Bio-inspired Magnetite Mineralization in Gelatin Hydrogels: A Small Angle Scattering Investigation Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften “doctor rerum naturalium“ (Dr. rer. nat.) vorgelegt von Baohu Wu an der Mathematisch – Naturwissenschaftliche Sektion – Fachbereich Chemie – Tag der mündlichen Prüfung: 21. Juni. 2016 1. Referent: Prof. Dr. Helmut Cölfen 2. Referent: Prof. Dr. Alexander Wittemann Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-377350 Preamble This work was financed by the German Research Foundation (Deutsche Forschungsge- meinschaft, DFG) through the priority project SPP 1569 “Generation of multifunctional inorganic materials by molecular bionics”. The research for this thesis was carried out at Jülich Centre for Neutron Science, Forschungszentrum Jülich, jointly with the Depart- ment of Chemistry, University of Konstanz. At the Forschungszentrum Jülich, Dr. Vi- taliy Pipich and Dr. Dietmar Schwahn supervised the project and provided assistance to design, prepare and conduct the Experiments. Acknowledgment Foremost, I would like to express my deepest appreciation to my thesis supervisor Prof. Dr. Helmut Cölfen and Prof. Dr. Andreas Zumbusch from University of Konstanz, Dr. Vitaliy Pipich and Dr. Dietmar Schwahn from Forschungszentrum Jülich for their great support of my Ph.D. study and research during the last three years. Their guidance helped me in all the time of research and writing of this thesis. Without their assistance and inspiration this thesis would not have been possible. Throughout the three years of my thesis work, important guidance came from Dr. Vi- taliy Pipich. I truly benefited from his considerable expertise in small angle neutron scattering and his assistance. He helped me to carry out and prepare the various neutron scattering experiments at the JCNS, which constitute the fundament of this thesis. I would like to express my sincere gratitude to Dr. Dietmar Schwahn, who helped me to understand the technique of small-angle scattering and the physics behind the biominer- alization. Acknowledgment is given to Maria Siglreitmeier, Christian Debus, Tina Kollmann, Dr. Damien Faivre, Prof. Dr. Dirk Zahn for the good collaboration throughout the DFG pri- ority project 1569 “Generation of multifunctional inorganic materials by molecular bi- onics”. In this context, I owe my deepest gratitude to Maria Siglreitmeier who was per- forming many project related experiments in Konstanz. My sincere gratitude to Dr. Zhengyu Di, Dr. Marie-Sousai Appavou, Dr. Artem Feok- tystov, Dr. Zhengdong Fu, Dr. Sabine Pütter, Dr. Emmanuel Kentzinger and all other staff in JCNS who assisted me to collect an essential part of my data at the KWS1, KWS3 neutron spectrometers, AFM and SAXS. Moreover, I particularly thank Armin Kriele from HZG-TUM he has assisted me for a lot of SAXS, DSC, AFM and XRD experiments. Last but not least, I am deeply thankful to my wife Yan Li and my family who gave me the support and the encouragement I needed throughout the period of Ph.D. research. I am grateful to the JCNS for the allocation of beamtime. The work was financed by the DFG priority project 1569. Zusammenfassung In vielen Fällen stellt Biomineralisation ein komplexes Verfahren für die Bildung von hochgeordneten hierarchischen Mineralstrukturen im Zusammenspiel mit lebenden Organismen dar. Biomineralisierung findet unter strenger biologischer Kontrolle durch speziell gestaltete Biomakromoleküle statt. Mineralisationsmechanismen, die eine solch ausgeklügelte Kontrolle erlauben, beinhalten meist die Interaktion zwischen dem anorganischen Mineral und der Oberfläche einer organischen Matrix. Ein tiefes Verständnis dieser Mechanismen erlaubt die Erkundung neuer Strategien für die Herstellung von Materialien mit verbesserten chemischen und physikalischen Eigenschaften. Die Strategie der Natur, Biomoleküle zur Herstellung von Materialien zu verwenden, soll uns als Inspirationsquelle dienen. Diese Mineralisationsprozesse sollen in situ untersucht werden, um die mechanistischen Aspekte ihrer Kontrolle näher zu beleuchten. Das Ziel dieser Arbeit ist es, den Mechanismus der bio-inspirierten Magnetit-Mineralisierung in einer organischen Matrix und die resultierenden organisch- anorganischen Hybridstrukturen mittels Kleinwinkel-Neutronen- und Röntgenstreuung zu untersuchen. Die Untersuchungen konzentrieren sich auf Nukleation und Wachstum des Magnetit in Gelatine-Hydrogelen, die bioinspirierte Hybridmaterialien aus drei natürlichen Biomineralen sind. SANS-Kontrastvariation wurde genutzt, um die einzelnen Komponenten der Struktur durch Variation der H O / D O-Konzentration zu 2 2 analysieren. Diese Ergebnisse lieferten in-situ-Strukturinformationen zum Verständnis des Mechanismus der Magnetit-Mineralisierung. Um die Funktion der organischen Matrix zu erklären, wurden mehrere Hyopthesen aufgestellt. Die Eigenschaften der Struktur und des Mineralisationsmechanismus wurden mit den biologischen Proben verglichen. Diese vergleichenden Untersuchungen der strukturellen Merkmale werden die Optimierung der Materialstruktur unterstützen, um verbesserte mechanische Eigenschaften zu erreichen. Stichwort: Biomineralisation, Magnetit, Gelatine, Hydrogele, SANS, VSANS, SAXS Abstract Biomineralization represents a sophisticated process of forming a highly hierarchically ordered mineral structure by a living organism. The process is carried out under strict biological control of specially designed biomacromolecules. Mineralization mechanisms permitting such sophistication control typically involve interaction between an inorgan- ic mineral and an organic matrix interface. A clear understanding of the mechanisms of this process may pave way for exploration of new material design strategies and genera- tion of materials with improved mechanical, chemical and physical properties. We thus attempt to follow nature‟s fabrication strategy of using biomolecules and study the min- eralization process in-situ which might shed light on the mechanistic aspects of control- ling the process. The aim of this work is to investigate, understand and probably control the mechanism of bio-inspired magnetite mineralization in organic matrices and the organic-inorganic hybrid structures by Small Angle Neutron and X-ray Scattering methods. The studies focus on the nucleation and growth of the magnetite particles in the gelatin hydrogel matrix by employing biomineralization strategies from three natural bio-minerals. The SANS contrast matching method was used by the variation of heavy water content in the H O/D O mixture in order to emphasize the structure of the individual components 2 2 of the complex material on the different stages of biomineralization process. These re- sults have provided structural information and understanding of the mechanisms of magnetite mineralization as well as in-situ. Several hypotheses have been introduced to explain functionality of the organic matrix in magnetite biomineralization. These struc- tural and mineralization mechanisms were compared with the biological samples. The comparative studies of the structural features will help to optimize the structure of mate- rials for improved mechanical properties. Keywords: Biomineralization, Magnetite, Gelatin, Hydrogels, SANS, VSANS, SAXS
Description: