridoneanddecalin moietiesfirstreportedinthisclassofmetabolites,while3and4incorporatedararenaturalhexa-or tetrahydrobenzofuro[3,2-c]pyridin-3(2H)-onemotif. Compounds3–6and9exhibitedmoderateto significantantibacterialactivityagainstMycobacteriumsmegmatisandStaphylococcusaureuswithIC 50 valuesrangingfrom1.66–42.8µM,while9displayedcytotoxicityagainsttwohumanosteosarcoma celllines(U2OSandMG63)withIC valuesof19.3and11.7µM,respectively. 50 Keywords: Arthrinium;pyridonealkaloid;antibacterialactivity;cytotoxicity 1. Introduction Theincreasingantibioticresistanceandhighspreadingrateofpathogenicbacteriahavebecome severe public healthcare threats globally, and the efforts towards new antibacterial drugs remain a pressing task [1]. Marine fungi have been considered to be an invaluable resource for bioactive compoundsandplayanimportantroleinthesearchfornovelantimicrobialcompounds[1–3].Fungiof thegenusArthriniumarewidelydistributedthroughouttheworldandhaveproventoproducediverse secondarymetaboliteswithavarietyofbioactivities,includingcytotoxicity[4–7],antimicrobial[8], anti-HSV[9],AChEinhibitory[4],COX-2inhibitory[10],syncytiumformationinhibitory[11]and Maxi-Kchannelmodulatory[12]activities,aswellaslethalityagainstbrineshrimp[13]. Duringthecourseofourongoingpursuitforantimicrobialcompoundsfrommarine-derived fungi,anArthriniumsp.UJNMF0008fromadeep-seasedimentsample,collectedintheSouthChinaSea (17◦55(cid:48)00(cid:48)(cid:48)N,115◦55(cid:48)31(cid:48)(cid:48)E;3858mdepth),cametoourattentionowingtoitsstronginhibitoryactivity againstStaphylococcusaureus. Furtherchemicalinvestigationonalarge-scalecultureofthisfungal strainledtotheisolationofeightpreviouslyunreported4-hydroxy-2-pyridonealkaloids. arthpyrones D–K (1–8), together with two previously reported co-metabolites, apiosporamide (9) [14,15] and arthpyroneB(10)[4]. Thestructures(Figure1)oftheisolatedcompoundswerecharacterizedonthe Mar.Drugs2018,16,174;doi:10.3390/md16050174 www.mdpi.com/journal/marinedrugs Mar. Drugs 2018, 16, x 2 of 14 fungal strain led to the isolation of eight previously unreported 4-hydroxy-2-pyridone alkaloids. Mar.Drugs2018,16,174 2of14 arthpyrones D–K (1–8), together with two previously reported co-metabolites, apiosporamide (9) [14,15] and arthpyrone B (10) [4]. The structures (Figure 1) of the isolated compounds were bchaasirsacotfecroizmedp reohne nstihvee sbpaescitsr osocfo pciocmanparleyhseenss,iavned tshpeeicrtraobsscoolpuitce coannafilgyuseras,t ioannsdw etrheeairs siagbnseodlubtye dcoifnfefirgeunrtamtioeanns siwncelrued inagssEigCnDedc ombyp ardisioffne,recnhte mmicaealntrsa nsinfocrlumdaitniogn aEnCdDX -rcaoymcpryasrtiasollno,g racphhemy.iAcalll tthraenissfoolramteastwioenr eatnedst eXd-rfaoyr thcreyirstaanlltoimgriacprohbyi.a lA,clly ttohteo xiiscoalantdesa cweteyrlec htoelsitneeds teforar seth(eAirC hanEt)iminihcirboibtoiaryl, acycttiovtiotxieics. aTnhde aacesstyalychreosliunletssteesrtaasbel i(sAhCedhEth) ianth3i–b6itaonryd a9ctwiveirtieems. iTldhet oasssiagyn irfiescuanltts aensttaibbalicstheerdia lthaagte 3n–t6s aagnadi n9s twMeryec ombailcdte rtoiu msigsnmifeigcmanatt iasnatnibdacSt.earuiarle uasg,ewnthsi laeg9aisnhsot wMeydcombaocdteerriautme csmyteogtmoxaitcisi taynadg aSi.n asutrtewuso, hwuhmilea n9 oshstoewoseadr cmomodaecrealtlel icnyetsotUox2OiciStya nadgaMinGst6 t3w. o human osteosarcoma cell lines U2OS and MG63. 24 23OHH22 O 1 3 11 HO 22OH OH O HO OHH 21 O H OH H 21 O O OH 13 H 19 O 9 10 5 24 20 19 O 20 19 HO 20 H H H H 14 HO HO H H 17 N15 O 12 7 17 N O N O H H H 1 2 3 HO OH OR2 R1 O HO OH HO O O OH O OH O H H H R2 H H R1O H H HO H H N O N O N O H H H 4 5 R1= H, R2= Me 7 R1= OH, R2= H 6 R1= Me, R2= H 8 R1= H, R2= OH OH O HO OH O O O H OH H HO H H HO H H N O N O H H 9 10 FFiigguurree 11.. CChheemmiiccaall ssttrruuccttuurreess ooff 11––1100.. 2. Results and discussion 2. Resultsanddiscussion 22..11.. SSttrruuccttuurree EElluucciiddaattiioonn CCoommppoouunndd 11 wwaass oobbttaaiinneedda assw whhitietep poowwddeer.r.T ThheeH HRR-E-ESISMIMSSio inonfo fro1r 1a tamt m/z/z4 44444.2.0230232( [(M[M− −H H]]−−,, ccaallccdd.. 444444..22002288)) ssuuggggeesstteedda am moolelceuculalrarfo fromrmulualao foCf 2C4H24H313N1NOO7,7,w whhicihchw wasas1 61a6m amumu omreorteh atnhatnh atthoaft iotsf citos- mcoe-tmabeotalibteolaitreth aprythropnyeroBn(e1 0B) ([140],)s [u4p],p sourtpivpeorotfivaen oofx yange onxaytegdenaantaeldo gaunea.lDogeutaei.l eDdeatanialelyds iasnoaflythseis1 oHf athned 11H3C aNndM 1R3Cd NatMa(RTa dbaletas 1(Taanbdle2s) 1in adnicda t2e)d inthdaitca1tiendc othrpaot r1a itnedcoarpskoerlaetteodn as ismkielalerttoont hsiamtoilfaarr ttoh pthyarot noef Bar(t1h0p)y[r4o],nwe iBth (1a0l)i k[e4l]y, waditdhi taio lnikaleleys taedrdgirtoiounpaal sessuteprp gorroteudp bays tshuepNpoMrtRedd ibffye rtehnec eNsMofRt hdeifrfeemreanrckeasb olyf uthpefi reelmdashrkifatbedly Cu-p1f3ierleds osnhaifntecde (Cfr-o1m3 r2e0so8n.4ainnce1 0(ftroom17 22.098i.n4 i1n) a1n0 dtoo f17a2d.j9a cinen 1t)C a-n9d, Co-f1 a4d,jCa-c1e5n,t CC--197, aCn-1d4C, C-1-915s,i gCn-a1l7s .aTnhdi sCd-1e9d suicgtnioanls.w Tahsisfu drethdeurctcioonnfi wrmase dfubrtyhienrs cpoencftiiromneodf 2bDy iNnsMpeRctdioatna .oTf h2De CNOMSYR cdoartrae. laTthioen CsO(FSiYgu croer2re)loafti1onrse v(eFaigleudret w2)o osfp i1n rceovuepalleindg tswyost esmpins fcrooumplHin2g-1 s–yHs-t1em0(si nfrcolumd iHng2-1b–rHan-c1h0 f(rinacglmudeinntgs frbormancHh- 3f–rHag3m-1e1natns dfrHo-m8– HH3--31–2H)3o-1f1a daencda liHn-m8–oHie3t-y12a)n doff rao mdeHca-2li1n– Hm2o-2ie5t.yS uabnsde qfuroenmt eHx-a2m1–iHna2t-i2o5n. oSfuHbsMeqBuCendta teax(aFmiginuaretio2n) reovf eHalMedBkCe ydcaotarr e(lFaitgiuonres f2r)o mrevHe-a1l7edto kCe-y1 4c,oCrr-1e5la,tCio-n18s ,fCro-1m9 aHn-d17C t-o2 0C,-H14-,2 C1-t1o5C, C-1-81,8C, C-2-019a nanddC C-2-250,,H H-2-221t otoC C-1-918a, nCd-2H0 -a9ntdo CC--2153,, Hle-a2d2i ntog Cto-1th9 eancodn Hst-r9u tcoti oCn-1o3f, Fleraadgimnge nttos Athea ncdonBsttrhuacttiwoner eofi dFernatgicmalentotst hAo saenidn 1B0 .thTaht ewtweroe firdaegnmtiecnatls two etrheolsien kined 1v0i.a Tahne etswteor bfroangdmaesndtse mwoernes tlriantkeeddb yvitah eanM eSstdeirf fberoenndc ea(sa mdeum1o6n)satnradte1d3C bNy MthRe cMheSm diicfafelrsehnifctev (aarmiauti o1n6s) faonrdC -113C3 (N∆Mδ R− c3h5e.m5)icaanld shCi-f1t 4v(a∆riδati1o0n.s9 )fobre tCw-1ee3n (Δ1δaCn −d3150.5.)T ahnedp Cla-n1a4r (ΔstδruC c1t0u.r9e) obfet1wweaesnt 1h uasndes 1ta0b. lTishhee pdlwanitahr C C astnruecsttuerreb roifd 1g ewbaest wtheuesn etshtaebpliysrhieddo nweitahn dand eesctaelrin bmridogieet ibeest.ween the pyridone and decalin moieties. Therelativestereochemistryof1wasassignedtobeidenticaltothatofarthpyroneB(10)based o nanalysesofNOESYdataand1H–1Hcouplings. Morespecifically,thekeyNOESYcorrelationsfrom Mar.Drugs2018,16,174 3of14 H-10(δ 1.39)tobothH-4b(δ 0.78)andH -12(δ 1.11)(1,3-diaxialrelationship)suggestedthatH-4b, H H 3 H H-10andCH -12wereaxiallylocatedonthesameside. Meanwhile,thecorrelationsfromH-5(δ 1.80) 3 H tobothH-3(δ 1.52)andH-9(δ 2.90)alsoindicatedtheiraxialandco-facialpositions. Therelative H H configuration of Fragment B was thus defined with a trans-conjunction. In addition, the relative configuration of Fragment A was supported by the NOESY correlations from H-25a (δ 1.86) to H bothH-21(δ 3.74)andH-23(δ 3.84), aswellasJ (2.4Hz)andJ (2.4Hz). Unfortunately, H H 21,22 22,23 the stereochemical relationship between Fragments A and B could not be determined due to the interruption of the achiral pyridone unit. However, a further transformation of 10 to 1 (see the ExperimentalSection)viaBaeyer–Villigeroxidationconnectedthechemicalrelationshipbetweenthe twoco-metabolitesandalsoconfirmedthestructuralassignment. Finally,asuitablesinglecrystalof 1wasobtainedfromtheMeOH-H ObinarysystemandsubjecttoX-raydiffractionanalysis,which 2 notonlyverifiedthestructureof1,butalsoestablisheditsabsolutestereochemistry(Figure3)as3R, 5S,8R,9R,10R,20R,21S,22S,23S(Flackparameter,0.0(3)). Compound1wasthusunambiguously characterizedandwasnamedarthpyroneD,followingarthpyronesA−C,isolatedfromanotherfungus ofthesamegenus[4]. ItisinterestingtopointoutthattheassignedC-20configurationfor1isopposite thatdescribedforarthpyronesAandB[4]. BycarefulexaminationofthereportedORTEPviewof arthpyroneA,itisclearthatbotharthpyronesAandBalsobeara20Rabsoluteconfiguration,whilethe authorsinvertedtheC-20stereochemistrybymistakewhendrawingthestructuresintwodimensions. Table1.1HNMR(600MHz)datafor1–4(CD OD). 3 1 2 3 4 Positon δH,mult.(JinHz) δH,mult.(JinHz) δH,mult.(JinHz) δH,mult.(JinHz) 1a 2.11,m 2.07,m 1.93,m 1.98,m 1b 1.08,m 1.07,m 0.90,m 0.96,m 2a 1.78,m 1.79,m 1.76,m 1.75,m 2b 1.01,m 1.01,m 1.05,m 1.03,m 3 1.52,m 1.54,m 1.52,m 1.49,m 4a 1.74,m 1.77,m 1.76,m 1.73,m 4b 0.78,q(12.2) 0.78,q(12.4) 0.81,q(12.3) 0.79,q(12.4) 5 1.80,m 1.82,m 1.83,m 1.84,m 6 5.41,brd(9.9) 5.41,brd(9.9) 5.41,brd(9.8) 5.38,brd(9.8) 7 5.61,ddd(9.9,4.5,2.8) 5.62,ddd(9.9,4.4,2.8) 5.61,m 5.57,ddd(9.8,4.5,2.7) 8 2.76,m 2.79,m 2.84,m 2.73,m 9 2.90,dd(11.7,5.9) 2.88,dd(11.6,5.9) 4.44,dd(11.3,5.8) 4.07,dd(11.3,5.7) 10 1.39,qd(11.3,2.5) 1.38,qd(11.5,2.3) 1.57,qd(11.2,2.0) 1.54,qd(11.3,2.6) 11 0.93,d(6.6) 0.93,d(6.6) 0.94,d(6.5) 0.92,d(6.5) 12 1.11,d(7.0) 1.08,d(7.1) 0.83,d(7.2) 0.76,d(7.1) 17 7.38,s 7.31,s 7.69,s 7.96,s 21 3.74,d(2.4) 3.71,d(7.0) 5.15,d(10.1) 22 4.60,brs 3.62,dd(7.0,6.2) 3.91,dd(10.1,2.9) 4.68,d(3.8) 23 3.84,ddd(11.6,5.1,2.4) 3.69,m 4.09,m 3.95,ddd(10.8,3.8,3.2) 24a 1.86,m 2.12,m 2.07,m 2.03,m 24b 1.34,m 1.54,m 1.72,m 1.89,m 25a 1.86,m 2.43,ddd(14.1,7.9,3.7) 2.88,m 2.69,m 25b 1.75,m 1.67,ddd(14.1,9.3,3.8) 1.51,m 2.51,m Mar.Drugs2018,16,174 4of14 Mar. Drugs 2018, 16, x 4 of 14 Mar. Drugs 2018, 16, x 4 of 14 FFiigguurree 22.. KKeeyy 22DD NNMMRR ccoorrrreellaattiioonnss ffoorr 11.. Figure 2. Key 2D NMR correlations for 1. Figure 3. ORTEP view of 1. FFiigguurree3 3.. OORRTTEEPPv viieewwo off1 1.. Compound 2 was isolated as a pale yellow powder, and its molecular formula C24H33NO8 was estabClCisoohmmepdpo ofuruonnmdd 2t2hw we aHassRi si-soEolSalatIeMteddSa aisosan a p apat almele/y zye l4ell6ol2ow.w2p1 4po3ow w(d[Mdere, r−a, nHadn]d−i,t sictamsl cmodlo.e lc4eu6c2lua.l2ra1fr3o f3rom),r mubeluainlaCg C 12H84H m3N3aNsOsO u8 wnwiatasss 24 33 8 meessottarabeb llitishshahened dt hffrraootm mof tt hh1e.e THHhRRe-- EENSSMIIMMRSS d iiaootnna aaottf m m2/ /zr ze4s64e26m.22b.12l41e34d 3 ([tMh([oM s−e −H o]fH− ,1 ]c −a(Tl,cacdba.l le4csd6 2.1. 24a16n32d3.2) ,21 b)3,e3 ai)n,ngbd e 1it8nh gem 1ao8sbsvm uioanusitsss duminfofitersreem nthocaerens wtthheaarnte tothhfa e1t d.o oTfwh1.en TfNiheeMldNR sM hdiRfatteadd a ostfai g2on far2elssr eoemfs eCbml-e2bd0l e(tdδhCot h7s8eo .s5oe fio n1f 2 1( Ta(nTadbabl e7ls0e .s611 ianan n1dd) a22n)),,d aa Cnndd-2 t1thh (eeδ Coo b7bv7v.i3ioo uiunss 2dd iaifffnfeedrre eδnnCc ce7es0s. w0w eienrre e1 tt)hh, eea lddooonwwg nnwfifiieethlldd t hsshheii ffuttepeddfi essliidgg nnsaahllissf tooeffd CC r--e22s00o (n(δδaCn 7c78e8. 5.o5 fin iCn 2-2 2a2an nd(δd 7C 7070.65. 6.i3ni ni 1n)1 2)a naadnnd dC C-δ2C-1 28 1(5δ(.C2δ 7i7n7. 371 .)i3n. C C Fi2nu ar2tnhaden rdδ Ceδ x7a0m7.00 i.ni0na it1nio),1n a) ,looafnl ogCn OwgSiwtYhi ttdhhaetth aue p(uFfiipegfiluder lesd h4si)fh teirfedtve rdeeasrloeednsoa ntnwacneo c oesft roCuf-cC2tu2-2 r(a2δlC ( δm75o.7t3i5 fi.s3n oi2nf at2nhaden dδdCe δc8a5l.i82n5 i.an2n i1dn) . C C C C1F)H.urF-2tuh1re–trCh eHerx2ae-2mx5ai mnpaaitnritoa, tnwi oohnfi cohCf OCwSOeYrSe Y dthadteaa t sa(aFm(iFgeiug auresr et4h4)o )rsreeev vienea al1el.ed dT httwew opo isvsttorrutuacclt tuHurraMall BmmCoo cttioiffsrsr eoolffa ttthihoeen dsd ee(cFcaiaglliiunnr aea nn4d)d fCCroHHm--2 21H1––-C9C HH(δ2H-- 22255. 8pp8aa)r rttto,, wwChh-1iic3chh, Hww-ee1rr7ee (ttδhhHee 7 ss.a3am1m)e et oaa ssC tt-hh1oo4s,s eeC ii-nn15 11,. .C TT-hh1e8e ,p pCiivv-o1o9tta aalln HHdMM CBB-2CC0 ccaoonrrdrree lHlaat-ti2ioo1nn (ssδ (H(FF i3igg.7uu1rr)ee t 4o4)) 2 Cffrr-o1om8m, H CH--9-290( δ (aδnH2d .2 8C.88)-82t)5o t oCw -Ce1r3-e1, 3Ha,l -sH1o7- 1c(o7δ n(sδ7iHs. 3t7e1.n)3tt1 ow) Ctiot-h 1C 4t,-h1Co4-s,1 eC5 ,o-C1b5s-1,e 8rCv,-Ce1d8-1 ,f 9oCar- n11d9. TCanh-2de0r Ceafn-o2dr0e H,a tn-h2d1e H(aδf-o2r13e .m(7δ1eH)n t3toi.o7C1n-)e1 dt8o, H H H MCS-1 a8n, dC -N20M aRn dd iCff-e2r5e nwceerse, tahles oa bcosennsciset eonf tH wMitBh Cth coosrer eolbastieornv efdro fmor H1.- 2T2h teor eCfo-1r9e, atnhde athfoer memoeren tpioonlaerd C-20andC-25werealsoconsistentwiththoseobservedfor1. Therefore,theaforementionedMSand nMatSu raen odf N2 MallR s udpifpfeorretnecde tsh, eth pel aanbasre nstcreu octfu HreM oBf C2 wcoitrhreoluatt itohne ferpoomx yH b-2ri2d tgoe Cbe-1tw9 eaennd Cth-1e9 m anorde Cp-o2l2a.r NMRdifferences,theabsenceofHMBCcorrelationfromH-22toC-19andthemorepolarnatureof2 Tnhaet urreel oatfi v2 ea llc osunpfipgourrtaetdio tnh eo pf la2n awr astsr uacstsuirgen oedf 2 owni ththoeu t bthaesi se poofx yN bOriEdSgYe bdetawtae e(nF iCg-u1r9e an4)d. CT-h2e2 . allsupportedtheplanarstructureof2withouttheepoxybridgebetweenC-19andC-22. Therelative cTohnefi gruerlaattiiovne ocfo tnhfei gduercaatliionn m oofi et2y wwaass idaesnsitgicnaeld to othna tt hofe 1 baass iinsd iocfa tNedO bEyS NY OdEaStYa c(oFrirgeulareti o4n)s. aTnhde configuration of 2 was assigned on the basis of NOESY data (Figure 4). The configuration of the sdciemocnialflaiigrnu NmraMotiiRoent dy oawft ata.h sTei hddeee ncNatOilcinaE lSmtYoo citehotrayrt ewolafat1sio iandssei nnfrtdoicimacal Htteo-d 2th5babyt (NoδfHO 1 1E a.S6s7Y i)n ctdooir cbraeotlteahdt i Hobny-2 sN1a O(nδdEH Ss3Yi.m7 c1io)l ararrneNdla MtHioR-n23sd aa(δntaHd. 3Ts.hi6me9)iN lsauOr gNEgSMeYsRtce oddr arttehale.a iTtri hoaenx siNaflOr oaEnmSdYH cco-o2-rp5rbleal(naδtairo n1n.sa6 tf7ur)ortemo, wbHoh-t2ihl5ebH t (h-δ2oH1s 1e(δ .6fr7o)3 mt.7o 1 Hb)o-a2tnh2d H(δH-H2- 123 3.(6δ(2Hδ) 3t.o73 1.b6)o9 at)nhsd uH gH-g1-e27s3 t( e(δδdHH H H H 7t3h.3.e61i9)r) a asnxudiga lgHae-ns2td4ebdc o(tδ-hHpe li1ar.n 5aa4xr)i asnula patunprdoe r,ctewod-hp tilhlaeantta hHro n-s2ea2tf,u rHroem-,2 w4Hbh- ia2ln2e d(tδ htohse3e .p 6fy2rro)imdtoo Hnbeo- 2tuh2n H(iδt -Hw1 73e.r(6eδ2 a) x7tio.a3 lb1ly)o talhon cdHatH-e1d-72 o4(δnbH H H t(7hδ.e3 1o1)t. h5a4en)rd ss uiHdp-ep2 o4obfr t te(hδdeH t hh1e.a5xt4aH)n se-u2 r2pin,pHgo.r- T2te4hdbe tashtnardut cHtthu-e2r2ep ,yo Hrfi 2-d2 ow4nbae sau nhndein ttchwee e eprleuycraiixddioaatnlleeyd ul aonsci ats thweodewroenn aitnxhi eFaliolgytuh lreoerc 4as.ti dede oofn H the other side of the hexane ring. The structure of 2 was hence elucidated as shown in Figure 4. thehexanering. Thestructureof2washenceelucidatedasshowninFigure4. Mar.Drugs2018,16,174 5of14 Mar. Drugs 2018, 16, x 5 of 14 Mar. Drugs 2018, 16, x 5 of 14 COSY HMBC COSY HMBC NOESY OH NOESY OH 1 HO 22 OH O 25 1 33 HO 22 OHOH O 25 13 2244 HHOO2200 1199OH 111544OO 1133 99 2233 2222442211 2200 11771199 13112288 99 1100 55 17 15 22 17 N O Fragment A HN O Fragment B Fragment A H Fragment B Figure 4. Key 2D NMR correlations for 2. FFiigguurree 44.. KKeeyy 22DD NNMMRR ccoorrrreellaattiioonnss ffoorr 22.. CCoommppoouunndd 33 wwaass aassssiiggnneedd aa mmoolleeccuullaarr ffoorrmmuullaa ooff CC2244HH3311NNOO66 bbyy HHRR--EESSIIMMSS mm//zz 442288..22007744 (([[MM −− H]−, cCalocmd.p 4o2u8n.2d0739)w, sausgagsessitginvee dofa anm iosloemcuelra orff aoprmiousplaoroafmCid24eH (931) N[1O4,615b]y. AHnRa-lEysSiIsM oSf tmhe/ Nz M42R8. 2d0a7ta4 H]−, calcd. 428.2079), suggestive of an isomer of apiosporamide (9) [14,15]. Analysis of the NMR data ((T[Mab−lesH 1] −an,dca 2lc) dfo.r4 32 8r.e2v0e7a9l)e,ds uthgeg epsrteivseenocfe aonf ais odmecearlionf mapoiioetsyp oasra imndidiceat(e9d) [b1y4 ,a1 5c]l.oAsen raelsyesmisbolafnthcee (Tables 1 and 2) for 3 revealed the presence of a decalin moiety as indicated by a close resemblance bNeMtwReedna taits( TaNbMlesR 1daantda 2a)nfdor t3hroesvee aolfe d9t,h eanpdr estehnec emoafina dNecMalRin dmifofieerteyncaessi nbdeitcwateeedn bythae ctlowsoe between its NMR data and those of 9, and the main NMR differences between the two croes-memetbalbaonlcietebs eotwbseeernveitds fNoMr tRhed aletfat-asniddet hForasgemofen9,t aAn.d Ftuhrethmear ininNspMecRtiodnif foefr eCnOceSsYb edtawtae e(nFitghueretw 5o) co-metabolites observed for the left-side Fragment A. Further inspection of COSY data (Figure 5) ccoon-mfiremtaebdo ltihtees eoxbissteernvceed offo rthteh edleecfatl-isnid meoFtriaf gamnden atlsAo. eFsutratbhleisrhiends pthecet isoanmoef sCpOinS Ycoduaptlain(gF isgyusrteem5) confirmed the existence of the decalin motif and also established the same spin coupling system fcfrrooonmmfi r HHm--e22d11––thHHe22--e22x55i s aatess n ttchheaatot fiinnth 99e.. dIInenc aaadldidndiimttiiooonnti,,f ttahhneed HHaMlMsoBBeCCs tccaoobrrlrriseehllaaettdiiootnnhsse ((sFFaiimgguuerrseep 55in)) fcfrroooummp l HiHn-g-99 s (y(δδsHHt e 44m..444f4r))o tmtoo CHC---112331 –aaHnndd2- C2C5--11a44s vtvheearritiffiiineedd9 .tthhInee accodondnnniteeiocctntii,ootnnh ebbeeHttwwMeeBeeCnn FcForrararggemmlaeetinnottnss s AA(F aaingnuddr BeB,,5 ww)fhhrioillmee tthHhoo-s9see( δffrHroom4m.4 HH4)--1t1o77 C((δδ-H1H 3 77a..66n99d)) tCtoo- 1CC4--11v44e,,r iCCfi--e11d55,,t hCCe--11c8o8,n, CCne--11c9t9i oaannnddb e CCtw--22e00e,, n aalFloornnaggg m wweiintthhts ttAhhooassneed ffrrBoo,mmw hHHil--e2255thbbo ((sδδeHHf r11o..55m11))H ttoo-1 CC7--(22δ0H0 aa7nn.6dd9 )CCt--o221C1,,- e1en4n,aaCbbl-le1ed5d, tCh-e1 8a,ssCe-m19balyn dofC th-2e0 ,paylroindgonwe irthintgh oansedf trhoem cHyc-l2o5hbex(δaHne1 .m51o)ietotyC, -a2s0 waenldl aCs- 2th1e,iern lainbkleadgeth feroamss eCm-1b8l–y the assembly of the pyridone ring and the cyclohexane moiety, as well as their linkage from C-18– Cof-2th0.e pMyroirdeoonveerr,i ngfoaunrd tehxecchyacnlgoehaebxlaen epmrootioentys, aswwereel laosbtsheerivreldin kaing eftrhoem 1CH-1 8N–CM-2R0 . Mspoercetoruvmer, C-20. Moreover, four exchangeable protons were observed in the 1H NMR spectrum (f(SoSuuupprppellxeecmmheaennntgtaaerrayyb IIlnneffoporrrmmotaaottniioosnnw TTeaarbbelleoe bSSs11e)),r, vmmeeedaassinuurrteehdde ii1nnH DDMNMMSSOOR--dds66p,, ewwchthriiucchhm ww(Seerureep aapsslsseiimggnneeenddta ffrooyrr NINnHHfo,,r 2m200a--OOtiHoHn,, 2T2a-bOleHS 1a)n,md e2a3s-uOrHed, irnesDpMecStiOve-dly6,. wThhiisc hwwaesr esuapsspiogrnteedd fboyr NHHM,B2C0- OaHnd, 2C2-OOSHY acnodrr2e3la-OtioHn,sr e(sFpigecutrive e5ly) . 22-OH and 23-OH, respectively. This was supported by HMBC and COSY correlations (Figure 5) fTrhoims wNaHs tsou pHp-1o7rt, e2d0-bOyHH tMo CB-C20a,n Hd-2C2O tSoY 22c-oOrrHe laantido nHs-(2F3i gtou r2e3-5O)Hfr.o TmheN aHbotoveH-m-1e7n,t2io0n-OedH atnoalCy-s2e0s, from NH to H-17, 20-OH to C-20, H-22 to 22-OH and H-23 to 23-OH. The above-mentioned analyses aHc-c2o2utnote2d2 -fOoHr aalnl dbuHt -o23neto o2x3y-gOeHn .aTtohmea, bwohviec-hm wenatsi oansecdribanedal ytos etshaec cfoorumntaetdiofno rofa lalnb uetpoonxey obxryidggene accounted for all but one oxygen atom, which was ascribed to the formation of an epoxy bridge babeteottwwmee,eewnn h CCic--h1199w aaannsdda CsCc--r22i1b1,,e adasst owwtaahsse aafllossorom ssuautppipopnoorrotteefdda nbbyye p ttohhxee y ddboorwwidnngffieieelbldde tsswhhieiffetteneddC cc-h1he9emmaniiccdaallC ss-hh2ii1ff,tt aoosff wCCa--11s99a (l(δsδoCC 1s1u777p7..p22)o) raatnenddd buuypptffhiieeellddd osswhhiinffttfieeeddl d cchhsheemimftiieccdaallc hsshheimifftti cooaffl CCsh--2i2f11t o((δfδCCC 66-1779..77())δ ccCoo1mm7p7p.aa2rr)eeaddn dwwuiittphhfi ttehhlodossseeh iiinnft e22d ((cTThaaebbmlleei c22a))l.. sTThhhifeet roeflaCt-i2v1e (cδoCn6f7ig.7u)rcaotimonp aorfe d3 wwitahs thesotsaebliinsh2e(dT avbilae 2a)n.aTlhyseerse loaft ivNeOcEonSYfig duaratati o(nFiogfu3rew 5a)s aesntda b1lHis–h1eHd relative configuration of 3 was established via analyses of NOESY data (Figure 5) and 1H–1H cvoiaupalninalgyss e(TsaobfleN 1O)E. STYhed saitmai(lFairgituyr ebe5t)waenedn 1tHhe– 11HH cNouMpRli nsgpsec(tTraab olef 1th).e Tdheecasliimn ilmaroiiteytyb eotfw 3e eanndth 9e couplings (Table 1). The similarity between the 1H NMR spectra of the decalin moiety of 3 and 9 s1uHpNpoMrtReds ptheec tcroamomftohne rdeelactailvine smteorieeotcyhoefm3isatnryd, a9ss wupaps oarlsteod cothnefircmomedm boyn NreOlaEtSivYe csotrerreeloactihoenms.i sTthrye, supported the common relative stereochemistry, as was also confirmed by NOESY correlations. The carsuwciaasl aNlsOoEcSoYn ficromrreedlabtiyonNsO frEoSmY Hco-r2r1e–laHti-o2n5sa. aTnhde Hcr-u2c2i–aHlN-2O4aE SinYdcicoarrteedla ttihoen 1s,f3r-odmiaxHia-2l 1r–eHla-t2io5nasahnipd crucial NOESY correlations from H-21–H-25a and H-22–H-24a indicated the 1,3-diaxial relationship oHoff - t2thh2ee– Httww-2oo4 paprrionotdtooinnca ppteaadiirrstsh,, eww1hh,i3icc-hhd iiiannx iccaoolmmrebblaiinntiaaottniioosnhn i wpwioitthfh t ththheeet wpprroootptoornno tccooonuupppalliiinnrsgg, wccoohnnissctthaanninttssc ooofmf JJb2211i,,n2222a ((t11io00n..11 w HHiztzh)) atahnnedd p JJ2r22o2,,2t233o (n(22.c.99o HuHpzzl))i nddgeeffciionnneedsdt atthhneets rroeelflaaJtt2ii1vv,e2e2 cc(oo1nn0ff.i1iggHuurrzaa)ttiaioonnnd ooJf2f 2tt,hh23ee (pp2oo.9llyyHooxzxy)ygdgeeenfinaantteeeddd tcchyyecclrlooehlhaeetxxivaaennece o mmnofioiigeeuttyyr.a. tTTihohnee sotfruthcetuproe lyoxyogfe nated3 cyclowheaxs anemthoeierteyb.yT hestcrhuacrtuacreteorifz3edw asthteor ebycfheaartaucrtee rizedat ofeartuarree structure of 3 was thereby characterized to feature a rare haerxaarheyhderxoabheyndzroofbuernoz[3o,f2u-rco]p[3y,r2i-dc]ipn-y3r(i2dHin)--3o(n2eH )f-roangemferangt mweintthw vitehryv efreywfe wexeaxmamplpesle srereppoortretedd ffrroomm hexahydrobenzofuro[3,2-c]pyridin-3(2H)-one fragment with very few examples reported from nnaattuurree [[1166––1188]].. nature [16–18]. FFFiiiggguuurrreee 555... KKKeeeyyy 222DDD NNNMMMRRR cccooorrrrrreeelllaaatttiiiooonnnsss fffooorrr 333 (((pppiiinnnkkk cccooorrrrrreeelllaaatttiiiooonnnsss ooobbbssseeerrrvvveeeddd iiinnn DDDMMMSSSOOO---ddd666)))... Mar.Drugs2018,16,174 6of14 Table2.13CNMR(150MHz)datafor1–8(CD OD). 3 1 2 3 4 5 6 7 8 Position δc,Type δc,Type δc,Type δc,Type δc,Type δc,Type δc,Type δc,Type 1 30.7,CH2 30.8,CH2 31.0,CH2 30.8,CH2 31.0,CH2 31.0,CH2 30.4,CH2 30.4,CH2 2 36.5,CH2 36.5,CH2 36.6,CH2 36.7,CH2 36.6,CH2 36.6,CH2 30.8,CH2 34.6,CH2 3 34.3,CH 34.3,CH 34.4,CH 34.4,CH 34.4,CH 34.4,CH 42.0,CH 41.7,CH 4 43.0,CH2 43.0,CH2 43.2,CH2 43.2,CH2 43.2,CH2 43.2,CH2 37.4,CH2 79.6,CH 5 43.2,CH 43.2,CH 43.2,CH 43.4,CH 43.2,CH 43.2,CH 42.7,CH 49.8,CH 6 131.6,CH 131.6,CH 131.7,CH 131.7,CH 131.7,CH 131.7,CH 131.6,CH 127.1,CH 7 132.2,CH 132.2,CH 132.7,CH 132.7,CH 132.7,CH 132.6,CH 132.8,CH 133.3,CH 8 33.8,CH 33.7,CH 32.4,CH 32.9,CH 32.5,CH 32.5,CH 32.4,CH 32.0,CH 9 50.3,CH 50.3,CH 54.2,CH 55.5,CH 54.3,CH 54.3,CH 54.2,CH 54.1,CH 10 37.7,CH 37.7,CH 37.6,CH 38.0,CH 37.6,CH 37.6,CH 37.9,CH 35.9,CH 11 22.9,CH3 22.9,CH3 23.0,CH3 23.0,CH3 23.0,CH3 23.0,CH3 68.6,CH2 19.3,CH3 12 18.3,CH3 18.2,CH3 18.3,CH3 18.3,CH3 18.4,CH3 18.4,CH3 18.4,CH3 18.3,CH3 13 172.9,C 173.2,C 212.1,C 203.8,C 211.9,C 211.9,C 211.8,C 211.6,C 14 123.8,C 126.4,C 108.1,C 110.7,C 108.9,C 108.5,C 108.7,C 108.8,C 15 158.2,C 160.7,C 164.3,C 163.4,C 163.7,C 164.0,C 163.9,C 164.0,C 17 129.8,CH 132.2,CH 141.0,CH 133.3,CH 143.2,CH 144.2,CH 139.9,CH 139.9,CH 18 115.6,C 115.7,C 118.3,C 115.4,C 114.3,C 111.4,C 116.6,C 116.7,C 19 160.8,C 161.9,C 177.2,C 166.4,C 179.8,C 179.5,C 179.3,C 179.4,C 20 70.6,C 78.5,C 76.9,C 116.6,C 76.3,C 82.4,C 70.4,C 70.4,C 21 70.0,CH 77.3,CH 67.7,CH 156.2,C 78.7,CH 75.2,CH 60.5,CH 60.5,CH 22 85.2,CH 75.3,CH 74.1,CH 65.3,CH 86.6,CH 75.2,CH 57.6,CH 57.6,CH 23 71.6,CH 72.6,CH 71.3,CH 70.8,CH 72.4,CH 72.4,CH 67.1,CH 67.1,CH 24 27.7,CH2 27.6,CH2 27.1,CH2 26.7,CH2 28.2,CH2 26.1,CH2 25.8,CH2 25.8,CH2 25 37.6,CH2 31.1,CH2 31.2,CH2 18.4,CH2 30.4,CH2 23.7,CH2 31.6,CH2 31.6,CH2 OCH3 60.5,CH3 51.0,CH3 Themolecularformulaof4wasdeterminedasC H NO byHR-ESIMSm/z410.1974([M−H]−, 24 29 5 calcd.410.1973),indicativeofadehydratedanalogueof3.AnalysisoftheNMRdata(Tables1and2)for 4confirmedthishypothesis,withdiagnosticsignalsfortwoquaternarysp2carbons(δ 116.6and156.2) C in4insteadoftheoxyquaternarysp3carbonsatδ 76.9(C-20)andδ 67.7(C-21)in3. Thisobservation C C ledtothesuggestionthatthefuranringisformedbetweenthecyclohexadioland2-piperidonerings andextendedtheconjugationsystemofthepyridonechromophore,whichwasfurtherconfirmedby theUVdataof4withanabsorptionpeakred-shiftedto367nm. FurtherexaminationofCOSYand HMBCcorrelations(SupplementaryInformationFiguresS42andS43)corroboratedtheaforementioned structuralassignment. ThesimilarityoftheNMRdataofthedecalinmoietiesof4and3suggestedthe commonrelativeconfigurationsasalsoconfirmedbyNOESYcorrelations(SupplementaryInformation FigureS44). ThecrucialNOESYcorrelationfromH-23–H-25bandprotoncouplingconstantsofJ , 2223 (3.8Hz)andJ , (10.8Hz)definedtherelativeconfigurationsatC-22andC-23asshowninFigure1. 2324a Compounds5and6wereassignedthesamemolecularformulaofC H NO bytheirHR-ESIMS 25 35 7 m/z 460.2349 and 460.2337 ([M − H]−, calcd. 460.2341), respectively, suggestive of a pair of isomers. The NMR data (Tables 2 and 3) for 5 revealed high similarity to those of apiosporamide (9)[14,15], and the major differences were attributable to the shielded signals for the oxirane ring in9insteadoftwooxymethines(δ 3.87and3.35;δ 78.7and86.6)andamethoxygroup(δ 3.63; H C H δ 60.5) in 5. Subsequent analysis of COSY and HMBC correlations (Supplementary Information C FiguresS50andS51) corroborated the aforementioned observations with a key HMBC correlation fromthemethoxyprotonstoC-22(δ 86.6)andestablishedtheplanarstructureof5. Therelative C stereochemistryof5wasdeterminedtobeidenticaltothatof2basedonthecomparisonoftheirNMR spectra, includingcrucial1H–1Hcouplingsbetweenthecorrespondingchiralcenters, whichwere furtherconfirmedbyexaminationoftheNOESYspectrum(SupplementaryInformationFigureS52). AnalysisoftheNMRdata(Tables2and3)for6suggestedthatitwasamethoxyregio-isomerof5, andthemethoxygroupwasdeterminedtolocateatC-20(δ 82.4)viatheHMBCcorrelationfromthe C methoxyprotons(δ 3.18)toC-20. DetailedinspectionofCOSYandHMBCspectra(Supplementary H InformationFiguresS57andS58)verifiedtheplanarstructureof6,andtherelativeconfigurationwas Mar.Drugs2018,16,174 7of14 alsodeterminedtobethesameasthatof5basedonanalysesofkey1H–1HcouplingsandNOESY correlations(SupplementaryInformationFigureS59). Compounds 7 and 8 were determined to possess the same molecular formula C H NO by 24 31 7 their HR-ESIMS m/z 444.2025 and 444.2030 ([M − H]−, calcd. 444.2028), respectively, indicative of oxygenated analogues of apiosporamide (9) [14,15]. Analysis of the NMR data (Tables 2 and 3) for7confirmedthishypothesiswithdiagnosticsignalsforanoxymethylene(δ 3.39, 2H; δ 68.6) H C in 7 instead of the CH -11 group in 9. Good resemblance between the remaining NMR data for 7 3 and9suggestedtheassignmentofcommonstructuralfeaturesbetweenthetwoco-metabolitesand indicatedtheirsamerelativestereochemistry. Thestructurewiththerelativeconfigurationof7was finally confirmed by further examination of 2D NMR data, especially COSY, HMBC and NOESY spectra(SupplementaryInformationFiguresS64–S66). Similarly,theoxidationof8occurredatC-4as supportedbytheCOSYcorrelationsfromH-4(δ 2.73)toH-3(δ 1.39)andH-5(δ 1.77),aswellasthe H H H HMBCcorrelationfromH -11(δ 1.03)toC-4(δ 79.6). ThecouplingconstantsofH-4(dd,J=9.9Hz) 3 H C indicatedthatitwasaxiallylocated,andthus,thehydroxylgroupwasequatoriallyoriented. Thelow chemicalshiftofH-4(<3.0ppm)wasduetoitsaxialposition,whichlocateditintheshieldingzone ofC2-C3andC5-C6bonds. ThesimilaritybetweentheremainingNMRdatafor8and7,especially key1H–1Hcouplingconstants,supportedcommonstructuralfeatures,includingconfigurationsofthe stereocenters,betweenthetwoco-metabolites. Thestructureof8withtherelativeconfigurationwas furtherconfirmedbyanalysisof2DNMRdata(SupplementaryInformationFiguresS71–S73). Table3.1HNMR(600MHz)datafor5–8(CD OD). 3 5 6 7 8 Positon δH,mult.(JinHz) δH,mult.(JinHz) δH,mult.(JinHz) δH,mult.(JinHz) 1a 1.91,m 1.91,m 1.98,m 1.86,m 1b 0.87,m 0.88,m 0.90,m 0.90,m 2a 1.74,m 1.74,m 1.81,m 1.74,m 2b 1.03,m 1.03,m 1.05,m 1.14,dq(13.1,3.5) 3 1.51,m 1.50,m 1.60,m 1.39,m 4a 1.74,m 1.74,m 1.84,m 2.73,dd(9.9,9.9) 4b 0.79,q(12.3) 0.79,q(12.4) 0.82,m 5 1.81,m 1.81,m 1.82,m 1.77,m 6 5.39,brd(9.8) 5.40,brd(9.8) 5.42,brd(9.8) 6.00,brd(10.1) 7 5.59,ddd(9.8,4.3,2.7) 5.59,ddd(9.8,4.4,2.7) 5.60,ddd(9.8,4.4,2.5) 5.68,ddd(10.1,4.4,2.6) 8 2.82,m 2.81,m 2.83,m 2.81,m 9 4.41,dd(11.3,5.8) 4.41,dd(11.1,5.6) 4.43,dd(11.3,5.7) 4.46,dd(11.2,5.8) 10 1.55,m 1.55,m 1.58,m 1.71,m 11 0.92,d(6.5) 0.92,d(6.5) 3.39,dd(6.0,1.2) 1.03,d(6.4) 12 0.81,d(7.2) 0.81,d(7.2) 0.82,d(7.2) 0.82,d(7.2) 17 8.00,s 7.77,s 7.57,s 7.56,s 21 3.87,d(7.9) 4.20,s 3.63,d(3.6) 3.63,d(3.8) 22 3.35,dd(9.8,7.9) 3.65.m 3.41,t(3.6) 3.41,dd,(3.8,2.8) 23 3.69,m 3.73,m 4.12,m 4.12,m 24a 1.91,m 1.98,m 1.81,m 1.81,m 24b 1.31,m 1.55,m 1.34,m 1.33,m 25a 2.82,m 2.59,m 2.20,m 2.20,m 1.69,ddd(14.2,10.2, 25b 1.48,m 1.76,m 1.69,m 2.8) OCH3 3.63,s 3.18,s Compounds9and10wereidentifiedtobethepreviouslyreportedapiosporamide[14,15]and arthpyroneB[4],respectively,basedoncomprehensivespectroscopicanalysesincludingMS,NMR, [α] andECD.Whiletheabsoluteconfigurationof1wasestablishedbyX-rayanalysisandchemical D transformation, those of the other analogues were assigned mainly by analysis of their ECD data. Theabsoluteconfigurationsof3and5–8,whichhavethesame3-acylpyridonechromophore,were characterizedbytheirECDspectra,whicharesimilartothatof9(Figure6),whoseabsolutestructure Mar. Drugs 2018, 16, x 8 of 14 Mar. Drugs 2018, 16, x 8 of 14 Mar.Drugs2018,16,174 8of14 characterized by their ECD spectra, which are similar to that of 9 (Figure 6), whose absolute characterized by their ECD spectra, which are similar to that of 9 (Figure 6), whose absolute structure had been confirmed by total synthesis of its enantiomer [14,15]. The absolute structure had been confirmed by total synthesis of its enantiomer [14,15]. The absolute choandfibgeuernatcioonnsfi romf tehde bsytertoeotaclesnytenrtsh oesf i2s aonfdit s4 ewnearnet ipormopeors[e1d4, 1o5n] .bTiohgeenaebtsioc lgurtoeucnodnsfi (gSucrhaetmioen s1)o. fthe configurations of the stereocenters of 2 and 4 were proposed on biogenetic grounds (Scheme 1). stereocentersof2and4wereproposedonbiogeneticgrounds(Scheme1). Figure 6. The ECD spectra of 3 and 5–9. FFigiguurere6 6..T ThheeE ECCDDs sppeecctrtarao off3 3a anndd5 5––99.. WWiitthh aallll tthheessee mmeetatabbooliltietessi ninh hanandd,w, weew wereeraeb albelteo tpor opproopseosaep al apulsaiubsleibbleio bsyionstyhnetthiceptiact hpwatahywfaoyr With all these metabolites in hand, we were able to propose a plausible biosynthetic pathway ftohre ntheew naenwal oagnuaelso.gCuoesm. pCooumndpo1ucnodu l1d bceouolbdt abinee dobftraoimne1d0 fvrioamo n1e0-s tveipa Boaneey-esrt–epV ilBliageeyreorx–iVdialltiigoenr, for the new analogues. Compound 1 could be obtained from 10 via one-step Baeyer–Villiger woxhiidleatsieolne,c twivheiolex isdealeticotnivoef o9xaitdCat-i1o1na nodf 9C -a4t wCo-u11ld aanfdfo rCd-47 awnodu8l,dr easfpfoercdti v7e layn.dT h8e, lrikeesplyebctiiovseylnyt.h Tehtiec oxidation, while selective oxidation of 9 at C-11 and C-4 would afford 7 and 8, respectively. The loirkiegliyn boifo2s–y6ntisheotuictl ionreigdinin oSfc 2h–e6m ies 1o.uPtlrionteodn ainti oSnchoefmthee 1e.p Porxoytognraotuiopno fof9 twheo uelpdogxiyv egrtohuepin otef r9m wedoiualtde likely biosynthetic origin of 2–6 is outlined in Scheme 1. Protonation of the epoxy group of 9 would (gii)vteh atthceo iunltderumndederiagtoe in(it)r atmhaotl eccouulladr nuuncdleeorgpoh iilnictrsaumbsotlietucutiloanr bnyuc1l9e-oOpHhi,lfico llsouwbestditbuytiodne pbryo to1n9a-OtioHn, give the intermediate (i) that could undergo intramolecular nucleophilic substitution by 19-OH, ftoolyloiewlded3 .bSyu bsdeeqpureontotndaethioynd ratoti oynieolfd3 w3. ouSuldbsfueqrnuiesnht 4.dTehhyedinratetiromne doifa t3e (iw)ocouuldld faulsroniesxhp e4r. ieTnhcee followed by deprotonation to yield 3. Subsequent dehydration of 3 would furnish 4. The irnintegrmopeedniianteg b(iy) hcoyudlrdo lyaslsiso feoxllpoewrieedncbey rdinepgr ootpoennaitniogn btyo ahfyfodrrdoltyhseisi nftoelrlomweeddia tbey( idi)e,pwrhoitcohnawtiaosnn toot intermediate (i) could also experience ring opening by hydrolysis followed by deprotonation to aofbftoaridn ethdei ninttheermcuerdrieantet s(itui)d, wy.hTihche winatesr nmoetd oibattaei(niei)dc ionu tlhdep cruordruencet s2tuvdiayB. Taehyee irn–tVerilmligederiaotxe i(diai)t icoonuoldr afford the intermediate (ii), which was not obtained in the current study. The intermediate (ii) could purnoddeurgceo 2se vleiac tBivaeeymeer–thVyilllaitgioern otxoiydiaetlidon5 oorr u6.ndergo selective methylation to yield 5 or 6. produce 2 via Baeyer–Villiger oxidation or undergo selective methylation to yield 5 or 6. SScchheemmee 11.. PPrrooppoosseedd bbiioossyynntthheettiicc ppaatthhwwaayy ffoorr 22––66.. Scheme 1. Proposed biosynthetic pathway for 2–6. 2.2. Biological Activity 2.2. BiologicalActivity 2.2. Biological Activity Compounds 1–10 were tested against two Gram-positive strains Mycobacterium smegmatis Compounds1–10weretestedagainsttwoGram-positivestrainsMycobacteriumsmegmatisATCC Compounds 1–10 were tested against two Gram-positive strains Mycobacterium smegmatis ATCC 607 and Staphylococcus aureus ATCC 25923, two Gram-negative strains Escherichia coli ATCC 607andStaphylococcusaureusATCC25923,twoGram-negativestrainsEscherichiacoliATCC8739and ATCC 607 and Staphylococcus aureus ATCC 25923, two Gram-negative strains Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027 and a yeast Candida albicans ATCC10231. Compounds PseudomonasaeruginosaATCC9027andayeastCandidaalbicansATCC10231. Compounds3–6and 8739 and Pseudomonas aeruginosa ATCC 9027 and a yeast Candida albicans ATCC10231. Compounds 39–e6x ahnibdi t9e dexahnibtiibteadct aenritaiblaacctteivriiatyl aacgtiavinitsyt aMga.isnmste gMm.a stmiseagnmdatSis. aaunrde uSs. awuirtehusI Cwithv aIClu50e svaralunegsi nragnfgrionmg 1fr3.6o–6m6– a 41n2..6d86 9µ– 4Me2x.h8(Ti bμaibMtlee d(4 Ta)a,nbwtilbeh ai4lce)t,e nwroiahnlie laeoc nftiotvhnietey t oeafsg ttaehidne scttoe Mmstep. dsom ucenogmdmspasothiuso nawdnesdd sShs.i ogawunriefieduc sas nwi5gt0inatihnf itIciCman50it cv raaonlbutiieamsl iarccartnoivbgiiitanylg from 1.66–42.8 μM (Table 4), while none of the tested compounds showed significant antimicrobial Mar.Drugs2018,16,174 9of14 againstE.coli,P.aeruginosaandC.albicansat50µM.Expandingourbiologicalactivityevaluations, these isolates were also screened for AChE inhibitory and cytotoxic activities against two human osteosarcomacelllinesU2OSandMG63. Only9displayedmildcytotoxicityagainstthetwocelllines withIC valuesof19.3and11.7µM. 50 Table4.Antibacterialactivityof3–6and9(IC ,µM)a. 50 Compounds MS SA 3 11.4 8.97 4 >50 42.8 5 19.4 8.37 6 35.3 14.1 9 2.20 1.66 a Ceftriaxonesodiumwasusedasapositivecontrol(IC50 <1.0µM);MS:MycobacteriumsmegmatisATCC607; SA:StaphylococcusaureusATCC25923. 3. ExperimentalSection 3.1. GeneralExperimentalProcedures NMRspectrawererecordedonaBrukerAvanceDRX600NMRspectrometerwithresidualsolvent peaksasreferences(CD OD:δ 3.31,δ 49.00;DMSO-d : δ 2.50,δ 39.52). Opticalrotationswere 3 H C 6 H C measured on a Rudolph VI polarimeter. UV spectra were obtained using a Shimadzu UV-2600 spectrophotometer. The X-ray diffraction analysis was performed on an Oxford Gemini E Eos CCD detector with graphite monochromated Cu Kα radiation (λ = 1.54178 Å). ECD spectra were acquiredonaChirascancirculardichroismspectrometer(AppliedPhotophysics). ESIMSanalyses wereconductedonanAgilent1260–6460TripleQuadLC-MSspectrometer. HR-ESIMSspectrawere obtained on an Agilent 6545 Q-TOF mass spectrometer. Semipreparative HPLC separations were carried out on an Agilent 1260 series using a YMC-Pack ODS-A column (250 × 10 mm, 5 µm). Columnchromatography(CC)wasperformedonsilicagel(200–300mesh,YantaiJiangyouSilicaGel DevelopmentCo.,Yantai,China),reversedphaseC silicagel(MerckKGaA,Darmstadt,Germany) 18 andSephadexLH-20gel(GEHealthcareBio-SciencesAB,Uppsala,Sweden). 3.2. FungalMaterial ThefungusstrainUJNMF0008wasisolatedfromamarinesedimentsamplecollectedintheSouth China Sea (17◦55(cid:48)00(cid:48)(cid:48) N, 115◦55(cid:48)31(cid:48)(cid:48) E; 3858 m depth). This strain was identified as an Arthrinium sp. based on morphological traits and a molecular biological protocol by DNA amplification and comparisonofitsITSregionsequencewiththeGenBankdatabase(100%similaritywithArthrinium sp. zzz1842(HQ696050.1)). TheBLASTsequenceddataweredepositedatGenBank(No. MG010382). ThestrainwasdepositedatChinaGeneralMicrobiologicalCultureCollectionCenter(CGMCCC), InstituteofMicrobiology,ChineseAcademyofSciences. 3.3. FermentationandExtraction Arthriniumsp. UJNMF0008fromaPDAcultureplatewasinoculatedin500-mLErlenmeyerflasks containing150mLsolublestarchmedium(1%glucose,0.1%solublestarch,1%MgSO ,0.1%KH PO , 4 2 4 0.1%peptoneand3%seasalt)at28◦Conarotaryshakerat180rpmfor3daysasseedcultures. Then, eachoftheseedcultures(20mL)wastransferredintoautoclaved1-LErlenmeyerflaskswithsolidrice medium(eachflaskscontained80gcommerciallyavailablerice,0.4gyeastextract,0.4gglucose,and 120mLwaterwith3%seasalt). Afterthat,thestrainwasincubatedstaticallyfor30daysat28◦C. Afterfermentation,thetotal4.8kgriceculturewascrushedandextractedwith15.0L95%EtOH threetimes. TheEtOHextractwasevaporatedunderreducedpressuretoaffordanaqueoussolution andthenextractedwith2.0Lethylacetatethreetimestogive80gcrudegum. Mar.Drugs2018,16,174 10of14 3.4. IsolationandPurification TheextractwasfractionatedbyasilicagelcolumnelutingwithstepgradientCH Cl -MeOH 2 2 (v/v100:0,98:2,95:5,90:10,80:20,70:30,50:50and0:100,each8.0L)togivetenfractions(Fr.1–Fr.10) basedonTLCandHPLCanalysis. Fr.7(12.2g)wasrepeatedlyappliedtothesilicagelcolumnwith stepgradientCH Cl -(CH ) CO(v/v100:0–0:100)anddividedintothreesubfractions(Fr.7-1–Fr.7-3). 2 2 3 2 Fr.7-2(5.8g)wasfractionatedbytheMCIgelcolumnelutedwithgradientMeOH-H Otogivefour 2 subfractions(Fr.7-2-1–Fr.7-2-4). Fr.7-2-4-1(68.5mg)obtainedfromFr.7-2-4(0.9g)viaSephadexLH-20 CC(inMeOH)wasfurtherpurifiedbyHPLCelutingwithMeOH-H O(v/v73:27,2.5mLmin−1)to 2 give9(t =34.6min,45.2mg),whileFr.7-2-4-2(40.2mg)wasfurtherseparatedbyHPLCelutingwith R MeOH-H O(v/v71:29,2.5mLmin−1)toafford4(t =22.2min,2.8mg),3(t =32.3min,1.6mg)and 2 R R 5(t =48.3min,2.5mg). Fr.8(15.9g)wassubjecttosilicagelCCwithstepgradientCH Cl -(CH ) CO R 2 2 3 2 (v/v100:0–0:100)anddividedintoeightsubfractions(Fr.8-1–Fr.8-8). Fr.8-2(3.2g)wasappliedtothe MCIcolumnelutedwithgradientMeOH-H Otogivefoursubfractions(Fr.8-2-1–Fr.8-2-4). Fr.8-2-3 2 (0.9g)wasfurtherdividedbySephadexLH-20CCelutingwithMeOH-CH Cl (v/v1:1)andthen 2 2 purifiedbyHPLCelutingwithMeOH-H O-CH CO H(v/v/v50:50:10−4,2.5mLmin−1)toafford7 2 3 2 (t =21.1min,48.2mg)and8(t =23.9min,54.6mg). Fr.8-2-4(432.4mg)wasalsofractionatedby R R SephadexLH-20CCelutingwithMeOH-CH Cl (v/v1:1)andthenpurifiedbyHPLCelutingwith 2 2 MeOH-H O-CH CO H(v/v/v75:25:10−4, 2.5mLmin−1)toyield6(t =33.1min, 1.6mg). Fr.8-3 2 3 2 R (6.4g)wasappliedtoMPLCwithanODScolumnelutingwithgradientMeOH-H O(v/v50:50–70:30) 2 toobtain1(3.3g). Fr.8-8(190.0mg)wasseparatedbySephadexLH-20CCelutingwithMeOH-CH Cl 2 2 (v/v1:1)toobtaintwosubfractions(Fr.8-8-1–Fr.8-8-2). Then,Fr.8-8-1(122.6mg)waspurifiedbyHPLC eluting with MeOH-H O-CH CO H (v/v/v 64:36:10−4, 2.5 mL min−1) to yield 10 (t = 33.2 min, 2 3 2 R 52.6mg),andFr.8-8-2(35.6mg)wasisolatedbyHPLCelutingwithMeOH-H O-CH CO H(v/v/v 2 3 2 68:32:10−4,2.5mLmin−1)toyield2(t =13.5min,4.6mg). R 3.4.1. ArthpyroneD(1) Colorlesscrystals;mp204–207◦C;[α]26 −23.8(c1.0,MeOH);UV(MeOH)λ (logε)213(3.96), D max 289(3.04)nm;ECD(0.05mgmL−1,MeOH)λ(∆ε)214(46.2),235(3.4),283(1.6)nm;1Hand13CNMR data,Tables1and3;(+)-ESIMSm/z446.1[M+H]+;(−)-HR-ESIMSm/z444.2032[M−H]− (calcd. for C H NO ,444.2028). 24 30 7 3.4.2. ArthpyroneE(2) Paleyellowpowder;[α]26 −28.9(c0.5,MeOH);UV(MeOH)λ (logε)211(3.96),279(3.02)nm; D max ECD(0.05mgmL−1, MeOH) λ(∆ε)212(27.0), 285(−1.1)nm; 1Hand13CNMRdata, Tables1and3; (−)-ESIMSm/z462.0[M−H]−;(−)-HR-ESIMSm/z462.2143[M−H]−(calcd.forC H NO ,462.2133). 24 32 8 3.4.3. ArthpyroneF(3) Paleyellowpowder;[α]26 −108.7(c0.2,MeOH);UV(MeOH)λ (logε)230(2.87),279(2.35), D max 332(2.56)nm;ECD(0.20mgmL−1,MeOH)λ(∆ε)258(0.6),316(0.8),341(−0.7)nm;1Hand13CNMR data,Tables1and3;(−)-ESIMSm/z428.0[M−H]−;(−)-HR-ESIMSm/z428.2074[M−H]− (calcd. forC H NO ,428.2079). 24 30 6 3.4.4. ArthpyroneG(4) Paleyellowpowder;[α]26 −76.2(c0.2,MeOH);UV(MeOH)λ (logε)228(3.65),262(3.01), D max 367 (2.67) nm; ECD (0.10 mg mL−1, MeOH) λ (∆ε) 238 (2.5); 319 (0.7) nm; 1H and 13C NMR data, Tables1and3;(−)-ESIMSm/z410.0[M−H]−;(−)-HR-ESIMSm/z410.1974[M−H]− (calcd. for C H NO ,410.1973). 24 28 5

Description:
Keywords: Arthrinium; pyridone alkaloid; antibacterial activity; cytotoxicity. 1. Introduction. The increasing antibiotic resistance and high spreading rate
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.