ebook img

Binary Quadratic Forms: An Algorithmic Approach (Algorithms and Computation in Mathematics) PDF

326 Pages·2007·2.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Binary Quadratic Forms: An Algorithmic Approach (Algorithms and Computation in Mathematics)

Algorithms and Computation in Mathematics Volume 20 • Editors ArjehM.Cohen HenriCohen DavidEisenbud MichaelF.Singer BerndSturmfels Johannes Buchmann Ulrich Vollmer Binary Quadratic Forms An Algorithmic Approach With17Figuresand5Tables ABC Authors JohannesBuchmann UlrichVollmer TechnicalUniversity DepartmentofComputerScience Hochschulstraße10 64289Darmstadt Germany E-mail:[email protected] [email protected] LibraryofCongressControlNumber:2006938722 MathematicsSubjectClassification(2000):11-01,11Y40,11E12,11R29 ISSN1431-1550 ISBN-10 3-540-46367-4SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-46367-2SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorsandtechbooksusingaSpringerLATEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:10521650 46/techbooks 543210 Contents Introduction................................................... 1 1 Binary Quadratic Forms ................................... 9 1.1 Computational problems ................................. 9 1.1.1 Finding representations ............................ 9 1.1.2 Finding the minimum.............................. 11 1.2 Discriminant............................................ 12 1.2.1 Definition ........................................ 12 1.2.2 The matrix of a form .............................. 13 1.2.3 Solving the representation problem for ∆(f)<0 ...... 13 1.2.4 Positive definite, negative definite, and indefinite forms. 14 1.3 Reducible forms with integer coefficients.................... 15 1.4 Applications ............................................ 17 1.4.1 Lattice vectors of short and given length ............. 17 1.4.2 Lattice packings................................... 18 1.4.3 Factoring with ambiguous forms..................... 19 1.4.4 Diophantine approximation......................... 19 1.5 Exercises ............................................... 20 Chapter references and further reading ......................... 20 2 Equivalence of Forms ...................................... 21 2.1 Transformation of forms.................................. 21 2.2 Equivalence............................................. 22 2.3 Invariants of equivalence classes of forms ................... 23 2.4 Two special transformations .............................. 24 2.5 Automorphisms of forms ................................. 26 2.5.1 Non-integral forms ................................ 27 2.5.2 Integral forms..................................... 27 2.5.3 Positive definite forms ............................. 29 2.5.4 Indefinite forms ................................... 30 2.6 A strategy for finding proper representations................ 30 VI Contents 2.7 Determining improper representations...................... 32 2.8 Ambiguous classes....................................... 32 2.9 Exercises ............................................... 33 3 Constructing Forms ....................................... 35 3.1 Reduction to finding square roots of ∆ modulo 4a ........... 35 3.2 The case a<0 .......................................... 36 3.3 Fundamental discriminants and conductor .................. 37 3.4 The case of a prime number .............................. 38 3.4.1 The Euler criterion ................................ 41 3.4.2 The law of quadratic reciprocity..................... 42 3.4.3 The Kronecker symbol ............................. 42 3.4.4 Computing square roots modulo p................... 45 3.5 The case of a prime power................................ 49 3.6 The case of a composite integer ........................... 53 3.7 Exercises ............................................... 54 Chapter references and further reading ......................... 56 4 Forms, Bases, Points, and Lattices......................... 57 4.1 Two-dimensional commutative R-algebras .................. 57 4.1.1 Definition ........................................ 57 4.1.2 Notation ......................................... 59 4.1.3 Geometry of multiplication ......................... 60 4.1.4 Units and zero divisors............................. 60 4.1.5 Automorphisms ................................... 60 4.1.6 Norm, trace, and characteristic polynomial ........... 62 4.1.7 Orientation....................................... 65 4.1.8 Discriminant...................................... 66 4.2 Irrational forms, bases, points and lattices .................. 67 4.3 Bases, points, and forms.................................. 69 4.3.1 Oriented norm forms............................... 69 4.3.2 Main results ...................................... 69 4.3.3 Properties of oriented norm forms ................... 70 4.3.4 Action of GL(2,Z) ................................ 72 4.3.5 Bases and points associated to forms................. 73 4.3.6 Proof of the main results ........................... 75 4.4 Lattices and forms....................................... 75 4.4.1 Lattices that correspond to forms ................... 75 4.4.2 Main result....................................... 75 4.4.3 Properties of lattices associated to forms ............. 76 4.4.4 Equivalence of lattices ............................. 78 4.4.5 Forms associated to lattices......................... 79 4.4.6 Proof of the main result............................ 79 4.5 Quadratic irrationalities and forms ........................ 79 4.6 Quadratic lattices and forms .............................. 82 4.7 Exercises ............................................... 83 Contents VII 5 Reduction of Positive Definite Forms ...................... 85 5.1 Negative definite forms................................... 85 5.2 Normal forms ........................................... 86 5.3 Reduced forms and the reduction algorithm................. 87 5.4 Properties of reduced forms............................... 90 5.5 The number of reduction steps ............................ 91 5.6 Bit complexity of the reduction algorithm .................. 92 5.7 Uniqueness of reduced forms .............................. 94 5.8 Deciding equivalence .................................... 96 5.9 Solving the representation problem ........................ 97 5.10 Solving the minimum problem ............................ 98 5.11 Class number ........................................... 98 5.12 Reduction of semidefinite forms ...........................101 5.13 Geometry of reduction ...................................102 5.13.1 Reduced points ...................................102 5.14 The densest two-dimensional lattice packing ................103 5.15 Exercises ...............................................104 Chapter references and further reading .........................105 6 Reduction of Indefinite Forms .............................107 6.1 Normal forms ...........................................107 6.2 Reduced forms ..........................................109 6.3 Another characterization of reduced forms ..................110 6.4 The reduction algorithm..................................112 6.5 The number of reduction steps ............................113 6.6 Complexity of reducing integral forms......................115 6.6.1 Sizes.............................................115 6.6.2 Quadratic complexity ..............................116 6.7 Enumerating integral reduced forms of a given discriminant...118 6.7.1 Fixed discriminant ................................118 6.7.2 Bounded discriminant..............................119 6.8 Reduced forms in an equivalence class......................120 6.8.1 The reduction operator is bijective...................120 6.8.2 Geometric characterization of reduced forms ..........121 6.8.3 The reduction operator is transitive..................124 6.9 Enumeration of the reduced forms in an equivalence class.....126 6.10 Cycles of reduced forms ..................................127 6.11 Deciding equivalence.....................................131 6.12 The automorphism group.................................132 6.12.1 The structure.....................................132 6.12.2 Solving the Pell equation ...........................133 6.13 Complexity .............................................134 6.14 Ambiguous cycles .......................................136 6.15 Solution of the representation problem .....................138 6.16 Solving the minimum problem ............................139 VIII Contents 6.17 Class number ...........................................140 6.18 Exercises ...............................................141 Chapter references and further reading .........................142 7 Multiplicative Lattices.....................................143 7.1 Lattice operations .......................................143 7.2 Quadratic orders ........................................144 7.2.1 Basics ...........................................145 7.2.2 Maximal orders ...................................146 7.3 Multiplicative lattices ....................................147 7.3.1 Ring of multipliers ................................147 7.3.2 Irrational lattices whose product is a lattice ..........149 7.3.3 The group L(O) ..................................150 7.3.4 Computing the product of lattices ...................151 7.4 Composition of forms ....................................153 7.5 Exercises ...............................................156 Chapter references and further reading .........................156 8 Quadratic Number Fields..................................157 8.1 Basics..................................................157 8.2 Algebraic integers .......................................159 8.3 Units of orders ..........................................160 8.3.1 Correspondence to the Pell equation .................161 8.3.2 Units of imaginary quadratic orders .................162 8.3.3 Units of real quadratic orders .......................162 8.4 Ideals of orders..........................................163 8.4.1 Fractional O-ideals ................................164 8.4.2 Invertible O-ideals.................................167 8.5 Factorization of ideals....................................168 8.5.1 Norm ............................................168 8.5.2 Divisibility of O-ideals .............................169 8.5.3 Unique factorization into coprime ideals..............170 8.6 Unique factorization into prime ideals......................171 8.6.1 Prime ideals ......................................172 8.6.2 Unique factorization ...............................174 8.7 Exercises ...............................................176 9 Class Groups ..............................................177 9.1 Ideal classes ............................................177 9.1.1 Equivalence.......................................177 9.1.2 Reduced O-ideals..................................178 9.1.3 Reduction of O-ideals..............................179 9.1.4 Equivalence testing in imaginary quadratic orders .....180 9.1.5 Equivalence testing in real quadratic orders...........181 9.2 Ambiguous ideals and classes .............................182 Contents IX 9.3 Fundamentals on class groups.............................184 9.3.1 Definition ........................................184 9.3.2 Imaginary quadratic class groups....................184 9.3.3 Real quadratic class groups.........................185 9.3.4 The class number formula ..........................186 9.4 Computing in finite Abelian groups........................192 9.4.1 Basic problems....................................193 9.4.2 Structure.........................................194 9.4.3 Connections between the problems ..................194 9.5 Generating systems......................................195 9.6 Computing a generating system in time |∆|1/2+o(1) ..........196 9.6.1 The idea .........................................197 9.6.2 Updating Cl, S, and P .............................197 9.6.3 Examples ........................................199 9.6.4 Analysis..........................................200 9.7 Computing the structure of a finite Abelian group ...........201 9.7.1 The basic algorithm ...............................201 9.7.2 Terr’s algorithm – computing orders .................205 9.7.3 Terr’s algorithm – computing the structure ...........207 9.7.4 Analysis of the structure algorithm HNFRelationBasis 210 9.7.5 Application to class groups .........................214 9.8 Exercises ...............................................214 Chapter references and further reading .........................215 10 Infrastructure .............................................217 10.1 Geometry of reduction ...................................217 10.1.1 Distance between ideals ............................217 10.1.2 Cycles of reduced O-ideals..........................219 10.2 A Terr algorithm ........................................222 10.2.1 Outline of the algorithm ...........................222 10.2.2 Auxiliary algorithms...............................225 10.2.3 Construction of the giant-steps......................227 10.2.4 The complete algorithm............................228 10.2.5 Analysis of the algorithm...........................228 10.3 Further applications .....................................230 10.4 Exercises ...............................................231 Chapter references and further reading .........................232 11 Subexponential Algorithms ................................233 11.1 The function L [a,b].....................................233 x 11.2 Preliminaries ...........................................234 11.3 The factor base .........................................235 11.4 The imaginary quadratic case .............................237 11.4.1 Random relations .................................237 11.4.2 Computing a sublattice of full rank ..................241 X Contents 11.4.3 Computing L([F]).................................243 11.4.4 Computing the structure of Cl .....................246 ∆ 11.5 The real quadratic case ..................................248 11.5.1 The idea .........................................248 11.5.2 Height ...........................................249 11.5.3 Compact representations ...........................251 11.5.4 Generating random relations........................256 11.5.5 Computing the Extended Relation Lattice............261 11.6 Practice................................................267 11.7 Exercises ...............................................268 Chapter references and further reading .........................269 12 Cryptographic Applications................................273 12.1 Problems...............................................274 12.2 Cryptographic algorithms in imaginary-quadratic orders......277 12.3 Cryptographic algorithms in real-quadratic orders ...........280 12.4 Open Problems .........................................282 12.5 Exercises ...............................................283 Chapter references and further reading .........................283 A Appendix..................................................289 A.1 Vectors and matrices.....................................289 A.2 Action of groups on sets..................................290 A.3 The lemma of Gauss.....................................290 A.4 Lattices ................................................291 A.5 Linear algebra over Z ....................................293 A.5.1 Computing determinants ...........................294 A.5.2 Diagonally dominant matrices.......................295 A.5.3 Hermite normal form ..............................295 A.5.4 Smith normal form ................................300 A.5.5 Algorithms for rectangular matrices .................302 A.6 Exercises ...............................................303 Chapter references and further reading .........................303 Bibliography...................................................305 Index..........................................................315 List of Figures 1.1 Two-dimensional sphere packing .............................. 19 4.1 Geometric interpretation of σ in C............................. 61 4.2 Geometric interpretation of σ in A ............................ 62 1 4.3 Geometric interpretation of norm and trace in C ................ 63 4.4 Geometric interpretation of norm and trace in A ............... 64 1 4.5 The four zeros of c in A .................................... 65 α 1 4.6 Points of positive orientation in A ............................ 66 1 4.7 Geometric interpretation of ∆(α,γ)............................ 67 4.8 The Gaussian integers ....................................... 76 4.9 The hexagonal lattice ........................................ 77 5.1 The reduced points ..........................................103 5.2 Geometric interpretation of the ρ-operator......................103 6.1 Points corresponding to normalized and reduced forms ...........111 6.2 Some minimal points in a 2-dimensional lattice..................121 6.3 A minimal basis of a 2-dimensional lattice ......................122 10.1 Embedding the principle cycle of O into R/RZ ..............218 1001

Description:
The book deals with algorithmic problems related to binary quadratic forms, such as finding the representations of an integer by a form with integer coefficients, finding the minimum of a form with real coefficients and deciding equivalence of two forms. In order to solve those problems, the book in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.