Bimodule and twisted representation of vertex operator algebras Qifen Jiang1 Department of Mathematics, Shanghai Jiaotong University Shanghai 200240, China Xiangyu Jiao2 Department of Mathematics, East China Normal University 5 Shanghai 200241, China 1 0 2 Abstract In this paper, for a vertex operator algebra V with an automorphism g of n a order T, an admissible V-module M and a fixed nonnegative rational number n ∈ 1Z , J T + we construct an Ag,n(V)-bimodule Ag,n(M) and study its some properties, discuss the 9 connections between bimodule A (M) and intertwining operators. Especially, bimod- g,n ] ule A (M) is a natural quotient of A (M) and there is a linear isomorphism T g,n−1 g,n T R between the space IMk of intertwining operators and the space of homomorphisms MMj . Hom (A (M) ⊗ Mj(s),Mk(t)) for s,t ≤ n,Mj,Mk are g-twisted V mod- h Ag,n(V) g,n Ag,n(V) t ules, if V is g-rational. a m Keywords Bimodule, g-twisted module, vertex operator algebra, intertwining opera- [ tor. 1 MSC (2010): 17B69. v Remark: It has been accepted for publication in SCIENCE CHINA Mathematics. 9 3 0 2 1 Introduction 0 . 1 It is known that twisted representations are the main ingredients in orbifold conformal 0 5 field theory (refer [DHVW1-DHVW2, LJ1-LJ2, FLM, DM, DLM1, DLM3, DLM5, DLM6 1 and MT]etc). They play a fundamental role in the construction of the moonshine vertex : v operator algebra V♮ [FLM] and other orbifold vertex operator algebras [DGM]. Many of i X them have been studied in the literature (refer [ABD, DJ2, DLM3, DJM4, HY, MT]). In r [DLM3, Z], associative algebra A (V) was constructed for a given vertex operator algebra a g V withanautomorphismg offiniteorderT. Thisishelpfultoinvestigate abstractorbifold models. A (V), which was constructed in [DLM5] for nonnegative numbers n ∈ 1Z , is g,n T + a generalization of the algebra A (V), where A (V) = A (V) (where A (V) coincides g g g,0 id,0 with A(V) in[Z], andA (V) isexactly A (V) in [DLM4]). It was shown that A (V) id,n n g,n−1 T is a natural quotient of A (V). g,n On the other hand, an A (V)-bimodule A (M) for any V-module M was also intro- n n duced in [FZ, DR] to deal with the intertwining operators and fusion rules. Moreover 1Supported by NSFC grants 11101269and 11431010. E-mail:[email protected] 2Supported by NSFC grant 11401213 E-mail:[email protected] 1 an important result in [FZ, L2, DR] is that there is an isomorphism between the space of intertwining operators among irreducible V-modules and a certain space constructed from bimodules for A (V). By generalizing the bimodule theory in [FZ], a sequence id,n of bimodules of A (V)-A (V) in [DJ1, DJ2] were studied, which were denoted by g,n g,m A (V). g,n,m Motivated by [DR, DJ1, DJ2], for any g, n as above, in this paper we construct an A (V)-bimodule A (M) for any admissible V-module M such that A (M) g,n g,n g,n−1 T is a natural quotient of A (M). The structure of those bimodules are discussed. We g,n also consider the connections between bimodule A (M) and intertwining operators. g,n Moreover, it is established that if V is g-rational then there is a linear isomorphism between the space IMk of intertwining operators and the space of homomorphism MMj Hom (A (M)⊗ Mj(s),Mk(t)) Ag,n(V) g,n Ag,n(V) for s,t ≤ n,Mj,Mk are g-twisted V modules. The paper is organized as follows. We recall the construction of associative algebras A (V) and some results from [DLM3]-[DLM5] in Section 2. In Section 3,we give the con- g,n struction of A (M) and study its structure. In section 4, we discuss the relationbetween g,n A (M) and intertwining operators. As in [FZ, L2, DR], we obtain the isomorphism from g,n the space IMk of intertwining operators to Hom (A (M)⊗ Mj(s),Mk(t)) MMj Ag,n(V) g,n Ag,n(V) if V is g-rational. 2 The associative algebras A (V ) g,n Let V = (V,Y,1,ω) be a vertex operator algebra ([B], [FLM], [LL]) with an automor- phism g of finite order T. Then V has the decomposition of eigenspace with respect to the action g: V = Vr r∈Z/TZ M where Vr = {v ∈ V|gv = e−2πTirv}. Firstly, we recall definitions of modules of different types from [DLM3, FLM, FFR, D]. Definition 2.1. A weak g-twisted V-module M is a vector space equipped with a linear map YM(·,z) :V → (EndM)[[zT1,z−T1]] v 7→ Y (v,z) = v z−n−1 (v ∈ EndM) M n n n∈Q X 2 which satisfies the following conditions for all 0 ≤ r ≤ T −1,u ∈ Vr, v ∈ V, w ∈ M. Y (u,z) = u z−n−1; M n n∈r+Z XT u w = 0 for n ≫ 0; n Y (1,z) = id ; M M z −z z −z z−1δ( 1 2)Y (u,z )Y (v,z )−z−1δ( 2 1)Y (v,z )Y (u,z ) 0 z M 1 M 2 0 −z M 2 M 1 0 0 z −z z −z = z2−1δ( 1z 0)( 1z 0)−TrYM(Y(u,z0)v,z2). 2 2 Definition 2.2. An (ordinary) g-twisted V-module is a weak g-twisted V-module M which carries a C-grading induced by the spectrum of L(0) where L(0) is a component operator of Y (ω,z) = L(n)z−n−2. M n∈Z X That is M = ⊕ M , λ∈C λ where M = {w ∈ M|L(0)w = λw}. Moreover one requires that M is finite dimensional λ λ and for fixed λ, Mn+λ = 0 for all small enough integers n. T Definition 2.3. An admissible g-twisted V-module is a weak g-twisted V-module M which carries a 1Z -grading T + M = ⊕ M(n) n∈T1Z+ that satisfies the following v M(n) ⊂ M(n+wtv −m−1) m for homogeneous v ∈ V. Remark 2.4. Assume M is an irreducible addimisible g-twisted V-module, one knows that M = ⊕n∈T1Z+Mn+h for some h ∈ C such that Mh 6= 0, where h is the conformal weight of M. We always assume M(n) = M . n+h Next we recall some results of the associative algebra A (V) from [DLM3-DLM5]. g,n Also see [Z]. Fixn = l+ i ∈ 1Z withl anonnegativeinteger and0 ≤ i ≤ T−1. For0 ≤ r ≤ T−1, T T + define 1, if i ≥ r, δ (r) = . i ( 0, if i < r. Let O (V) be the linear span of all u◦ v and L(−1)u+L(0)u where for homogeneous g,n g,n u ∈ Vr and v ∈ V, (1+z)wtu+l−1+δi(r)+Tr u◦ v = Res Y(u,z)v . g,n z z2l+δi(r)+δi(T−r)+1 3 We also define a second product ∗ on V for u ∈ Vr and v ∈ V as follows: g,n l m+l (1+z)wtu+l u∗ v = (−1)m Res Y(u,z) v g,n l z zl+m+1 m=0 (cid:18) (cid:19) X l ∞ m+l wtu+l = (−1)m u v. j−m−l−1 l j m=0 j=0 (cid:18) (cid:19)(cid:18) (cid:19) XX if r = 0 and u∗ v = 0 if r > 0. g,n Define A (V) to be the quotient V/O (V). Then A (V) = A (V) and A (V) = g,n g,n g,0 g id,n A (V) have already been defined and studied in [DLM3] and [DLM4] respectively. n The following theorem summarizes the main results of [DLM5]. Theorem 2.5. Let V be a vertex operator algebra and g an automorphism of V of finite order T. Let M = ⊕m∈T1Z+M(m) be an admissible g-twisted V-module. Let n ∈ T1Z+. Then (1) A (V) is an associative algebra whose product is induced by ∗ . g,n g,n (2) Theidentitymap onV inducesanalgebraepimorphismfromA (V) to A (V). g,n g,n−1/T (3) Let W be a weak g-twisted V module and set Ω (W) = {w ∈ W|u w = 0,u ∈ V,k > n}. n wtu−1+k Then Ω (W) is an A (V)-module such that v+O (V) acts as o(v) = v for homo- n g,n g,n wtv−1 geneous v. (4) Each M(m) for m ≤ n is an A (V)-submodule of Ω (W). Furthermore, M is g,n n irreducible if and only if each M(m) is an irreducible A (V)-module. g,n (5) The linear map ϕ from V to V defined by ϕ(u) = eL(1)(−1)L(0)u for u ∈ V induces an anti-isomorphism from Ag,n(V) to Ag−1,n(V). 3 Bimodules A (M) of A (V ) g,n g,n Motivated by the ideas of A(V)-bimodule A(M) and A (V)-bimodule A (M) from n n [Z] and [DR] for any nonnegative integer n respectively, we will construct and study A (V)-bimodule A (M) for n ∈ 1Z in this section. g,n g,n T + Let V be same as vertex operator algebra in section 2 and M be an admissible V- module, O (M) be the linear span of u ◦ w where for homogeneous u ∈ Vr and g,n g,n w ∈ M, (1+z)wtu+l−1+δi(r)+Tr u◦ w = Res Y (u,z)w . g,n z M z2l+δi(r)+δi(T−r)+1 We also define a left bilinear product ∗ for u ∈ Vr and w ∈ M : g,n l m+l (1+z)wtu+l u∗ w = (−1)m Res Y (u,z) w (3.1) g,n l z M zl+m+1 m=0 (cid:18) (cid:19) X l ∞ m+l wtu+l = (−1)m u w, j−m−l−1 l j m=0 j=0 (cid:18) (cid:19)(cid:18) (cid:19) XX 4 if r = 0 and u∗ w = 0 if r > 0 and a right bilinear product g,n l m+l (1+z)wtu+m−1 w ∗ u = (−1)l Res Y (u,z) w (3.2) g,n l z M zl+m+1 m=0 (cid:18) (cid:19) X l ∞ m+l wtu+m−1 = (−1)l u w. j−m−l−1 l j m=0 j=0 (cid:18) (cid:19)(cid:18) (cid:19) XX if r = 0 and w ∗ u = 0 if r > 0. g,n Set A (M) = M/O (M). Onecan see that A (M) isthe A (V)-bimoduleA (M) g,n g,n 1,n n n studied in [DR]. Moreover, A (M) is the A(V)-bimodule A(M) studied in [FZ]. 1,0 Lemma 3.1. (1) Assume that u ∈ Vr is homogeneous, w ∈ M and m ≥ k ≥ 0. Then (1+z)wtu+l−1+δi(r)+Tr+k Res Y (u,z)w ∈ O (M). z M z2l+δi(r)+δi(T−r)+1+m g,n (2) For homogeneous u ∈ V0 and w ∈ M, u∗ w −w ∗ u−Res Y (u,z)w(1+z)wtu−1 ∈ O (M). g,n g,n z M g,n Proof: The proof of (1) is similar to that of Lemma 2.1.2 of [Z]. For (2), it follows directly from the definitions (3.1) and (3.2) and using the following result in the appendix of [DLM4]: l m+l (−1)m(1+z)l+1 −(−1)l(1+z)m = 1. l zl+m+1 m=0(cid:18) (cid:19) X (cid:3) Thus we can obtain the result in (2). Lemma 3.2. (L(−1)+L(0))V ∗ M ⊂ O (M),M ∗ (L(−1)+L(0))V ⊂ O (M) g,n g,n g,n g,n Proof: By the definition of ∗ , we only need to prove the case u ∈ V0,w ∈ M. From g,n (3.1), we have l m+l (1+z)wtu+1+l (L(−1)u)∗ w = (−1)m Res Y (L(−1)u,z)w g,n l z M zl+m+1 m=0 (cid:18) (cid:19) X l m+l d (1+z)wtu+1+l = (−1)m+1 Res Y (u,z)w ( ) l z M dz zl+m+1 m=0 (cid:18) (cid:19) X 5 l m+l (wtu+1+l)(1+z)wtu+l = (−1)m+1 Res Y (u,z)w[ z M l zl+m+1 m=0 (cid:18) (cid:19) X (l +m+1)(1+z)wtu+1+l − ], zl+m+2 l m+l (1+z)wtu+l (L(0)u)∗ w = (−1)m Res Y (L(0)u,z)w g,n z M l zl+m+1 m=0 (cid:18) (cid:19) X l m+l (1+z)wtu+l = (−1)m wtuRes Y (u,z)w l z M zl+m+1 m=0 (cid:18) (cid:19) X Thus (L(−1)+L(0))u∗ w g,n l m+l (−l−1)(1+z)wtu+l = (−1)m Res Y (u,z)w[ l z M zl+m+1 m=0 (cid:18) (cid:19) X (l +m+1)(1+z)wtu+1+l + ] zl+m+2 l m+l (mz +l+m+1)(1+z)wtu+l = (−1)m Res Y (u,z)w . z M l zl+m+2 m=0 (cid:18) (cid:19) X Using Lemma 2.2 in [DLM4]: l m+l (mz +l +m+1)(1+z)wtu+l 2l+1 2l+1 (−1)m = (−1)l , l zl+m+2 l z2l+2 m=0 (cid:18) (cid:19) (cid:18) (cid:19) X we obtain 2l+1 (2l+1)(1+z)wtu+l (L(−1)+L(0))u∗ w = (−1)l Res Y (u,z)w . g,n z M l z2l+2 (cid:18) (cid:19) Since u ∈ V0,δ (r) = 1 and δ (T − r) = 0, it is clear that the right-hand side lies in i i O (M). So g,n (L(−1)+L(0))V ∗ M ⊂ O (M) g,n g,n For the second containment,we only need to use this result and Lemma 3.1(2). This (cid:3) completes the proof. Lemma 3.3. (1) O (V)∗ M ⊂ O (M),M ∗ O (V) ⊂ O (M), g,n g,n g,n g,n g,n g,n (2) V ∗ O (M) ⊂ O (M),O (M)∗ V ⊂ O (M). g,n g,n g,n g,n g,n g,n Proof: By Lemma 3.2, it remains to prove that (u◦ v)∗ w,w∗ (u◦ v),u∗ g,n g,n g,n g,n g,n (v ◦ w),(v◦ w)∗ u ∈ O (M) for u,v ∈ V and w ∈ M. g,n g,n g,n g,n 6 (1) Since Vr ∗ M and M ∗ Vr equal zero for r 6= 0, we only need to consider the g,n g,n case u ∈ Vr and v ∈ VT−r. It is not difficult to prove (u◦ v)∗ w ⊂ O (M) according g,n g,n g,n to Lemma 3.4(1) in [DR], we omit it. We now prove w∗ (u◦ v) ∈ O (M). g,n g,n g,n Let u ∈ Vr,v ∈ VT−r and w ∈ M, we have wtu+l−1+δ (r)+ r (u◦ v) = i T (u v). g,n j j−2l−1−δi(r)−δi(T−r) j≥0 (cid:18) (cid:19) X Then it follows Lemma 3.1(2) that w ∗ (u◦ v) g,n g,n wtu+l−1+δ (r)+ r ≡ − i T Res Y (u v,z )w× j z2 M j−2l−1−δi(r)−δi(T−r) 2 j≥0 (cid:18) (cid:19) X (1+z )wtu+wtv+2l+δi(r)+δi(T−r)−1−j(modO (M)) 2 g,n (1+z2 +z0)wtu+l−1+δi(r)+Tr = −Res Res Y (Y(u,z )v,z )w × z2 z0 M 0 2 z2l+δi(r)+δi(T−r)+1 0 (1+z2)wtv+l+δi(T−r)−Tr(modOg,n(M)) (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr = −Res Res Y (u,z )Y (v,z )w z1 z2 M 1 M 2 (z1 −z2)2l+δi(r)+δi(T−r)+1 (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr +Res Res Y (v,z )Y (u,z )w z2 z1 M 2 M 1 (−z2 +z1)2l+δi(r)+δi(T−r)+1 −2l−1−δ (r)−δ (T −r) = (−1)j+1 i i Res Res Y (u,z )Y (v,z )w × j z1 z2 M 1 M 2 j≥0 (cid:18) (cid:19) X (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr z2l+δi(r)+δi(T−r)+1+jz−j 1 2 −2l −1−δ (r)−δ (T −r) + (−1)δi(r)+δi(T−r)+1 i i Res Res Y (v,z )Y (u,z )w × j z2 z1 M 2 M 1 j≥0 (cid:18) (cid:19) X (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr . z−jz2l+δi(r)+δi(T−r)+1+j 1 2 Since u ∈ Vr,v ∈ VT−r and from Lemma 3.1 we know that both (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr Res Res Y (u,z )Y (v,z )w z1 z2 M 1 M 2 z2l+δi(r)+δi(T−r)+1+jz−j 1 2 and (1+z1)wtu+l−1+δi(r)+Tr(1+z2)wtv+l+δi(T−r)−Tr Res Res Y (v,z )Y (u,z )w z2 z1 M 2 M 1 z−jz2l+δi(r)+δi(T−r)+1+j 1 2 7 lie in O (M). g,n (2) Let u ∈ V0,v ∈ Vr and w ∈ M, we have l m+l u∗ (v ◦ w) = (−1)m Res Y (u,z )Res Y (v,z )w g,n g,n l z1 M 1 z2 M 2 m=0 (cid:18) (cid:19) X (1+z1)wtu+l (1+z2)wtv+l−1+δi(r)+Tr × · zl+m+1 z2l+δi(r)+δi(T−r)+1 1 2 l m+l = (−1)m Res Res Y (v,z )Y (u,z )w l z2 z1 M 2 M 1 m=0 (cid:18) (cid:19) X (1+z1)wtu+l (1+z2)wtv+l−1+δi(r)+Tr × · zl+m+1 z2l+δi(r)+δi(T−r)+1 1 2 + l (−1)m m+l Res Res Y (Y(u,z )v,z )w × (1+z2 +z0)wtu+l · (1+z2)wtv+l−1+δi(r)+Tr m=0 (cid:18) l (cid:19) z2 z0 M 0 2 (z2 +z0)l+m+1 z22l+δi(r)+δi(T−r)+1 X l m+l = (−1)m Res Res Y (v,z )Y (u,z )w l z2 z1 M 2 M 1 m=0 (cid:18) (cid:19) X (1+z1)wtu+l (1+z2)wtv+l−1+δi(r)+Tr × · zl+m+1 z2l+δi(r)+δi(T−r)+1 1 2 l m+l wtu+l −l −m−1 + (−1)m Res Y (u v,z )w l j k z2 M j+k 2 m=0 (cid:18) (cid:19)j,k≥0(cid:18) (cid:19)(cid:18) (cid:19) X X (1+z2)wtu+wtv+2l−j−1+δi(r)+Tr × z3l+δi(r)+δi(T−r)+2+m+k 2 l m+l = (−1)m Res Res Y (v,z )Y (u,z )w l z2 z1 M 2 M 1 m=0 (cid:18) (cid:19) X (1+z1)wtu+l (1+z2)wtv+l−1+δi(r)+Tr × · zl+m+1 z2l+δi(r)+δi(T−r)+1 1 2 l m+l wtu+l −l −m−1 + (−1)m Res Y (u v,z )w l j k z2 M k+j 2 m=0 (cid:18) (cid:19)k,j≥0(cid:18) (cid:19)(cid:18) (cid:19) X X (1+z2)wt(uk+jv)+l−1+δi(r)+Tr+l+k+1 × z2l+δi(r)+δi(T−r)+1+l+m+k+1 2 By the definition of O (M) and Lemma 3.1(1), we know that the two resulting terms g,n are in O (M). g,n Using Lemma 3.1(2), similarly, we also have (v ◦ w)∗ u ∈ O (M). so the proof g,n g,n g,n (cid:3) of the Lemma is complete. Now we can establish the main results of this section as follows: 8 Theorem 3.4. Let M be an admissible V-module and n ∈ 1Z . Then T + (1) The vector space A (M) is an A (V)-bimodule with the left and right actions of g,n g,n A (V) on A (M) induced from (3.1) and (3.2) respectively. g,n g,n (2) The identity map on M induces an A (V)-bimodule epimorphism from A (M) g,n g,n to A (M) if n ≥ 1. g,n−1 T (3) The map φ : w 7→ eL(1)(−1)L(0)w induces a linear isomorphism from Ag,n(M) to Ag−1,n(M) such that φ(u∗g,n w) = φ(w)∗g−1,n φ(u),φ(w∗g,n u) = φ(u)∗g−1,n φ(w) for u ∈ V and w ∈ M. (4) If V is g-rational, then both Og,n−s(M)/Og,n−s−1(M) and Ag,n−s(M) are Ag,n(V)- T T T bimodules for s = 1,...,nT and nT Ag,n(M) = Ag,0(M) Og,n−s(M)/Og,n−s−1(M). T T s=1 MM Proof: (1) By Lemmas 3.2 and 3.3 it suffices to show that the following identities hold in A (M) for u,v ∈ V and w ∈ M : g,n (u∗ w)∗ v = u∗ (w∗ v),1∗ w = w ∗ 1 = w g,n g,n g,n g,n g,n g,n (u∗ v)∗ w = u∗ (v ∗ w),w∗ (u∗ v) = (w ∗ u)∗ v. g,n g,n g,n g,n g,n g,n g,n g,n As the proofs are similar, we only prove the third identity in detail. From the definition, 9 we may assume u,v ∈ V0. Then we have l m +l m +l wtu+l (u∗ v)∗ w = (−1)m1+m2 1 2 g,n g,n l l i m1X,m2=0Xi≥0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (1+z )wtu+wtv+2l+m1−i 2 ·Res Y (u v,z )w z2 M i−l−m1−1 2 zl+m2+1 2 l m +l m +l = (−1)m1+m2 1 2 l l m1X,m2=0 (cid:18) (cid:19)(cid:18) (cid:19) (1+z +z )wtu+l(1+z )wtv+m1+l 2 0 2 ·Res Res Y (Y(u,z )v,z )w z2 z0 M 0 2 zl+m1+1zl+m2+1 0 2 l m +l m +l = (−1)m1+m2 1 2 l l m1X,m2=0 (cid:18) (cid:19)(cid:18) (cid:19) (1+z )wtu+l(1+z )wtv+m1+l 1 2 ·Res Res Y (u,z )Y (v,z )w z1 z2 M 1 M 2 (z −z )l+m1+1zl+m2+1 1 2 2 l m +l m +l − (−1)m1+m2 1 2 l l m1X,m2=0 (cid:18) (cid:19)(cid:18) (cid:19) (1+z )wtu+l(1+z )wtv+m1+l 1 2 ·Res Res Y (v,z )Y (u,z )w z2 z1 M 2 M 1 (−z +z )l+m1+1zl+m2+1 2 1 2 l m +l m +l −l −m −1 = (−1)m1+m2+i 1 2 1 l l i m1X,m2=0Xi≥0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (1+z )wtu+l(1+z )wtv+m1+l 1 2 ·Res Res Y (u,z )Y (v,z )w z1 z2 M 1 M 2 zl+m1+1+izl+m2+1−i 1 2 l m +l m +l −l −m −1 − (−1)m2+l+1+i 1 2 1 l l i m1X,m2=0Xi≥0 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) (1+z )wtu+l(1+z )wtv+m1+l 1 2 ·Res Res Y (v,z )Y (u,z )w . z2 z1 M 2 M 1 z−iz2l+m1+m2+2+i 1 2 It follows from Lemma 3.1(1) that (1+z )wtu+l(1+z )wtv+l+m1 1 2 Res Res Y (v,z )Y (u,z )w ∈ O (M). z2 z1 M 2 M 1 z−iz2l+m1+m2+2+i g,n 1 2 and if i > l−m 1 (1+z )wtu+l(1+z )wtv+m1+l 1 2 Res Res Y (u,z )Y (v,z )w z1 z2 M 1 M 2 zl+m1+1+izl+m2+1−i 1 2 10