ebook img

Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations PDF

0.31 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations

Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations M. Szyniszewski,1,2 E. Mostaani,1,3 N. D. Drummond,1 and V. I. Fal’ko1,2 1Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom 2National Graphene Institute, University of Manchester, Booth St E, Manchester M13 9PL, United Kingdom 3Cambridge Graphene Centre, Engineering Department, University of Cambridge, 7 9 J. J. Thomson Avenue, Cambridge CB3 0FA, United Kingdom 1 0 Excitonic effects play a particularly important role in the optoelectronic behavior of two- 2 dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorp- tion and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo n binding-energydataforMott-Wanniermodelsofexcitons,trions,andbiexcitonsin2Dsemiconduc- a tors. Wealsoprovidecontactpairdensitiestoallowadescriptionofcontact(exchange)interactions J between charge carriers using first-order perturbation theory. Our data indicate that the binding 5 energyofatrionisgenerallylargerthanthatofabiexcitonin2Dsemiconductors. Weprovideinter- 2 polation formulas giving thebindingenergy andcontact densityof 2D semiconductorsas functions of theelectron and hole effective masses and thein-plane polarizability. ] l l a PACSnumbers: 78.20.Bh,31.15.-p,73.20.Hb,78.55.-m h - s The optical properties of two-dimensional (2D) semi- two electrons (e and e ) can be found by solving the e 1 2 m conductorssuchasmonolayerMoS2,MoSe2,WS2,WSe2, Schr¨odinger equation (in Gaussian units) InSe, and phosphorene have recently attracted a great . at deal of interest [1–8]. Numerous observations have ~2 2 ~2 2 -m bspeeecntrmaaodfethoefseth2eDrimchatestrriaulcst,uirne wofhicthhethluemminoesstcepnrcoe- k=Xe1,e2(cid:20)− 2m∇rek −U(rkh)(cid:21)− 2m∇hrh +U(re1e2)Ψ d nounced features have been interpreted in terms of neu-  =[ T]Ψ, (1) n −U −E tral excitons [9–14], charged excitons (trions) [15–20], o and biexcitons [21–23], while recent experiments on where m and m are the electron and hole effective c e h [ higher-qualitymonolayertransition-metaldichalcogenide masses and rij = ri rj is the position of particle i − (TMDC) samples have revealed additional structure in relativeto particle j. The Keldyshpotential U describes 1 their spectra [24–27]. the Coulomb interaction screened by the polarization of v 7 In this work we study a Mott-Wannier model of exci- the electron orbitals in the 2D lattice [28–30, 34], 0 tons and excitonic complexes in monolayer 2D semicon- 4 e2 d2q 2πeiq·r 7 ductors, taking into account the polarizability of the 2D U(r)= 0 crystal [28–30] and providing data to allow for a pertur- ǫ Z (2π)2q(1+qr∗) . bative treatment of contact interactions between carri- πe2 01 ers. We use the diffusion quantum Monte Carlo (DMC) = 2ǫr∗ [H0(r/r∗)−Y0(r/r∗)], (2) 7 approach [31–33] to find the energies of trions and biex- 1 citons, and we provide approximate formulas for the ex- where r∗ = 2πκ⊥ is a parameter directly related to the : citon ( ), trion ( ), and biexciton ( ) binding en- in-plane susceptibility κ⊥ of the material, which has di- v T XX i ergies aUs functionsEof the in-plane polaErizability and the mensions of length, and ǫ is the average permittivity of X electron and hole effective masses, which fit the DMC the media on either side of the 2D semiconductor. The r data to within 5%. We calculate andreportcontactpair potential is expressed in terms of a Struve function H0 a densities, enabling the evaluationof perturbative correc- andaBesselfunctionofthesecondkindY0. Equation(1) tions to the energies of charge-carriercomplexes, as well determines the main contribution T towards the trion E asintervalleyscattering,duetocontact(exchange)inter- bindingenergy,whichiscountedfromtheexcitonbinding actionsbetweenchargecarriers. Thestrengthofthecon- energy . Similar Schr¨odinger equations can be written U tact interactions could in principle be determined from for an exciton and a biexciton. first-principles calculations for different 2D semiconduc- Numerical solution of the Mott-Wannier Schr¨odinger tors; alternatively, the strengths of the contact interac- equation for an exciton yields the r∗-dependent binding tions can be regarded as parameters to be determined energy (see the inset in Fig. 1), which agrees with the upsaiinrgdeexnpsietrieims erenptaolrtdeadtaheinre.conjunction with the contact aansydmUp(trUo∗tic→lim0i)ts=[28−–430R,y∗3,5,a3s6w] Uell(ra∗s→th∞e )co∼ntǫaer2c∗tlnpaari∗B∗r The energy −U −ET of a trion with one hole (h) and density geXh = hδ(reh)i. Their r∗ dependence was fitted 2 by 0.7(cid:4) 4(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) m(cid:1)/m(cid:2) (cid:1) U/gReXyh∗ ≈≈((1a8∗B−.0)2x)1[+41−2−01..0x0√xxln,(1−x)]/(cid:2)1+1.31√x(cid:3)((34)) *(cid:5)/RyT0000....3456(cid:1)(cid:3)(cid:2) (cid:2)(cid:1)(cid:3)(cid:4)(cid:2)(cid:3)(cid:1)(cid:3)(cid:4)(cid:2)(cid:4) 0512....5000 *(cid:6)/Ry0312 (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:1) (cid:1) 0.0 0.2 0.4 0.6 0.8 1.0 where x = r∗/(a∗B + r∗), a∗B = ǫ~2/(µe2) is the exci- 0.2 (cid:2) (cid:1)(cid:3) (cid:4) x mtoansics,BaonhdrrRay∗di=us,µµe4=/((2mǫ2e~m2)h)i/s(mthee+emxchi)toinsitcheRryeddbuecregd. 0.1 (cid:2) (cid:1)(cid:3) (cid:4) (cid:2) (cid:1)(cid:3) (cid:4) (cid:2) (cid:1)(cid:3)(cid:2)(cid:4)(cid:1)(cid:3)(cid:2) (cid:4)(cid:1)(cid:3)(cid:4) Here, the √x term is not a physical singularity; rather, 0.0 0.0 0.2 0.4 0.6 0.8 1.0 itreflectstheenhancedcontactdensityofa2Dhydrogen x=r /(a* +r) * B * atom. gX is plotted in Fig. 2. eh FIG. 1. (color online). Binding energies of trions at different Theground-statesolutiontoEq.(1)foratrionwasob- mass ratios against rescaled in-plane polarizability r∗. The tained using the DMC approach [31, 32], with the trial inset shows the binding energies of excitons against rescaled wave function being optimized using variational Monte r∗. The lines show the fittingformulas of Eqs. (5) and (3). Carlo (VMC). The trial wave function was of the Jas- trow form Ψ = exp[J(R)], where the Jastrow exponent uJ0((Rr)) c=onsics1terd2loofg(ar)p+aircw2ri2se+suc3mr3of/te1r+msc4orf2t,hewfhoerrme 1.5 (cid:2)(cid:1)(cid:3)(cid:4) 2)y 00..1102(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) me/mh taMftrcmaohha1rnri,inaardztettgeehceeead2emt-rc,nhbi[hai3beeoccl7ry3dpag,i,iyannn(cid:2)y3uartap8ntenRml]iorord.caleegilynTwfcesc.nt-i4ehmpoio[oie3famgain0izhtsrri]ahhetaa)tete.olryiodeortKpptenT-sevtrarrai)amtma[i,t4roanisit1ilsagzcofi]tnawe.ughecbseaadbeptlTvteeh(ehcmhaesp(cid:3)oarreefiaenvuenwridgnit(cid:0)oatmriirchrtmtouthiieuioonzeonfnattcSnwetadsuusirt-o0ofpseso(w-ntpdbrr((cid:1)ael)doeat[rti3demehitffs9yefieew,osrnnalpuaeo4tintcvntga0idheet--l] 2X2T**,()()agagBehBeh01..50 m(cid:1)(cid:3)(cid:4)(cid:1)(cid:2)(cid:1)(cid:1)(cid:1)(cid:1)ge(cid:1)(cid:1)(cid:1)e/T2051(cid:2)m(cid:1)h(cid:1)(cid:1)....(cid:1)(cid:1)(cid:1)0500(cid:3)(cid:1)h(cid:1)(cid:1)(cid:4)(cid:1) (cid:1)(cid:2)(cid:1)(cid:1)(cid:1)g(cid:1)(cid:1)eX(cid:1)(cid:3)(cid:1)h(cid:1)(cid:1)(cid:4)(cid:1)2T*(cid:1)1()/(-ag(cid:2)Bee(cid:1)(cid:1)(cid:1)(cid:1)00000(cid:1).....(cid:3)00000(cid:1)(cid:1)024680(cid:1).0(cid:4)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2)(cid:1)(cid:1)0(cid:1)(cid:1)(cid:1).(cid:1)(cid:1)2(cid:1)(cid:1)(cid:1)(cid:1)(cid:3)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:4)(cid:1)(cid:1)(cid:1)0(cid:1)(cid:1)(cid:1)(cid:1).4(cid:2)(cid:1)00(cid:1)(cid:1)..(cid:1)x(cid:1)25(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:3)(cid:1)(cid:1)(cid:1)0(cid:1)(cid:1)(cid:1)(cid:2)(cid:1).(cid:1)(cid:1)(cid:1)6(cid:4)(cid:1)(cid:1)01(cid:1)(cid:1)(cid:1)(cid:1)..(cid:1)(cid:3)(cid:1)(cid:1)(cid:2)8(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:4)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:3)0(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1).(cid:1)(cid:1)(cid:1)(cid:4)8(cid:1)(cid:1)12(cid:1)(cid:1)(cid:1)(cid:1)..251.0 0.0 functions forthese systemsarenodeless;hencethe fixed- 0.0 0.2 0.4 0.6 0.8 1.0 node DMC algorithm is exact. The DMC calculations x=r /(a* +r) * B * were performed using the casino code [33] with time steps in the ratio1:4 andthe correspondingtargetcon- FIG.2. (coloronline). Contactelectron-holepairdensitiesof figuration populations in the ratio 4 : 1. Afterwards, trionsandexcitonsagainst rescaled in-planepolarizability r∗ the energies were extrapolated linearly to zero time step atdifferentmassratios. Theblackcurveisthefittingformula foranexciton,Eq.(4),whiletheyellowcurveisthefittingfor- and hence, simultaneously, to infinite population. The mulaforatrion,Eq.(6). Theinsetshowsthe(muchsmaller) resulting DMC trion binding energies, shown in Fig. 1, contactpairdensitybetweentheelectronsinanegativetrion agree with the asymptotic binding energies found ear- and thefitting curve(in blue) of Eq. (7). lier in the limits of r∗ [30] and r∗ 0 [42]. → ∞ → The trion contact pair densities gT = δ(r ) and ee h e1e2 i gT = δ(r )+δ(r ) were obtained by binning the eh h e1h e2h i radial distances sampled in the VMC and DMC calcu- while the contact pair densities are fitted by lations, evaluating the extrapolated estimate of the pair 0.35 density [32], and then extrapolating the pair density to gT gX + (1 x)3.5 and (6) eh ≈ eh (a∗)2 − zero radial separation. The resulting contact pair densi- B ties are shown in Fig. 2. The trion binding-energy data gT 0.11 1−√x 1 y2 , (7) are fitted (to an accuracy within 5%: see Fig. 1) by the ee ≈ (a∗)21+√x − B (cid:2) (cid:3) formula where y = µ/m . The term proportional to √1 y in h − Eq. (5) describes the contribution to the ground-state ET 1 √x 0.44x2 1.16√x+1.46 (2 y) energy due to the harmonic zero-point vibration of two Ry∗ ≈(cid:0) − (cid:1)h(cid:0) − (cid:1) − heavyelectronstreatedusingtheBorn-Oppenheimerap- proximation [42]. 0.64x2 2.0√x+2.4 1 y , −(cid:0) − (cid:1)p − i Similarly, the binding energies EXX of biexcitons were (5) calculated using DMC and the results are presented in 3 1.4 1.4 1.2 (cid:1) me/mh 0.06 me/mh 1.2 XXgeh01.8. (cid:1) (cid:1)0.5(cid:1)1.0 XXgee0.04 (cid:1)(cid:1) (cid:1)(cid:1)01..50 1.0(cid:1)*2a()B000...246 (cid:1) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) *2a()B0.02 (cid:1) (cid:1) (cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)2.0 *Ry0.8(cid:3)(cid:4)(cid:2) 00..25 0.5 0.75 1. 00.25 0.5 0.75 1. / x x (cid:5)XX0.6 (cid:4) (cid:4) 0.4 me/mh (cid:1) 0.2 (cid:2) 0.5 0.2 (cid:4)(cid:3)(cid:2) (cid:1) (cid:3) 0.7 (cid:4) (cid:3) (cid:2) (cid:1) (cid:4) 1.0 0.0 (cid:4) (cid:3) (cid:2) (cid:1) (cid:4) (cid:3)(cid:2)(cid:4)(cid:1)(cid:3)(cid:4)(cid:2)(cid:3)(cid:1)(cid:2)(cid:1) (cid:4)(cid:3)(cid:2)(cid:1) 0.0 0.2 0.4 0.6 0.8 1.0 x=r /(a* +r) * B * FIG.3. (color online). Bindingenergies ofbiexcitonsagainst rescaled in-plane polarizability r∗ at different mass ratios. FIG.4. (coloronline). Ratioofnegative-trionbindingenergy The lines show the fitting formula of Eq. (8). The left in- tobiexcitonbindingenergy(ET/EXX)asafunctionofrescaled set shows the electron-hole contact pair densities for a biex- in-plane polarizability r∗ and rescaled mass ratio. The thick citon and the approximation formula [black curve, Eq. (9)]. blacklineshowsthecurveET=EXX. Experimentallyrelevant Electron-electron contact pair densities for a biexciton are points for TMDCs are shown using symbols from Table I. shown in the right inset, together with the approximation formula of Eq. (10). materials typically have x > 0.9 and y 0.5 (see Table ≈ I),andhencearestronglyintheregimeinwhichthetrion Fig. 3. is the energy required to dissociate a biex- XX E bindingenergyexceedsthebiexcitonbindingenergy. The citon into two separate excitons. A fitting formula with qualitativeformofourpredictedtrionspectrumisshown up to 5% accuracy, inFig.5. Thetrionpeakoccursatlowerenergythanthe EXX 1 √x 1 1.2 y(1 y) biexciton peak, in stark contradiction to the classifica- Ry∗ ≈(cid:0) − (cid:1)h − p − i tion of experimental peaks reported in Ref. [43]. In fact several experimental works [21–23] have reported biex- 2.0 17.0x+43.0 x3/2 x2 +15.7x5/2 , ×h − (cid:16) − (cid:17) i citon binding energies of TMDCs that are about twice (8) as large as the reported trion binding energies [15–20]. However the physical origins of experimentally observed incorporates the fact that the biexciton binding en- peaks in optical spectra are not always clear. Our con- ergy is symmetric under the exchange of electrons and clusion that the trion binding energy is larger than the holes and includes the correct behavior in the Born- biexciton binding energy is robust against large changes Oppenheimer/harmonic-approximation limit of extreme inthevaluesoftheeffectivemassesandthesusceptibility mass ratio. The biexciton electron-hole and electron- and, taken at face value, suggests that the experimental electron contact pair densities can be approximated as “trion” and “biexciton” peaks may be misclassified. 0.5 InTable I we comparethe trionandbiexcitonbinding gXX 2gX + (1 x)2 and (9) eh ≈ eh (a∗)2 − energies obtained using Eqs. (5) and (8) with previous B theoretical calculations and experimental results in the 1 x geXeX ≈ (a−∗)2(1−0.44x)(0.1−0.064y). (10) literature for molybdenum and tungsten dichalcogenide B materials. The theoretical results are in good agreement The ratio of the negative-trion to the biexciton bind- with each other, and also with experimental results for ∗ ing energy is plotted against x = r∗/(aB + r∗) and the trion. However, for the biexciton, there is a major y = µ/m = m /(m + m ) in Fig. 4. Although the disagreement between theory and experiment: the ex- h e e h biexciton binding energy is larger than the trion binding perimentalbindingenergiesarearoundthreetimeslarger energyfortheCoulombinteraction(x=0),thesituation thanthetheoreticalbiexcitonbindingenergies. Sinceour is generally reversed when the interaction is of logarith- DMC solution of the Mott-Wannier model is exact, the mic form (x = 1). However, at extreme mass ratios, quantitative disagreement between the positions of the especially where the hole is heavy,the biexciton is stabi- theoretical and experimental trion and biexciton peaks lized with respect to the negative trion. In practice 2D must indicate either a serious inaccuracy in the Keldysh 4 X X− XX [1] D. Xiao, G.B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett.108, 196802 (2012). [2] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012). [3] K.F. Mak, K. He, J. Shan, and T.F. Heinz, Nat. Nan- ~ω otechnol. 7, 494 (2012). E XX [4] G.Sallen,L.Bouet,X.Marie,G.Wang,C.R.Zhu,W.P. E Han, Y. Lu, P.H. Tan, T. Amand, B.L. Liu, and B. Ur- T baszek, Phys.Rev.B 86, 081301 (2012). [5] T.Cao,G.Wang,W.Han,H.Ye,C.Zhu,J.Shi,Q.Niu, ∆−U−E ∆−U−E ∆−U T XX P.Tan,E. Wang,B.Liu,andJ. Feng,Nat.Commun.3, 887 (2012). FIG.5. (coloronline). Expectedphotoemissionspectrumofa [6] H. Conley, B. Wang, J. Ziegler, R. Haglund, S. Pan- 2Dsemiconductorshowingpeaksforexciton(X),trion(X−), telides, and K.I.Bolotin, NanoLett. 13, 3626 (2013). and biexciton (XX) complexes. ∆ is the quasiparticle band [7] X.Xu,W.Yao,D.Xiao,andT.F.Heinz,Nat.Phys.10, gap. 343 (2014). [8] D.A.Bandurin,A.V.Tyurnina,G.L.Yu,A.Mishchenko, V.Zo´lyomi,S.V.Morozov,R.KrishnaKumar,R.V.Gor- bachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patan`e, L. Eaves, I.V. Grig- interactionbetweenchargecarriersoramisinterpretation orieva,V.I.Fal’ko,A.K.Geim,Y.Cao,arXiv:1608.08950 of experimental spectra. One possibility is that contact [cond-mat.mes-hall] (2016). [9] A.Ramasubramaniam, Phys.Rev.B86,115409 (2012). (exchange) interactions between charge carriers as well [10] H.P.KomsaandA.V.Krasheninnikov,Phys.Rev.B86, as intervalley scattering effects could play a significant 241201 (2012). role in charge-carrier complexes. Using our contact pair [11] D.Y. Qiu, F.H. da Jornada, and S.G. Louie, Phys. Rev. density data together with ab initio calculations of con- Lett. 111, 216805 (2013). tact interaction parameters could provide a promising [12] M.M. Glazov, T. Amand, X. Marie, D. Lagarde, L. avenue for improving the quantitative description of the Bouet,andB.Urbaszek,Phys.Rev.B89,201302(2014). measured photoemission spectra. [13] G. Berghauser and E. Malic, Phys. Rev. B 89, 125309 (2014). In summary we present exact numerical data for the [14] A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. ground-state solutions of Mott-Wannier models of trions Krzyzanowska, D. Caudel, N. J. Ghimire, J. Yan, B.L. andbiexcitonsin2Dsemiconductorsinwhichthecharge Ivanov,K.A.Velizhanin,A.Burger,D.G.Mandrus,N.H. Tolk,S.T.Pantelides,andK.I.Bolotin,Sci.Rep.4,6608 carriers interact via the Keldysh interaction. We have (2014). evaluated the contact pair density between charge car- [15] K.F.Mak,K.He,C.Lee,G.H.Lee,J.Hone,T.F.Heinz, riers, to permit subsequent perturbative evaluations of and J. Shan,Nat. Mater. 12, 207 (2013). the energy contribution due to contact exchange inter- [16] C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. actions. Our results suggest that experimental spectra Rana, Phys. Rev.B 89, 205436 (2014). havebeenmisclassified,becausethetrionbindingenergy [17] A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. shouldexceedthebiexcitonbindingenergy,buttheyalso Kis, and A. Imamog˘lu, Nat. Phys. 11, 141 (2015). [18] Y.Zhang,H.Li,H.Wang,R.Liu,S.Zhang,andZ.Qiu, indicatethattheKeldyshinteractionfailstogiveaquan- ACS Nani9, 8514 (2015). titativedescriptionoftheobservedexcitonicpropertiesof [19] B.Zhu,H.Zeng,J.Dai,Z.Gong,andX.Cui,Proc.Natl. 2D TMDCs. The contact pair density data that we pro- Acad. Sci. USA 111, 11606 (2014). vide will enable the theoretical and experimental explo- [20] A.M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, rationof the role playedby contactinteractionsbetween J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. charge carriersand intervalley scattering in 2D semicon- Yao, and X.Xu,Nat. Nanotechnol. 8, 634 (2013). ductors. [21] C. Mai, A. Barrette, Y. Yu, Y.G. Semenov, K. Wook Kim, L. Cao, and K. Gundogdu, Nano Lett. 14, 202 TheauthorsthankT.Heinz,K.Novoselov,M.Potem- (2014). ski, A. Tartakovski, and W. Yao for useful discussions. [22] J. Shang, X. Shen, C. Cong, N. Peimyoo, B. Cao, M. Eginligil, and T. Yu,ACS Nano 9, 647 (2015). This work was supported by EC FP7 Graphene Flag- [23] Y. You, X.-X. Zhang, T.C. Berkelbach, M.S. Hybert- ship Project No. CNECT-ICT-604391, ERC Synergy sen,D.R.Reichman,andT.F.Heinz,Nat.Phys.11,477 Grant Hetero2D, EPSRC CDT NOWNANO, and the (2015). Simons Foundation. M.S. acknowledges financial sup- [24] A. Srivastava, M. Sidler, A.V. Allain, D.S. Lembke, A. port from EPSRC, NOWNANO DTC grant number Kis,andA.Imamog˘lu,Nat.Nanotechnol.10,491(2015). EP/G03737X/1. Computer resources were provided by [25] Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen, Lancaster University’s High-End Computing cluster. Y.-J.Wei,X.Ding,Q.Zhang,W.Yao,X.Xu,C.-Y.Lu, 5 TABLEI.TrionandbiexcitonbindingenergiesforanimportantgroupofTMDCs. Wecompareourfittingformulaswithpath integral Monte Carlo (PIMC) [44] and DMC data [45] in the literature. Effective masses (in units of the bare electron mass) are taken from GW calculations in theliterature [46, 47]. Negative-trion binding energy ET (meV) Biexciton binding energy EXX (meV) Material r∗ (˚A) me mh PIMC DMC Eq. (5) Exp. PIMC DMC Eq. (8) Exp. • MoS2 39 [46] 0.35 0.43 32.0 33.8 32 34 [16], 35 [48] 22.7(3) 22.7(5) 24 60 [49], 70 [21] (cid:4) MoSe2 40 [50] 0.38 0.44 27.7 28.4 31 30 [51, 52] 19.3(5) 17.7(3) 23 N/A N WS2 38 [53] 0.27 0.32 33.1 34.0 31 34 [54], 36 [28] 23.9(5) 23.3(3) 23 65 [43] H WSe2 45 [53] 0.29 0.34 28.5 29.5 27 30 [17, 20] 23.9(5) 23.3(3) 20 52 [23] and J.-W. Pan, Nat. Nanotechnol. 10, 497 (2015). 085124 (2005). [26] M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. [41] C.J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. R.G. Hennig, Phys. Rev.Lett. 98, 110201 (2007). Potemski, Nat. Nanotechnol. 10, 503 (2015). [42] G.G. Spink, P. L´opez R´ıos, N.D. Drummond, and R.J. [27] C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Needs, Phys. Rev.B 94, 041410(R) (2016). Beams, and A.N.Vamivakas,Nat. Nanotechnol. 10, 507 [43] G. Plechinger, P. Nagler, J. Kraus, N. Paradiso, C. (2015). Strunk, C. Schuller, and T. Korn, Phys. Status Solidi [28] A.Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. RRL 9, 457 (2015). Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, and [44] I. Kyla¨np¨a¨a and H.-P. Komsa, Phys. Rev. B 92, 205418 T.F. Heinz,Phys. Rev.Lett. 113, 076802 (2014). (2015). [29] H.M. Hill, A.F. Rigosi, C. Roquelet, A.Chernikov, T.C. [45] M.Z. Mayers, T.C. Berkelbach, M.S. Hybertsen, and Berkelbach,D.R.Reichman,M.S.Hybertsen,L.E. Brus, D.R. Reichman, Phys.Rev.B 92, 161404 (2015). and T.F. Heinz, NanoLett. 15, 2992 (2015). [46] T. Cheiwchanchamnangij and W.R.L. Lambrecht, Phys. [30] B. Ganchev, N. Drummond, I. Aleiner, and V.I. Fal’ko, Rev. B 85, 205302 (2012). Phys.Rev.Lett. 114, 107401 (2015). [47] H. Shi, H. Pan, Y.W. Zhang, and B.I. Yakobson, Phys. [31] D.M. Ceperley and B.J. Alder,Phys. Rev.Lett. 45, 566 Rev. B 87, 155304 (2013). (1980). [48] C.Zhang,H.Wang,andF.Rana,CLEO:2013, cTh3J.6 [32] W.M.C.Foulkes,L.Mitas,R.J.Needs,andG.Rajagopal, (2013). Rev.Mod. Phys. 73, 33 (2001). [49] E.J.Sie,A.J.Frenzel,Y.-H.Lee,J.Kong,andN.Gedik, [33] R.J.Needs,M.D.Towler,N.D.Drummond,andP.L´opez Phys. Rev.B 92, 125417 (2015). R´ıos, J. Phys.:Condens. Matter 22, 023201 (2010). [50] A. Kumar and P.K. Ahluwalia, Physica B: Cond. Mat. [34] L.V.Keldysh,PismaZh.Eksp.Theor.Fiz.29,716(1979) 407, 4627 (2012). [JETP Lett. 29, 658 (1979)]. [51] J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. [35] I.R.Lapidus, Am. J. Phys. 49, 807 (1981). Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, and [36] K. Eveker, D. Grow, B. Jost, C.E. Monfort, and K.W. X. Xu,Nat. Commun. 4, 1474 (2013). Nelson, Am. J. Phys.58, 1183 (1990). [52] A. Singh, G. Moody, S. Wu, Y. Wu, N.J. Ghimire, J. [37] N.D. Drummond, M.D. Towler, and R.J. Needs, Phys. Yan, D.G. Mandrus, X. Xu,and X. Li, Phys. Rev. Lett. Rev.B, 70, 235119 (2004). 112, 216804 (2014). [38] P.L´opezR´ıos,P.Seth,N.D.Drummond,andR.J.Needs, [53] T.C. Berkelbach, M.S. Hybertsen, and D.R. Reichman, Phys.Rev.E, 86, 036703 (2012). Phys. Rev.B 88, 045318 (2013). [39] C.J. Umrigar, K.G. Wilson, and J.W. Wilkins, Phys. [54] B. Zhu,X.Chen, and X.Cui, Sci. Rep.5, 9218 (2015). Rev.Lett. 60, 1719 (1988). [40] N.D. Drummond and R.J. Needs, Phys. Rev. B 72,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.