ebook img

Binary abelian codes of exponent pq An abelian code is a proper PDF

31 Pages·2011·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Binary abelian codes of exponent pq An abelian code is a proper

Binary abelian codes of exponent pq Gladys Chalom ∗ Raul Antonio Ferraz † Marinˆes Guerreiro‡ Francisco C´esar Polcino Milies§ July 12, 2011 An abelian code is a proper ideal in a group al- gebra of an abelian group. We will consider min- imal abelian codes in the group algebra IF G, 2 for G an abelian group of exponent p · q, where p and q are distinct odd primes satisfying the following conditions: (i) gcd(p − 1, q − 1) = 2 and (1) ¯ Z Z (ii) 2 generates U( ) and U( ) (2) p q ∗Supported by PROCAD/CAPES (Brazil) †Supported by PROCAD/CAPES (Brazil) ‡Supported by FAPEMIG APQ CEX 00438/2008 and FAPESP (Brazil) §Supported by Projeto Tem´atico FAPESP (Brazil) 1 1 Basic Facts Lemma 1.1. Let p be a positive prime num- N∗ ber and r, s ∈ . Then ∼ F F F ⊗ = gcd(r, s) · . r F s p p lcm(r,s) p p Remark 1.2. Notice that any extension L of F of even degree contains a subfield K with 2 four elements, hence there exists an element 3 1 (cid:54)= a ∈ L such that a = 1. 2 N Lemma 1.3. Let r, s ∈ be non-zero ele- ments such that gcd(r, s) = 2. Let F F 1 (cid:54)= u ∈ and 1 (cid:54)= v ∈ be elements r s 2 2 3 satisfying the equation x = 1. Then ∼ F F F F ⊗ = ⊕ (3) r F s rs rs 2 2 2 2 2 2 2 2 2 and e = (u ⊗ v) + (u ⊗ v ) 1 2 2 and e = (u ⊗ v ) + (u ⊗ v) are the primi- 2 tive idempotents corresponding to the simple components of (3). 3 F 2 Codes in (C × C ) 2 p q pq For p (cid:54)= q odd primes, G = (cid:104)g | g = 1(cid:105), q p denote a = g , b = g and write G = C × C . p q (cid:88) ˆ For a subgroup H ≤ G, we set H = h h∈H and for an element x ∈ G, we set xˆ = (cid:104)(cid:99)x(cid:105). 4 Theorem 2.1. Let G = (cid:104)a(cid:105)×(cid:104)b(cid:105) be as above and assume that p and q satisfy (1). Then F the primitive idempotents of G are: ˆ ˆ e = G, e = aˆ(1 − b), e = (1 − aˆ)b, (cid:98) 0 1 2 2 2 2 2 e = uv + u v and e = uv + u v, 3 4 where  0 2 4 p−3 2 2 2 2 a + a + a + · · · + a ,     if p ≡ 1(mod 4) or u = 0 2 4 p−3 2 2 2 2 1 + a + a + a + · · · + a ,     if p ≡ 3(mod 4) (4) and  0 2 4 q−3 2 2 2 2 b + b + b + · · · + b ,     if q ≡ 1(mod 4) or v = 0 2 4 q−3 2 2 2 2 1 + b + b + b + · · · + b ,     if q ≡ 3(mod 4). (5) 5 F 3 Abelian codes of (C × C ) 2 p2 q2 Recall some facts on primitive idempotents in group algebras for abelian p-groups according to [FP]. Let A be an abelian p-group. For each sub- group H of A such that A/H (cid:54)= 1 is cyclic, ∗ consider the only subgroup H of A contain- ∗ ing H such that |H /H| = p and define e = H ˆ ˆ∗ H − H . Clearly e (cid:54)= 0 and we have the H following: Lemma 3.1. (Lemma 5, p. 389 [FP]) The elements e , defined as above together with H ˆ e = A form a set of pairwise orthogonal A idempotents of F A whose sum is equal to 1. 6 Let p and q be distinct odd prime numbers such that gcd{p − 1, q − 1} = 2, gcd{p, q − 1} = 1, gcd{p − 1, q} = 1 and ¯ Z Z 2 generates U( ) and U( ). (6) 2 2 p q Theorem 3.2. Let p and q satisfy (7) and G = (cid:104)a(cid:105) × (cid:104)b(cid:105) be an abelian group of type C × C , where C = (cid:104)a(cid:105) and C = (cid:104)b(cid:105). 2 2 2 2 p q p q F Then the minimal codes of (C × C ) are 2 2 2 p q described in the following table. 7 Ideal Primitive Dimension Code Remarks Idempotent Weight I a(cid:98)b 1 p2q2 0 (cid:98) I a((cid:98)b+b(cid:98)q) q −1 2p2q 1 (cid:98) I2 ((cid:98)a+a(cid:98)p)(cid:98)b p−1 2pq2 I a(1+b(cid:98)q) q(q −1) 2p2 3 (cid:98) I4 (1+a(cid:98)p)(cid:98)b p(p−1) 2q2 I uv +u2v2 (p−1)(q−1) ?? u = ap(a20 +a22 +··· 5 2 (cid:98) +a2p−3) ifp ≡ 1(mod 4) u = ap(1+a20 +a22 +··· (cid:98) +a2p−3) ifp ≡ 3(mod 4) I uv2 +u2v (p−1)(q−1) ?? v = b(cid:98)q(b20 +b22 +···+b2q−3) ifq ≡ 1(mod 4) 6 2 v = b(cid:98)q(1+b20 +b22 +···+b2q−3) ifq ≡ 3(mod 4) I uv +u2v2 (p−1)q(q−1) ?? u = ap(a20 +a22 +···+a2p−3) ifp ≡ 1(mod 4) 7 2 (cid:98) u = ap(1+a20 +a22 +···+a2p−3) ifp ≡ 3(mod 4) (cid:98) I uv2 +u2v (p−1)q(q−1) ?? v = (b20q +b22q +···+b2q−3q) ifq ≡ 1(mod 4) 8 2 v = (1+b20q +b22q +···+b2q−3q) ifq ≡ 3(mod 4) I uv +u2v2 p(p−1)(q−1) ?? u = (a20p +a22p +···+a2p−3p) ifp ≡ 1(mod 4) 9 2 u = (1+a20q +a22q +···+a2p−3q) ifp ≡ 3(mod 4) I uv2 +u2v p(p−1)(q−1) ?? v = b(cid:98)q(b20 +b22 +···+b2q−3) ifq ≡ 1(mod 4) 10 2 v = b(cid:98)q(1+b20 +b22 +···+b2q−3) ifq ≡ 3(mod 4) I uv +u2v2 p(p−1)q(q−1) ?? u = (a20p +a22p +···+a2p−3p) ifp ≡ 1(mod 4) 11 2 u = (1+a20q +a22q +···+a2p−3q) ifp ≡ 3(mod 4) I uv2 +u2v p(p−1)q(q−1) ?? v = (b20q +b22q +···+b2q−3q) ifq ≡ 1(mod 4) 12 2 v = (1+b20q +b22q +···+b2q−3q) ifq ≡ 3(mod 4) 8 F 4 Abelian codes of (C × C ) 2 pm qn Let p and q be distinct odd prime numbers such that gcd{p − 1, q − 1} = 2, gcd{p, q − 1} = 1, gcd{p − 1, q} = 1 and ¯ Z Z 2 generates U( ) and U( ). (7) 2 2 p q ¯ Z Notice that the condition 2 generates U( ) 2 p ¯ Z implies 2 generates U( ). m p Theorem 4.1. Let p and q satisfy (7). Let G = (cid:104)a(cid:105) × (cid:104)b(cid:105) be an abelian group of type C × C , where C = (cid:104)a(cid:105) and C = (cid:104)b(cid:105). m n m n p q p q F Then the minimal codes of (C ×C ) are m n 2 p q described in the following table. Ideal Primitive Dimension Code Remarks Idempotent Weight I a(cid:98)b 1 pmqn 0 (cid:98) I a(b(cid:99)qj +b(cid:100)qj−1) qj−1(q −1) 2pmqn−j j = 1,...,n 0j (cid:98) I (a(cid:99)pi +a(cid:100)pi−1)(cid:98)b pi−1(p−1) 2pm−iqn i = 1,...,m i0 I∗ uv +u2v2 pi−1(p−1)qj−1(q−1) ?? u = a(cid:99)pi(a20pi−1 +a22pi−1 +···+a2p−3pi−1), ij 2 if p ≡ 1(mod 4) or u = a(cid:99)pi(1+a20pi−1 +a22pi−1 +···+a2p−3pi−1), if p ≡ 3(mod 4) and I∗∗ uv2 +u2v pi−1(p−1)qj−1(q−1) ?? v = b(cid:99)qj(b20qj−1 +b22qj−1 +···+b2q−3qj−1), ij 2 if q ≡ 1(mod 4) or v = b(cid:99)qj(1+b20qj−1 +b22qj−1 +···+b2q−3qj−1), if q ≡ 3(mod 4) 9 Theorem 4.2. Let p , p and p be three 1 2 3 distinct positive odd prime numbers such that gcd(p − 1, p − 1) = 2, for 1 ≤ i (cid:54)= j ≤ 3, i j ¯ Z and 2 generates the groups of units U( ). p i Then a set of primitive idempotents of the F group algebra G for the finite abelian group 2 G = C × C × C , with C =< a >, p p p p 1 2 3 1 C =< b > and C =< c >, is p p 2 2 ˆ e = aˆbcˆ 0 ˆ e = aˆb(1 − cˆ) 1 ˆ e = aˆ(1 − b)cˆ 2 ˆ e = (1 − aˆ)bcˆ 3 2 2 e = (uv + u v )cˆ 4 2 2 e = (u v + uv )cˆ 5 2 2 ˆ e = (uw + u w )b 6 2 2 ˆ e = (u w + uw )b 7 2 2 e = (vw + v w )aˆ 8 2 2 e = (v w + vw )aˆ 9 ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u v w + uvw 10 ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u v w + uvw 11 ˆ 2 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u vw + uv w 12 and ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + uv w + u vw , 13 10

Description:
Jul 12, 2011 imal abelian codes in the group algebra IF2. G, §Supported by Projeto Temбtico FAPESP (Brazil) rings, Contemporary Math., 273 (2001).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.