ebook img

Big Data Analytics: Optimization and Randomization PDF

315 Pages·2015·8.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Tianbao Yang†, Qihang Lin\, Rong Jin∗‡ Tutorial@SIGKDD 2015 Sydney, Australia †DepartmentofComputerScience,TheUniversityofIowa,IA,USA \DepartmentofManagementSciences,TheUniversityofIowa,IA,USA ∗DepartmentofComputerScienceandEngineering,MichiganStateUniversity,MI,USA ‡InstituteofDataScienceandTechnologiesatAlibabaGroup,Seattle,USA August 10, 2015 Yang,Lin,Jin TutorialforKDD’15 August10,2015 1/234 URL http://www.cs.uiowa.edu/˜tyng/kdd15-tutorial.pdf Yang,Lin,Jin TutorialforKDD’15 August10,2015 2/234 Some Claims No This tutorial is not an exhaustive literature survey It is not a survey on different machine learning/data mining algorithms Yes It is about how to efficiently solve machine learning/data mining (formulated as optimization) problems for big data Yang,Lin,Jin TutorialforKDD’15 August10,2015 3/234 Outline Part I: Basics Part II: Optimization Part III: Randomization Yang,Lin,Jin TutorialforKDD’15 August10,2015 4/234 Big Data Analytics: Optimization and Randomization Part I: Basics Yang,Lin,Jin TutorialforKDD’15 August10,2015 5/234 Basics Introduction Outline 1 Basics Introduction Notations and Definitions Yang,Lin,Jin TutorialforKDD’15 August10,2015 6/234 Basics Introduction Three Steps for Machine Learning distance to optimal objective000000...012...123555 011.//5TTT2 0 20 40 60 80 100 iterations Data Model Optimization Yang,Lin,Jin TutorialforKDD’15 August10,2015 7/234 Basics Introduction Big Data Challenge Big Data Yang,Lin,Jin TutorialforKDD’15 August10,2015 8/234 Basics Introduction Big Data Challenge Big Model 60 million parameters Yang,Lin,Jin TutorialforKDD’15 August10,2015 9/234 Basics Introduction Learning as Optimization Ridge Regression Problem: min 1 Xn (y −w>x )2+ λkwk2 w∈Rd n i i 2 2 i=1 x ∈ Rd: d-dimensional feature vector i y ∈ R: target variable i w ∈ Rd: model parameters n: number of data points Yang,Lin,Jin TutorialforKDD’15 August10,2015 10/234

Description:
Big Data Analytics: Optimization and Randomization Big Data Yang, Lin, Jin Tutorial for KDD’15 August 10, 2015 8 / 234. Basics Introduction Big Data Challenge
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.