Mon.Not.R.Astron.Soc.000,1–6(0000) Printed30March2016 (MNLATEXstylefilev2.2) Binary Stars Can Provide the “Missing Photons” Needed for Reionization Xiangcheng Ma,1∗ Philip F. Hopkins,1 Daniel Kasen,2,3 Eliot Quataert,2 Claude-André Faucher-Giguère,4 Dušan Kereš5 Norman Murray6† and Allison Strom7 1TAPIR,MC350-17,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA 6 2DepartmentofAstronomyandTheoreticalAstrophysicsCenter,UniversityofCaliforniaBerkeley,Berkeley,CA94720 1 3LawrenceBerkeleyNationalLaboratory,1CyclotronRoad,Berkeley,CA94720 0 4DepartmentofPhysicsandAstronomyandCIERA,NorthwesternUniversity,2145SheridanRoad,Evanston,IL60208,USA 2 5DepartmentofPhysics,CenterforAstrophysicsandSpaceSciences,UniversityofCaliforniaatSanDiego,9500GilmanDrive,LaJolla,CA92093 6CanadianInstituteforTheoreticalAstrophysics,60StGeorgeStreet,UniversityofToronto,ONM5S3H8,Canada r 7DepartmentofAstrophysics,MC249-17,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA a M 8 Draftversion30March2016 2 ] ABSTRACT A Empiricalconstraintsonreionizationrequiregalacticionizingphotonescapefractions f (cid:38) esc G 20%,butrecenthigh-resolutionradiation-hydrodynamiccalculationshaveconsistentlyfound muchlowervalues∼1–5%.Whilethesemodelsincludestrongstellarfeedbackandadditional . h processes such as runaway stars, they almost exclusively consider stellar evolution models p basedonsingle(isolated)stars,despitethefactthatmostmassivestarsareinbinaries.Were- - o visitthesecalculations,combiningradiativetransferandhigh-resolutioncosmologicalsimu- r lationsfromtheFIREproject.Forthefirsttime,weuseastellarevolutionmodelthatincludes t aphysicallyandobservationallymotivatedtreatmentofbinaries(theBPASSmodel).Binary s a masstransferandmergersenhancethepopulationofmassivestarsatlatetimes((cid:38)3Myr)after [ starformation,whichinturnstronglyenhancesthelate-timeionizingphotonproduction(es- peciallyatlowmetallicities).Thesephotonsareproducedafterfeedbackfrommassivestars 2 v has carved escape channels in the ISM, and so efficiently leak out of galaxies. As a result, 9 thetime-averaged“effective”escapefraction(ratioofescapedionizingphotonstoobserved 5 1500Åphotons)increasesbyfactors∼4–10,sufficienttoexplainreionization.Whileimpor- 5 tantuncertaintiesremain,weconcludethatbinaryevolutionmaybecriticalforunderstanding 7 theionizationoftheUniverse. 0 . Keywords: binaries:general–stars:evolution–galaxies:formation–galaxies:high-redshift 1 –cosmology:theory 0 6 1 : v i 1 INTRODUCTION there is no confirmed Lyman continuum (LyC) detection, neither X fromindividualgalaxiesnorfromstackedsamples,implyingupper Theescapefraction(f )ofhydrogenionizingphotonsfromhigh- ar redshiftstar-forminggeaslcaxiesisperhapsthemostimportantandyet limits of fesc =1–3% (e.g. Leitet et al. 2011, 2013; Bridge et al. 2010; Siana et al. 2010). Even at z∼3, many earlier reports of most poorly understood parameter in understanding the reioniza- LyCdetectionfromLymanbreakgalaxies(LBGs)andLyαemit- tionhistory.Modelsofcosmicreionizationsuggestthat f (cid:38)20% esc ters(LAEs)haveproventobecontaminatedbyforegroundsources (e.g. Kuhlen & Faucher-Giguère 2012; Finkelstein et al. 2012; (e.g.Sianaetal.2015)andalow f about5%hasbeenderived Robertsonetal.2013,2015)isneededtomatchtheopticaldepth esc fromsomegalaxysamplesatthisredshift(e.g.Iwataetal.2009; ofelectronscatteringinferredfromcosmicmicrowavebackground Boutsiaetal.2011). (CMB)measurements(e.g.Hinshawetal.2013;PlanckCollabora- Moreover, the latest generation of cosmological hydrody- tionetal.2014),assumingthatmostoftheionizingphotonscome fromstar-forminggalaxiesbrighterthanM =−13. namic simulations predict fesc to be no more than a few percent UV However,suchahigh f isproblematicinthecontextofboth ingalaxiesmoremassivethan109M(cid:12) inhalomassatz>6(e.g. esc observationsandtheory.Fromthelocaluniversetoredshiftz∼1, Wiseetal.2014;Kimm&Cen2014;Paardekooper,Khochfar& Dalla Vecchia 2015; Ma et al. 2015). These simulations include detailed models of ISM physics, star formation, and stellar feed- ∗ E-mail:[email protected] back,incontrasttoearlygenerationsofsimulationswhichtended † CanadaResearchChairinAstrophysics. toover-predict fesc byanorderofmagnitude,owingtomoresim- (cid:13)c 0000RAS 2 X.Maetal. plisticISMmodels(seeMaetal.2015,andreferencestherein).The Table1.Simulationsanalyzedinthispaper. low f inthesesimulationsisduetothefactthatnewlyformed esc stars, which dominate the intrinsic ionizing photon budget, begin life buried in their birth clouds, which absorb most of the ioniz- Name mb (cid:15)b mdm (cid:15)dm Mvir M∗ MUV ingphotons.Bythetimelowcolumndensityescapechannelsare (M(cid:12)) (pc) (M(cid:12)) (pc) (M(cid:12)) (M(cid:12)) (ABmag) z5m09 16.8 0.14 81.9 5.6 7.6e8 3.1e5 -10.1 clearedintheISM,themassivestarshavebeguntodieandthepre- z5m10mr 1.1e3 1.9 5.2e3 14 1.5e10 5.0e7 -17.5 dictedionizingphotonluminosityhasdroppedexponentially.Stel- z5m11 2.1e3 4.2 1.0e4 14 5.6e10 2.0e8 -18.5 lar populations older than 3Myr have order unity photon escape fractions,but–accordingtosinglestellarevolutionmodelssuchas Notes.Initialconditionsandgalaxypropertiesatz=6. STARBURST99(Leithereretal.1999)–thesestarsonlycontribute (1)Name:Simulationdesignation. asmallfractionoftheintrinsicionizingphotonbudget(Maetal. (2)mb:Initialbaryonicparticlemass. 2015). (3)(cid:15)b:Minimumbaryonicforcesoftening.Forcesofteningisadaptive. Therefore,thereappearstobeafactorof∼4–5fewerionizing (4)mdm:Darkmatterparticlemassinthehigh-resolutionregions. photonspredicted,comparedtowhatisneededtoionizetheUni- (5)(cid:15)dm:Minimumdarkmatterforcesoftening. verse. Several solutions have been proposed. For example, Wise (6)Mvir:Halomassoftheprimarygalaxyatz=6. et al. (2014) suggested that tiny galaxies that are much fainter (7)M∗:Stellarmassoftheprimarygalaxyatz=6. thanM =−13mayplayasignificantroleinreionization,since (8)MUV:GalaxyUVmagnitude(absoluteABmagnitudeat1500Å). UV f increases quickly from 5% to order unity for halo mass be- esc low108.5M .However,othershavenotedthattherequirednum- (cid:12) whichisrequiredtoexplaintheobserveddifferencesbetweenvari- beroftinygalaxieswouldimplyahugepopulationofMilkyWay ousnebularemission-linepropertiesofmetal-poor,youngergalax- satelliteswhichhavenotbeenobserved(seeBoylan-Kolchin,Bul- iesatz∼2–3andlocalgalaxies(Steideletal.2014,foramorede- lock&Garrison-Kimmel2014;Grausetal.2016).Conroy&Krat- tailedstudyseeStrometal.,inpreparation,Steideletal.,inprepa- ter (2012) proposed that runaway OB stars can boost f ; how- esc ration). In Ma et al. (2015), we performed Monte Carlo radiative everbothKimm&Cen(2014)andMaetal.(2015)showedthat transfer(MCRT)calculationsonasuiteofcosmologicalhydrody- inhigh-resolutionsimulationstheseproduceamarginaleffect,in- namicsimulationsandshowedthatthetime-averaged f isabout esc creasing fesc systematically by a factor of only ∼1.2 (far short 5%forgalaxiesofhalomassesfrom109–1011M atz=6using ofthe(cid:38)4required).Amoreradicalalternativeistoinvokenon- (cid:12) thesingle-starevolutionmodelsfromSTARBURST99.Importantly, stellarsourcesforreionization,forexampleAGN(seee.g.Madau we showed that the results were robust to the resolution of both &Haardt2015).Thisreliesonrecentobservations(e.g.Giallongo theradiativetransfercalculationandthehydrodynamics(oncesuf- etal.2015)suggestingmuchhighernumberdensitiesoffaintAGN ficientresolutionforconvergencewasreached),tovariationsofthe athighredshiftthanpreviouslythought(e.g.Hopkins,Richards& starformationandstellarfeedbackmodel,andeventotheinclusion Hernquist2007). oflargepopulationsofrunawaystars.Wewillshowhere,however, But there are gaps in our understanding of stellar evolution. thattheinclusionofbinaryevolutioneffectsincreasesthepredicted Onekeyfactorthatisusuallynotconsideredinstandardstellarpop- escapefractionssubstantially,reconcilingthemwithconstraintson ulationmodelsistheeffectofbinaryinteraction.Masstransferbe- reionization.Wedescribethesimulationandradiativetransfercode tweenbinarystars,andbinarymergers,caneffectivelyincreasethe inSection2,presenttheresultsinSection3,andconcludeinSec- numberofhigh-massstarsatlatertimesafterstarformation.Also, tion4. massive,rapidly-rotatingstarsproducedviamasstransferundergo We adopt a standard flat ΛCDM cosmology with cosmo- quasi-homogeneousevolutionifthemetallicityissufficientlysub- logicalparametersH =70.2kms−1Mpc−1,Ω =0.728,Ω = 0 Λ m solar.Thesestarsarehotterandtheirsurfacetemperatureincreases 1−Ω =0.272,Ω =0.0455,σ =0.807andn=0.961,consis- Λ b 8 as they evolve (e.g. Eldridge & Stanway 2012). All of these can tentwithobservations(e.g.Hinshawetal.2013;PlanckCollabora- substantiallyincreasethenumberofionizingphotonsproducedat tionetal.2014). latetimes,comparedtowhatisexpectedfromsingle-starevolution models(e.g.deMinketal.2014).Recently,Stanway,Eldridge& Becker(2016)pointedoutthattheemissivityofionizingphotons from high-redshift galaxies, inferred from their UV luminosities, 2 METHOD wouldbehigherbyafactorof∼1.5usingstellarevolutionmodels Inthiswork,westudytheeffectofbinaryevolutionon f using esc thataccountforbinaryinteraction.Furthermore,binaryevolution three galaxies from a suite of cosmological zoom-in simulations doesnotjustproducemoreionizingphotons,butitmayalsosub- presentedinMaetal.(2015).Thesimulationandradiativetransfer stantiallyincreasetheescapefractions(Maetal.2015). areidentical.Weonlyreplacethestellarevolutionmodelusedfor In this Letter, we explore in more detail the effect of binary thepost-processingradiativetransfercalculations.Thisislikelyto interaction on ionizing photon production and escape by repeat- resultinalowerlimitontheimpactofbinarieson f ,becausewe esc ingthecalculationdescribedinMaetal.(2015)usingtheBinary donotincludetheenhancedradiativefeedbackduetobinariesin PopulationandSpectralSynthesis(BPASS)modelofstellarpop- oursimulation.Webrieflyreviewthemethodologyhere,butrefer ulation evolution1 (Eldridge, Izzard & Tout 2008; Eldridge et al, toMaetal.(2015)formoredetails. inpreparation).Thesemodelsarecalibratedtoobservationsoflo- The simulations are part of the Feedback in Realistic Envi- calstellarpopulations,andreproducetheobservedmultiplicitydis- ronment project2 (FIRE; Hopkins et al. 2014). They are run us- tributions (Eldridge, Izzard & Tout 2008). Moreover, the BPASS ing GIZMO (Hopkins 2015) in P-SPH mode, which adopts a La- modelpredictsstellarpopulationswithaharderionizingspectrum, grangianpressure-entropyformulationofthesmoothedparticlehy- 1 http://bpass.auckland.ac.nz 2 http://fire.northwestern.edu (cid:13)c 0000RAS,MNRAS000,1–6 BinaryStarsCanExplainReionization 3 drodynamics(SPH)equationsthatimprovesthetreatmentoffluid- calculation (Ma et al. 2015). The MCRT code we use is derived mixing instabilities (Hopkins 2013). Galaxy properties at z=6 fromtheMCRTcodeSEDONA(Kasen,Thomas&Nugent2006), forthethreesimulationsusedinthiswork(z5m09,z5m10mr,and butfocusesonradiativetransferofhydrogenionizingphotons.The z5m11) are listed in Table 1. Our simulations span halo masses MCRTmethodissimilartothatdescribedinFumagallietal.(2011, from 109–1011M at z=6. These galaxies lie on the low-mass 2014).N =3×107photonpacketsareisotropicallyemittedfrom (cid:12) star extrapolationsoftheobservedstellarmass–halomassrelationand thelocationofstarparticles,samplingtheirionizingphotonbud- SFR–stellarmassrelationatz>6(Maetal.2015).Atlowerred- gets.AnotherN =3×107photonpacketsareemittedfromthe UVB shifts (where observations exist at these masses), the simulations boundaryofthecomputationaldomaininamannerthatproduces havebeenshowntoreproduceobservedscalingrelationsandchem- a uniform, isotropic ionizing background with intensity given by icalabundances(Hopkinsetal.2014;Maetal.2016),properties Faucher-Giguèreetal.(2009).TheMCRTcodeincludesphotoion- ofgalacticoutflowsandcircum-galacticabsorbers(Muratovetal. ization,collisionalionization,recombination,anddustabsorption 2015; Faucher-Giguère et al. 2015, 2016), and abundances and andusesaniterativemethodtoreachphotoionizationequilibrium. kinematicsofobserved(local)dwarfsinthismassrange(Oñorbe Thenumbersofphotonpacketsanditerationareselectedtoensure etal.2015;Chanetal.2015). convergence. In the simulations, gas follows an ionized-atomic-molecular cooling curve from 10–1010K, including metallicity-dependent fine-structureandmolecularcoolingatlowtemperaturesandhigh- 3 RESULTS temperature metal-line cooling for 11 separately tracked species (Wiersma, Schaye & Smith 2009). We do not include a primor- We use Q˙ion(t) to represent the ionizing photon production rate dialchemistrynetworknorconsiderPopIIIstarformation,butap- (numberofionizingphotonsproducedpersecond)and ipzlaytiaonmsettaatlelisciatyrefldoeotreromfiZne=d 1fo0l−lo4wZi(cid:12)ng.AKtaetza,chWteiminebsetregp,&theHieornn-- Qion(>t)=(cid:90) ∞Q˙ion(t(cid:48))dt(cid:48) (1) t quist(1996)andcoolingratesarecomputedfromacompilationof to represent the number of ionizing photons produced after time CLOUDY runs,includingauniformbutredshift-dependentphoto- t.InFigure1,weshowQ˙ (t)(upperpanel),thefractionofion- ionizing background tabulated in Faucher-Giguère et al. (2009), ion izing photons emitted after time t, Q (>t)/Q (>0) (middle and an approximate model of photo-ionizing and photo-electric ion ion panel),andtheratiobetweenionizingluminosityandtheluminos- heatingfromlocalsources.Gasself-shieldingisaccountedforwith ityat1500Å, alocalJeans-lengthapproximation,whichisconsistentwiththera- diativetransfercalculationsinFaucher-Giguèreetal.(2010).The (cid:82)912ÅL dλ on-the-fly calculation of ionization states is consistent with more ξ = 10Å λ (2) ion λL (1500Å) accurate post-processing radiative transfer calculations (Ma et al. λ 2015). (bottompanel),asafunctionofage,ofaninstantaneouslyformed WefollowthestarformationcriteriainHopkins,Narayanan starclusterofmass106M ,forseveralstellarpopulationmodels (cid:12) & Murray (2013) and allow star formation to take place only fromBPASS.WeadoptaKroupa(2002)IMFwithslopesof−1.3 in dense, molecular, and self-gravitating regions with hydrogen from 0.1–0.5 M and −2.35 from 0.5–100M , consistent with (cid:12) (cid:12) number density above a threshold nth =50 cm−3. Stars form at thatusedinthesimulation.WeshowtheBPASSmodelatmetal- 100%efficiencyperfree-falltimewhenthegasmeetsthesecrite- licityZ=0.001(Z=0.05Z ,black),thelowestmetallicityavail- (cid:12) ria,andthereisnostarformationelsewhere.Becausewerequire ableandtheclosesttooursimulations,forbothsingle-starevolu- star-forminggastobeself-gravitating,itseffectivedensityiseven tion(dotted)andbinaryevolution(solid)models.Wealsocompare higherthanthefiducialdensitythresholdweadoptinoursimula- thosewithZ=0.02(Z=Z ,cyan)modelsfromBPASS.Wenote (cid:12) tions.Weemphasizetheimportanceofresolvingtheformationand thattheSTARBURST99models(notshown),whicharethedefault destructionofindividualstar-formingregionsinaccuratelypredict- model in Ma et al. (2015), are nearly identical to the single-star ing fesc,asstressedalsoinotherstudies(e.g.Kimm&Cen2014; modelfromBPASSatbothmetallicities. Paardekooper, Khochfar & Dalla Vecchia 2015; Ma et al. 2015). Theionizingphotonproductionratesinthesingle-starandbi- Simulationsusingunphysicallylownthfailtoresolvethisandtend narymodelsareverysimilarforthefirst3Myr,butstarttodiffer toover-predict fesc byanorderofmagnitude(seeMaetal.2015, significantlyafter3MyratZ=0.05Z(cid:12),withthebinarymodelpro- andreferencetherein). ducing an order of magnitude more ionizing photons by 10Myr. The simulations include several different stellar feedback Also, in the binary model, the production of ionizing photons is mechanisms, including (1) local and long-range momentum flux more extended. For example, almost 60% (20%) of the ionizing fromradiativepressure,(2)energy,momentum,massandmetalin- photons are produced after 3Myr (10Myr), while this fraction is jection from SNe and stellar winds, and (3) photo-ionization and 40%(1%)insingle-starmodel.Theselate-timephotonscanescape photo-electric heating. We follow Wiersma et al. (2009) and in- moreeasilysooneshouldexpectthemtomakeabigdifferenceon cludemetalproductionfromType-IISNe,Type-IaSNe,andstel- f (asconfirmedbyMCRTcalculationsbelow).However,atso- esc lar winds. Every star particle is treated as a single stellar popu- lar metallicity, these fractions are much lower and the difference lationwithknownmass,age,andmetallicity,assumingaKroupa betweensingle-starandbinarymodelsislesssignificant. (2002) initial mass function (IMF) from 0.1–100 M(cid:12). The feed- Toillustratetheeffectsofbinaries,werunourMCRTcodeon backstrengthsaredirectlytabulatedfromSTARBURST99. themaingalaxyinourz5m10mrsimulation(a∼1010M(cid:12) haloat Foreverysnapshot,wemapthemaingalaxyontoaCartesian z=6)andcompute f usingbothsingle-starandbinaryBPASS esc gridofsidelengthLequaltotwovirialradiiandwithNcellsalong models with Z =0.05Z . The results are presented in Figure 2. (cid:12) eachdimension.WechooseN=256forz5m09andz5m10mrand Linesandsymbolsshowtheinstantaneousvalueandtime-averaged N=300forz5m11,sothatthecellsizel=L/N variesbutisal- valuesover∼100Myr,respectively.Dottedlinesandopensymbols wayssmallerthan100pc.ThisensuresconvergenceoftheMCRT representthesingle-starmodel,whilesolidlinesandfilledsymbols (cid:13)c 0000RAS,MNRAS000,1–6 4 X.Maetal. z 53 7.8 7.4 7.0 6.6 6.2 5.8 52 ] 1− [s 51 10-1 ) t ( n ˙gQio50 fesc o l 49 10-2 48 1 2 3 4 6 8 10 20 30 10-3 0.8 0.4 ) 0 > 0.3 0.6 ( n Qio 0.2 / >t) 0.4 ξion ( n Qio0.2 0.1 0.08 0 0.06 1 2 3 4 6 8 10 20 30 100 10-1 10-1 t) eff ξ(ion10-2 Binary Z=0.05Z fesc, Single Z=0.05Zfl 10-2 fl 10-3 Binary Z=Z BPASS binary fl Single Z=Z BPASS single fl 10-4 10-3 1 2 3 4 6 8 10 20 30 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 Age [Myr] Cosmic time [Gyr] Figure1.Top:Ionizingphotonproductionrate,Q˙ion(t)asafunctionofage Figure2.Top:Trueionizingphotonescapefraction fesc,inourz5m10mr fora106 M(cid:12) starcluster,predictedbydifferentstellarevolutionmodels. simulation(a∼1010M(cid:12)haloatz=6)asafunctionofredshift(orcosmic Middle:Fractionofionizingphotonsemittedaftertimet.Bottom:Ratio time).Linesshowtheinstantaneousvaluesineachsnapshot,symbolsare ofionizingluminosityto1500Åluminosity,ξion asafunctionofagefor time-averagedin100Myrintervals.Middle:ξion(asFig.1)asafunctionof thesamestarcluster.Weshowbothsingle-starmodels(dotted)andbinary time.Bottom:Effectiveescapefraction, fesc,eff(Equation3)asafunction models(solid)atmetallicitiesZ=0.05Z(cid:12)(black)andZ=Z(cid:12)(cyan),re- oftime.Inthesingle-starmodel, fesc(cid:46)5%mostofthetime,insufficient spectively.Includingbinariesleadstomoremassivestarsatlatetimes(from forreionization.Accountingforbinaryeffectsboostsξionbyafactor∼1.5 masstransferandmergers),whichdramaticallyenhancestheionizingpho- – considerable but insufficient to explain reionization. But it also boosts tonproductionaftert∼3Myr.About60%(20%)oftheionizingphotons fesc byfactors∼3–6becausetheionizingphotonsproducedlater(after areemittedafter3Myr(10Myr)inthelow-metallicitybinarymodel,while t(cid:38)3Myr)preferentiallyescape,sothe“effectiveescapefraction” fesc,eff thisfractionismuchlowerinsingle-starmodelaswellasatsolarmetallic- isincreasedbyfactors∼4–10andreachesthe∼20%valuesneededto ity.Thedifferencebetweensingle-starandbinarymodelsislesssignificant explainreionization. atsolarmetallicity.STARBURST99models,whichalsoignorebinaries,are nearlyidenticaltotheBPASSsingle-starmodelsatbothmetallicities. Theinstantaneous f ishighlytime-variable,associatedwith esc represent the binary model. From top to bottom, the three panels stochastic formation and destruction of individual star-forming show f (the “true” fraction of ionizing photons that escape the clouds (consistent with several other studies Wise et al. 2014; esc galaxyvirialradius),ξ ,andthe“effective”escapefractionfrom Kimm & Cen 2014; Paardekooper, Khochfar & Dalla Vecchia ion z=5.5–8.Theeffectiveescapefractionisdefinedas 2015).Forsingle-starmodels, fesc isbelow5%mostofthetime, becauseyoungstarsareburiedintheirbirthclouds,whichprevent ξ fesc,eff= fesc(cid:104)ξ i(cid:105)on , (3) almost all ionizing photons from escaping. Most of the photons ion single that escape come from stellar populations with age ∼3–10Myr, whichistheratiooftheescapingionizingfluxto1500Åflux,rel- buttheyonlycontributeaverysmallfractionoftheintrinsicioniz- ativetowhatwouldbecomputedusingsingle-starmodels. f ingphotonsinsingle-starmodels(Maetal.2015).However,atall esc,eff simplyequals f forsingle-starmodels,whileforbinarymodels, times,thebinarymodelpredictssignificantlyhigher(factors∼3– esc italsoaccountsforthechangeofξ relativetosingle-starmodels. 6) values for f . We also find that ξ is boosted by a factor of ion esc ion (cid:13)c 0000RAS,MNRAS000,1–6 BinaryStarsCanExplainReionization 5 z stellarevolutionmodelsignoringbinaries.Theselater-timephotons 7.8 7.4 7.0 6.6 6.2 5.8 easilyescape,collectivelyincreasingtheescapefractionandion- z5m09 izingphotonproductionratedramaticallyfromhigh-redshiftlow- 10-1 metallicitygalaxies. For single-star evolution models, we predict f below 5% esc most of the time, less than what is required (∼20%) for cosmic eff reionization.However,whenaccountingforbinaryeffects, fesccan fesc, 10-2 beboostedbyfactorsof∼3–6andξioncanbeboostedbyafactorof 1.5.Therefore,the“effective”escapefraction(theratioofescaped ionizingphotonfluxto1500Åflux)canbeboostedbyfactorsof∼ 4–10.Forthemoremassivegalaxiesinoursimulation,thisbrings 10-3 them into good agreement with the values required to ionize the Universe. 100 z5m11 We emphasize that the most important change relative to single-star models is not in the absolute photon production rate, butitstime-dependence,becausephotonsemittedafter3Myrcan 10-1 much more easily escape star-forming complexes once feedback frommassivestarshasdestroyedthedensebirthcloud.Moreover, eff fesc, wtheathtahveeseexrehsauulsttsivaerleyntoesttseednisnitiaveprteovoiouurssstaturdfyor(mMaatioent aaln.d20s1te5l)- 10-2 lar feedback models. For example, increasing the strength of all feedback (radiation, stellar winds, SNe) per star particle relative BPASS binary toourfiducialmodelsimplyleadstoself-regulationatlowerstar BPASS single formation rates, giving an identical prediction for f . Likewise, esc 10-3 increasingthedensitythresholdforstarformation,re-distributing 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 Cosmic time [Gyr] ionizingphotonstofewerbutmoreluminousparticles,increasing theionizingphotonproductionrateusedforfeedbackinthecode, Figure3.Effectiveescapefractionasafunctiontimeforz5m09andz5m11. allproducesimilarpredictionsfor f . esc Likez5m10(Figure2),binarystellarmodelsboost fesc,effbyfactorsof∼ Nevertheless,thebinaryfractioninhigh-redshiftgalaxiesand 4–10.Inmoremassivegalaxies,themean fesc,effreaches∼20%,sufficient the details of binary evolution are both uncertain, so our results forreionization. arenotdefinitive.Theydo,however,demonstratethepotentialfor binaryevolutiontoreconcileempiricalconstraintsonreionization ∼1.5,consistentwithStanway,Eldridge&Becker(2016).Multi- bystarlightwithobservationsandsimulations.Inprinciple,these plyingthetwofactors,wefindthattheeffectiveescapefractionis modelscanbeconfrontedbytheobservedGRBratesatthesered- boostedbyfactorsof∼4–10,withmostofthecontributioncom- shifts(e.g.Kistleretal.2009;Wyitheetal.2010),althoughlarge ingfromtheincreased f .Averagedovertheentireredshiftrange uncertainties remain. In addition, the BPASS model does not in- esc z=5.5–8thatweconsiderhere,accountingforbinaryeffectsin- clude stellar rotation before binary interaction, which may also creasesthetrueionizingescapefraction f from6%to14%and significantlyincreasetheintrinsicionizingphotonproductionrate esc increases f from6%to∼20%.Thisisconsistentwithwhatis (e.g. Topping & Shull 2015). Rotation likely has a smaller effect esc,eff requiredinempiricalreionizationmodels. on f because most of the extra ionizing photons it predicts are esc InFigure3,weshowtheeffectiveescapefractionasafunction producedlessthan3Myrafterstarformation. oftimeforz5m09andz5m11galaxies.Similartoz5m10mr(Figure Wehaverepeatedourradiativetransfercalculationoncosmo- 2),binarymodelsboosttime-averaged fesc,effbyfactorsof∼4–10. logicalsimulationsofMilkyWay-massgalaxiesatz=0(Z∼Z(cid:12)) Inthelowestmasshalo(z5m09), f isstilllow,becausehalo esc,eff from the FIRE project (see Hopkins et al. 2014, for details). We gas is largely neutral close to the galaxy in such low-mass sys- findthatbinariesappeartobeenhancing f byonlyafactor∼1.5 esc tems,whichconsumesalargefractionoftheionizingphotons.In atsolarmetallicity.Thisisexpectedsincebinaryeffectstendtobe moremassivegalaxieslikez5m10mrandz5m11, f canreach esc,eff weakerathighermetallicities(alsoseeFigure1),foratleastthree (cid:38)20%. reasons:(1)thenumberofionizingphotonsdecreasessignificantly asstellaratmospheresarecooler,(2)quasi-homogenousevolution ceasestoapplyaboveZ=0.004(Z=0.2Z ),and(3)stellarwinds (cid:12) become stronger, reducing the lifetime of massive stars and sup- 4 DISCUSSIONANDCONCLUSIONS pressingthemasstransferedbetweenbinaries.Inaddition,theab- In this work, we study the effect of binary evolution on ionizing solutetime-averaged f doesnotexceed∼3%inthesegalaxies, esc photonproductionandescapeinhigh-redshiftgalaxies,usingthree consistentwithobservationalconstraintsinthelocalUniverse(see high-resolution cosmological simulations from the FIRE project. referencesinSection1).Itappearsthatthesegalaxiesareforming Thesimulatedgalaxiesarearoundthemassestimatedtodominate stars in a more “calm”, less-bursty mode compared to the high- re-ionization(haloM =109–1011M atz=6).Usingdetailed redshift dwarfs here (e.g. Sparre et al. 2015), and maintain much halo (cid:12) radiativetransfercalculations,weshowthatrecentstellarevolution largerreservoirsofneutralgasintheirgalacticdisks,whichleadsto models which account for mass transfer and mergers in binaries muchlargerabsorptionevenofphotonsproducedbyintermediate- (specifically, the BPASS model) produce significantly more ion- agemassivestars.Adetailedstudywillbepresentedinaseparate izingphotonsforstellarpopulationsolderthan3Myrcomparedto paper(Suetal.,inpreparation). (cid:13)c 0000RAS,MNRAS000,1–6 6 X.Maetal. ACKNOWLEDGMENTS HopkinsP.F.,RichardsG.T.,HernquistL.,2007,ApJ,654,731 IwataI.etal.,2009,ApJ,692,1287 WethankChuckSteidelforhelpfuldiscussionsandtherefereefor KasenD.,ThomasR.C.,NugentP.,2006,ApJ,651,366 usefulcomments.WealsothankJohnBeacomandMikeShullfor KatzN.,WeinbergD.H.,HernquistL.,1996,ApJS,105,19 helpful suggestions after the paper was submitted to arXiv. The KimmT.,CenR.,2014,ApJ,788,121 simulationsusedinthispaperwererunonXSEDEcomputational KistlerM.D.,YükselH.,BeacomJ.F.,HopkinsA.M.,Wyithe resources(allocationsTG-AST120025,TG-AST130039,andTG- J.S.B.,2009,ApJ,705,L104 AST140023).TheanalysiswasperformedontheCaltechcompute KroupaP.,2002,Science,295,82 cluster “Zwicky” (NSF MRI award #PHY-0960291). Support for KuhlenM.,Faucher-GiguèreC.-A.,2012,MNRAS,423,862 PFH was provided by an Alfred P. Sloan Research Fellowship, LeitetE.,BergvallN.,HayesM.,LinnéS.,ZackrissonE.,2013, NASA ATP Grant NNX14AH35G, and NSF Collaborative Re- A&A,553,A106 searchGrant#1411920andCAREERgrant#1455342.D.Kasen Leitet E., Bergvall N., Piskunov N., Andersson B.-G., 2011, issupportedinpartbyaDepartmentofEnergyOfficeofNuclear A&A,532,A107 PhysicsEarlyCareerAward,andbytheDirector,OfficeofEnergy LeithererC.etal.,1999,ApJS,123,3 Research,OfficeofHighEnergyandNuclearPhysics,Divisionsof MaX.,HopkinsP.F.,Faucher-GiguèreC.-A.,ZolmanN.,Mura- NuclearPhysics,oftheU.S.DepartmentofEnergyunderContract tovA.L.,KerešD.,QuataertE.,2016,MNRAS,456,2140 No. DE-AC02-05CH11231 and by the NSF through grant AST- MaX.,KasenD.,HopkinsP.F.,Faucher-GiguèreC.-A.,Quataert 1109896.D.KerešwassupportedbyNSFgrantAST-1412153and E.,KerešD.,MurrayN.,2015,MNRAS,453,960 funds from the University of California, San Diego. CAFG was MadauP.,HaardtF.,2015,ApJ,813,L8 supportedbyNSFthroughgrantsAST-1412836andAST-1517491, MuratovA.L.,KerešD.,Faucher-GiguèreC.-A.,HopkinsP.F., by NASA through grant NNX15AB22G, and by STScI through QuataertE.,MurrayN.,2015,MNRAS,454,2691 grant HST-AR-14293.001-A. EQ was supported by NASA ATP OñorbeJ.,Boylan-KolchinM.,BullockJ.S.,HopkinsP.F.,Kereš grant 12-APT12-0183, a Simons Investigator award from the Si- D.,Faucher-GiguèreC.-A.,QuataertE.,MurrayN.,2015,MN- monsFoundation,andtheDavidandLucilePackardFoundation. RAS,454,2092 Paardekooper J.-P., Khochfar S., Dalla Vecchia C., 2015, MN- RAS,451,2544 PlanckCollaborationetal.,2014,A&A,571,A16 REFERENCES RobertsonB.E.,EllisR.S.,FurlanettoS.R.,DunlopJ.S.,2015, BoutsiaK.etal.,2011,ApJ,736,41 ApJ,802,L19 Boylan-Kolchin M., Bullock J. S., Garrison-Kimmel S., 2014, RobertsonB.E.etal.,2013,ApJ,768,71 MNRAS,443,L44 SianaB.etal.,2015,ApJ,804,17 BridgeC.R.etal.,2010,ApJ,720,465 SianaB.etal.,2010,ApJ,723,241 Chan T. K., Kereš D., Oñorbe J., Hopkins P. F., Muratov A. L., SparreM.,HaywardC.C.,FeldmannR.,Faucher-GiguèreC.-A., Faucher-GiguèreC.-A.,QuataertE.,2015,MNRAS,454,2981 MuratovA.L.,KerešD.,HopkinsP.F.,2015,ArXive-prints ConroyC.,KratterK.M.,2012,ApJ,755,123 StanwayE.R.,EldridgeJ.J.,BeckerG.D.,2016,MNRAS,456, de Mink S. E., Sana H., Langer N., Izzard R. G., Schneider 485 F.R.N.,2014,ApJ,782,7 SteidelC.C.etal.,2014,ApJ,795,165 EldridgeJ.J.,IzzardR.G.,ToutC.A.,2008,MNRAS,384,1109 ToppingM.W.,ShullJ.M.,2015,ApJ,800,97 EldridgeJ.J.,StanwayE.R.,2012,MNRAS,419,479 WiersmaR.P.C.,SchayeJ.,SmithB.D.,2009,MNRAS,393,99 Faucher-GiguèreC.-A.,FeldmannR.,QuataertE.,KeresD.,Hop- WiersmaR.P.C.,SchayeJ.,TheunsT.,DallaVecchiaC.,Torna- kinsP.F.,MurrayN.,2016,ArXive-prints toreL.,2009,MNRAS,399,574 Faucher-GiguèreC.-A.,HopkinsP.F.,KerešD.,MuratovA.L., WiseJ.H.,DemchenkoV.G.,HalicekM.T.,NormanM.L.,Turk QuataertE.,MurrayN.,2015,MNRAS,449,987 M.J.,AbelT.,SmithB.D.,2014,MNRAS,442,2560 Faucher-GiguèreC.-A.,KerešD.,DijkstraM.,HernquistL.,Zal- WyitheJ.S.B.,HopkinsA.M.,KistlerM.D.,YükselH.,Beacom darriagaM.,2010,ApJ,725,633 J.F.,2010,MNRAS,401,2561 Faucher-Giguère C.-A., Lidz A., Zaldarriaga M., Hernquist L., 2009,ApJ,703,1416 FinkelsteinS.L.etal.,2012,ApJ,758,93 Fumagalli M., Hennawi J. F., Prochaska J. X., Kasen D., Dekel A.,CeverinoD.,PrimackJ.,2014,ApJ,780,74 FumagalliM.,ProchaskaJ.X.,KasenD.,DekelA.,CeverinoD., PrimackJ.R.,2011,MNRAS,418,1796 GiallongoE.etal.,2015,A&A,578,A83 GrausA.S.,BullockJ.S.,Boylan-KolchinM.,WeiszD.R.,2016, MNRAS,456,477 HinshawG.etal.,2013,ApJS,208,19 HopkinsP.F.,2013,MNRAS,428,2840 HopkinsP.F.,2015,MNRAS,450,53 Hopkins P. F., Kereš D., Oñorbe J., Faucher-Giguère C.-A., QuataertE.,MurrayN.,BullockJ.S.,2014,MNRAS,445,581 Hopkins P. F., Narayanan D., Murray N., 2013, MNRAS, 432, 2647 (cid:13)c 0000RAS,MNRAS000,1–6