Binary abelian codes of exponent pq Gladys Chalom ∗ Raul Antonio Ferraz † Marinˆes Guerreiro‡ Francisco C´esar Polcino Milies§ July 12, 2011 An abelian code is a proper ideal in a group al- gebra of an abelian group. We will consider min- imal abelian codes in the group algebra IF G, 2 for G an abelian group of exponent p · q, where p and q are distinct odd primes satisfying the following conditions: (i) gcd(p − 1, q − 1) = 2 and (1) ¯ Z Z (ii) 2 generates U( ) and U( ) (2) p q ∗Supported by PROCAD/CAPES (Brazil) †Supported by PROCAD/CAPES (Brazil) ‡Supported by FAPEMIG APQ CEX 00438/2008 and FAPESP (Brazil) §Supported by Projeto Tem´atico FAPESP (Brazil) 1 1 Basic Facts Lemma 1.1. Let p be a positive prime num- N∗ ber and r, s ∈ . Then ∼ F F F ⊗ = gcd(r, s) · . r F s p p lcm(r,s) p p Remark 1.2. Notice that any extension L of F of even degree contains a subfield K with 2 four elements, hence there exists an element 3 1 (cid:54)= a ∈ L such that a = 1. 2 N Lemma 1.3. Let r, s ∈ be non-zero ele- ments such that gcd(r, s) = 2. Let F F 1 (cid:54)= u ∈ and 1 (cid:54)= v ∈ be elements r s 2 2 3 satisfying the equation x = 1. Then ∼ F F F F ⊗ = ⊕ (3) r F s rs rs 2 2 2 2 2 2 2 2 2 and e = (u ⊗ v) + (u ⊗ v ) 1 2 2 and e = (u ⊗ v ) + (u ⊗ v) are the primi- 2 tive idempotents corresponding to the simple components of (3). 3 F 2 Codes in (C × C ) 2 p q pq For p (cid:54)= q odd primes, G = (cid:104)g | g = 1(cid:105), q p denote a = g , b = g and write G = C × C . p q (cid:88) ˆ For a subgroup H ≤ G, we set H = h h∈H and for an element x ∈ G, we set xˆ = (cid:104)(cid:99)x(cid:105). 4 Theorem 2.1. Let G = (cid:104)a(cid:105)×(cid:104)b(cid:105) be as above and assume that p and q satisfy (1). Then F the primitive idempotents of G are: ˆ ˆ e = G, e = aˆ(1 − b), e = (1 − aˆ)b, (cid:98) 0 1 2 2 2 2 2 e = uv + u v and e = uv + u v, 3 4 where 0 2 4 p−3 2 2 2 2 a + a + a + · · · + a , if p ≡ 1(mod 4) or u = 0 2 4 p−3 2 2 2 2 1 + a + a + a + · · · + a , if p ≡ 3(mod 4) (4) and 0 2 4 q−3 2 2 2 2 b + b + b + · · · + b , if q ≡ 1(mod 4) or v = 0 2 4 q−3 2 2 2 2 1 + b + b + b + · · · + b , if q ≡ 3(mod 4). (5) 5 F 3 Abelian codes of (C × C ) 2 p2 q2 Recall some facts on primitive idempotents in group algebras for abelian p-groups according to [FP]. Let A be an abelian p-group. For each sub- group H of A such that A/H (cid:54)= 1 is cyclic, ∗ consider the only subgroup H of A contain- ∗ ing H such that |H /H| = p and define e = H ˆ ˆ∗ H − H . Clearly e (cid:54)= 0 and we have the H following: Lemma 3.1. (Lemma 5, p. 389 [FP]) The elements e , defined as above together with H ˆ e = A form a set of pairwise orthogonal A idempotents of F A whose sum is equal to 1. 6 Let p and q be distinct odd prime numbers such that gcd{p − 1, q − 1} = 2, gcd{p, q − 1} = 1, gcd{p − 1, q} = 1 and ¯ Z Z 2 generates U( ) and U( ). (6) 2 2 p q Theorem 3.2. Let p and q satisfy (7) and G = (cid:104)a(cid:105) × (cid:104)b(cid:105) be an abelian group of type C × C , where C = (cid:104)a(cid:105) and C = (cid:104)b(cid:105). 2 2 2 2 p q p q F Then the minimal codes of (C × C ) are 2 2 2 p q described in the following table. 7 Ideal Primitive Dimension Code Remarks Idempotent Weight I a(cid:98)b 1 p2q2 0 (cid:98) I a((cid:98)b+b(cid:98)q) q −1 2p2q 1 (cid:98) I2 ((cid:98)a+a(cid:98)p)(cid:98)b p−1 2pq2 I a(1+b(cid:98)q) q(q −1) 2p2 3 (cid:98) I4 (1+a(cid:98)p)(cid:98)b p(p−1) 2q2 I uv +u2v2 (p−1)(q−1) ?? u = ap(a20 +a22 +··· 5 2 (cid:98) +a2p−3) ifp ≡ 1(mod 4) u = ap(1+a20 +a22 +··· (cid:98) +a2p−3) ifp ≡ 3(mod 4) I uv2 +u2v (p−1)(q−1) ?? v = b(cid:98)q(b20 +b22 +···+b2q−3) ifq ≡ 1(mod 4) 6 2 v = b(cid:98)q(1+b20 +b22 +···+b2q−3) ifq ≡ 3(mod 4) I uv +u2v2 (p−1)q(q−1) ?? u = ap(a20 +a22 +···+a2p−3) ifp ≡ 1(mod 4) 7 2 (cid:98) u = ap(1+a20 +a22 +···+a2p−3) ifp ≡ 3(mod 4) (cid:98) I uv2 +u2v (p−1)q(q−1) ?? v = (b20q +b22q +···+b2q−3q) ifq ≡ 1(mod 4) 8 2 v = (1+b20q +b22q +···+b2q−3q) ifq ≡ 3(mod 4) I uv +u2v2 p(p−1)(q−1) ?? u = (a20p +a22p +···+a2p−3p) ifp ≡ 1(mod 4) 9 2 u = (1+a20q +a22q +···+a2p−3q) ifp ≡ 3(mod 4) I uv2 +u2v p(p−1)(q−1) ?? v = b(cid:98)q(b20 +b22 +···+b2q−3) ifq ≡ 1(mod 4) 10 2 v = b(cid:98)q(1+b20 +b22 +···+b2q−3) ifq ≡ 3(mod 4) I uv +u2v2 p(p−1)q(q−1) ?? u = (a20p +a22p +···+a2p−3p) ifp ≡ 1(mod 4) 11 2 u = (1+a20q +a22q +···+a2p−3q) ifp ≡ 3(mod 4) I uv2 +u2v p(p−1)q(q−1) ?? v = (b20q +b22q +···+b2q−3q) ifq ≡ 1(mod 4) 12 2 v = (1+b20q +b22q +···+b2q−3q) ifq ≡ 3(mod 4) 8 F 4 Abelian codes of (C × C ) 2 pm qn Let p and q be distinct odd prime numbers such that gcd{p − 1, q − 1} = 2, gcd{p, q − 1} = 1, gcd{p − 1, q} = 1 and ¯ Z Z 2 generates U( ) and U( ). (7) 2 2 p q ¯ Z Notice that the condition 2 generates U( ) 2 p ¯ Z implies 2 generates U( ). m p Theorem 4.1. Let p and q satisfy (7). Let G = (cid:104)a(cid:105) × (cid:104)b(cid:105) be an abelian group of type C × C , where C = (cid:104)a(cid:105) and C = (cid:104)b(cid:105). m n m n p q p q F Then the minimal codes of (C ×C ) are m n 2 p q described in the following table. Ideal Primitive Dimension Code Remarks Idempotent Weight I a(cid:98)b 1 pmqn 0 (cid:98) I a(b(cid:99)qj +b(cid:100)qj−1) qj−1(q −1) 2pmqn−j j = 1,...,n 0j (cid:98) I (a(cid:99)pi +a(cid:100)pi−1)(cid:98)b pi−1(p−1) 2pm−iqn i = 1,...,m i0 I∗ uv +u2v2 pi−1(p−1)qj−1(q−1) ?? u = a(cid:99)pi(a20pi−1 +a22pi−1 +···+a2p−3pi−1), ij 2 if p ≡ 1(mod 4) or u = a(cid:99)pi(1+a20pi−1 +a22pi−1 +···+a2p−3pi−1), if p ≡ 3(mod 4) and I∗∗ uv2 +u2v pi−1(p−1)qj−1(q−1) ?? v = b(cid:99)qj(b20qj−1 +b22qj−1 +···+b2q−3qj−1), ij 2 if q ≡ 1(mod 4) or v = b(cid:99)qj(1+b20qj−1 +b22qj−1 +···+b2q−3qj−1), if q ≡ 3(mod 4) 9 Theorem 4.2. Let p , p and p be three 1 2 3 distinct positive odd prime numbers such that gcd(p − 1, p − 1) = 2, for 1 ≤ i (cid:54)= j ≤ 3, i j ¯ Z and 2 generates the groups of units U( ). p i Then a set of primitive idempotents of the F group algebra G for the finite abelian group 2 G = C × C × C , with C =< a >, p p p p 1 2 3 1 C =< b > and C =< c >, is p p 2 2 ˆ e = aˆbcˆ 0 ˆ e = aˆb(1 − cˆ) 1 ˆ e = aˆ(1 − b)cˆ 2 ˆ e = (1 − aˆ)bcˆ 3 2 2 e = (uv + u v )cˆ 4 2 2 e = (u v + uv )cˆ 5 2 2 ˆ e = (uw + u w )b 6 2 2 ˆ e = (u w + uw )b 7 2 2 e = (vw + v w )aˆ 8 2 2 e = (v w + vw )aˆ 9 ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u v w + uvw 10 ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u v w + uvw 11 ˆ 2 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + u vw + uv w 12 and ˆ 2 2 2 e = (1 − aˆ)(1 − b)(1 − cˆ) + uv w + u vw , 13 10
Description: