Big Data Applications in Industry 4.0 Big Data Applications in Industry 4.0 Edited by P. Kaliraj T. Devi First Edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2022 selection and editorial matter, P. Kaliraj and T. Devi; individual chapters, the contributors Reasonable efforts have been made to publish reliable data and information, but the authors and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloguing-in-Publication Data A catalog record has been requested for this book. ISBN: 978-1-032-00811-0 (hbk) ISBN: 978-1-032-19179-9 (pbk) ISBN: 978-1-003-17588-9 (ebk) DOI: 10.1201/9781003175889 Typeset in Garamond by MPS Limited, Dehradun Prof. P. Kaliraj dedicates this book to esteemed Bharathiar University, his father Mr. M. Perumal, mother Mrs. P. Rathinammal, grand children Prithika Karthikeyan, Kayan Karthikeyan, Ayaan Prashanth and Akira Prashanth. Prof. T. Devi dedicates this book to Department of Computer Applications her mother Mrs. A. Suseela, mother-in-law Mrs. D. Singari, son R. Surya and, grandson V. Deera Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Data Science and Its Applications . . . . . . . . . . . . . . . . . . . . . . . . . 1 PAUL ABRAHAM AND LAKSHMINARAYANAN S 1.1 Introduction to Data Science . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Data Science and Its Application in the Healthcare Industry . . . 10 1.3 Data Science and Its Application in the Retail and Retail E-Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Data Science and Its Application in the Banking, Financial Services and Insurance (BFSI) Sector . . . . . . . . . . . . 21 1.5 Statistical Methods and Analytics Techniques Used across Businesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Statistical Methods and Analytics Techniques Used in Sales and Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.7 Statistical Methods and Analytics Techniques Used in Supply Chain Management . . . . . . . . . . . . . . . . . . . . . . . 31 1.8 Statistical Methods and Analytics Techniques Used in Human Resource Management . . . . . . . . . . . . . . . . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 Industry 4.0: Data and Data Integration . . . . . . . . . . . . . . . . . . . 39 PAVAN GUNDARAPU 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Data Integration Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Data Integration Methodologies . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Service Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Brief on Each Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 viii ▪ Contents References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Forecasting Principles and Models: An Overview . . . . . . . . . . . . . 55 R. VIJAYARAGHAVAN 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Meaning of Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Applications of Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Limitations of Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Types of Forecasting Procedures . . . . . . . . . . . . . . . . . . . . . 60 3.6 Process of Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Basic Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.8 Software Tools for Forecasting . . . . . . . . . . . . . . . . . . . . . . . 68 3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Breaking Technology Barriers in Diabetes and Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 KRISHNAN SWAMINATHAN AND THAVAMANI D. PALANISWAMI 4.1 Brief Introduction to Diabetes . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 “Big Data” Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Recent Technological Advances in Diabetes Management . . . . . 76 4.4 Barriers in Diabetes Technology . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Technical Solutions to Break the Barriers . . . . . . . . . . . . . . . 80 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Role of Big Data Analytics in Industrial Revolution 4.0 . . . . . . . . 85 V. BHUVANESWARI 5.1 Big Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Big Data Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.3 Big Data & Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Big Data Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.5 Big Data Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 Big Data Infrastructure and Analytics for Education 4.0 . . . . . . . 107 CHANDRA ESWARAN AND RATHINARAJA JEYARAJ 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2 Industrial Revolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3 Advantages of Industry 4.0 in Education . . . . . . . . . . . . . . . 109 6.4 System for Smart Education . . . . . . . . . . . . . . . . . . . . . . . 111 6.5 Big Data Infrastructure for Smart Education . . . . . . . . . . . . 115 6.6 Big Data Analysis for Smart Education . . . . . . . . . . . . . . . . 118 Contents ▪ ix 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Text Analytics in Big Data Environments . . . . . . . . . . . . . . . . . . 125 R. JANANI AND S. VIJAYARANI 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2 Text Analytics – Big Data Environment . . . . . . . . . . . . . . . 127 7.3 Applications of Text Analytics . . . . . . . . . . . . . . . . . . . . . . 137 7.4 Issues and Research Challenges in Text Analytics . . . . . . . . . 139 7.5 Tools for Text Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 Business Data Analytics: Applications and Research Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 S. SHARMILA AND S. VIJAYARANI 8.1 Big Data Analytics and Business Analytics: An Introduction . . 146 8.2 Digital Revolution of Education 4.0 . . . . . . . . . . . . . . . . . . 148 8.3 Conceptual Framework of Big Data for Industry 4.0 . . . . . . . 149 8.4 Business Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.5 Applications of Big Data and Business Analytics . . . . . . . . . . 160 8.6 Challenges of Big Data and Business Analytics . . . . . . . . . . . 160 8.7 Open Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9 Role of Big Data Analytics in the Financial Service Sector . . . . . . 169 V. RAMANUJAM AND D. NAPOLEON 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.2 The Effect of Finance 4.0 in a Nutshell . . . . . . . . . . . . . . . 172 9.3 In The Banking Industry, Big Data . . . . . . . . . . . . . . . . . . 175 9.4 Big Data Analytics in Finance Industry . . . . . . . . . . . . . . . . 184 9.5 Sector of Finance Data Science . . . . . . . . . . . . . . . . . . . . . 187 9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10 Role of Big Data Analytics in the Education Domain . . . . . . . . . 195 C. SIVAMATHI AND S. VIJAYARANI 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.2 Need for Big Data Analytics in Education . . . . . . . . . . . . . 202 10.3 Applications of Big Data Analytics in Education . . . . . . . . . 204 10.4 Advantages of Big Data in Education . . . . . . . . . . . . . . . . 206