Bifurcation Theory: An Introduction with Applications to PDEs Hansjörg Kielhöfer Springer Applied Mathematical Sciences Volume 156 Editors S.S. Antman J.E. Marsden L. Sirovich Advisors J.K. Hale P. Holmes J. Keener J. Keller B.J. Matkowsky A. Mielke C.S. Peskin K.R. Sreenivasan This page intentionally left blank Hansjo¨rg Kielho¨fer Bifurcation Theory An Introduction with Applications to PDEs With 38 Figures Hansjo¨rgKielho¨fer InstituteforMathematics UniversityofAugsburg Universita¨tsstrasse14,Raum2011 D-86135Augsburg Germany [email protected] Editors: S.S.Antman J.E.Marsden L.Sirovich DepartmentofMathematics ControlandDynamical DivisionofApplied and Systems,107-81 Mathematics InstituteforPhysicalScience CaliforniaInstituteof BrownUniversity andTechnology Technology Providence,RI02912 UniversityofMaryland Pasadena,CA91125 USA CollegePark,MD20742-4015 USA [email protected] USA [email protected] [email protected] MathematicsSubjectClassification(2000):35B32,35P30,37K50,37Gxx,47N20 LibraryofCongressCataloging-in-PublicationData Kielho¨fer,Hansjo¨rg. Bifurcationtheory:anintroductionwithapplicationstoPDEs/Hansjo¨rgKielho¨fer. p.cm.—(Appliedmathematicalsciences;156) Includesindex. ISBN0-387-40401-5(alk.paper) 1.Bifurcationtheory. I.Title. II.Appliedmathematicalsciences(Springer-Verlag NewYorkInc.);v.156. QA1.A647vol.156 [QA380] 510s—dc21 [515′.35] 2003054793 ISBN0-387-40401-5 Printedonacid-freepaper. 2004Springer-VerlagNewYork,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork,NY10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 SPIN10938256 Typesetting:PagescreatedbytheauthorusingSpringer’sSVMono.cls 2emacropackage. www.springer-ny.com Springer-Verlag NewYork Berlin Heidelberg AmemberofBertelsmannSpringerScience+BusinessMediaGmbH Contents 0 Introduction............................................... 1 I Local Theory .............................................. 5 I.1 The Implicit Function Theorem ........................... 5 I.2 The Method of Lyapunov–Schmidt ........................ 6 I.3 The Lyapunov–Schmidt Reduction for Potential Operators................................... 9 I.4 An Implicit Function Theorem for One-Dimensional Kernels: Turning Points .................. 11 I.5 Bifurcation with a One-Dimensional Kernel................. 15 I.6 Bifurcation Formulas (Stationary Case) .................... 18 I.7 The Principle of Exchange of Stability (Stationary Case) ....................................... 20 I.8 Hopf Bifurcation ........................................ 30 I.9 Bifurcation Formulas for Hopf Bifurcation .................. 40 I.10 A Lyapunov Center Theorem ............................. 46 I.11 Constrained Hopf Bifurcation for Hamiltonian, Reversible, and Conservative Systems ...................... 51 I.11.1 Hamiltonian Systems: Lyapunov Center Theorem and Hamiltonian Hopf Bifurcation................... 57 I.11.2 Reversible Systems ................................ 66 I.11.3 Nonlinear Oscillations.............................. 70 I.11.4 Conservative Systems .............................. 73 I.12 The Principle of Exchange of Stability for Hopf Bifurcation ..................................... 76 I.13 Continuation of Periodic Solutions and Their Stability ...................................... 84 I.13.1 Exchange of Stability at a Turning Point ............. 94 I.14 Period-Doubling Bifurcation and Exchange of Stability ................................ 97 VI Contents I.14.1 The Principle of Exchange of Stability for a Period-Doubling Bifurcation ...................105 I.15 The Newton Polygon ....................................112 I.16 Degenerate Bifurcation at a Simple Eigenvalue and Stability of Bifurcating Solutions ......................116 I.16.1 The Principle of Exchange of Stability for Degenerate Bifurcation..........................123 I.17 Degenerate Hopf Bifurcation and Floquet Exponents of Bifurcating Periodic Orbits ...................129 I.17.1 The Principle of Exchange of Stability for Degenerate Hopf Bifurcation.....................136 I.18 The Principle of Reduced Stability for Stationary and Periodic Solutions ......................143 I.18.1 The Principle of Reduced Stability for Periodic Solutions ..............................149 I.19 Bifurcation with High-Dimensional Kernels, Multiparameter Bifurcation, and Application of the Principle of Reduced Stability ............155 I.19.1 A Multiparameter Bifurcation Theorem with a High-Dimensional Kernel.....................161 I.20 Bifurcation from Infinity .................................163 I.21 Bifurcation with High-Dimensional Kernels for Potential Operators: Variational Methods ...............166 I.22 Notes and Remarks to Chapter I ..........................173 II Global Theory.............................................175 II.1 The Brouwer Degree .....................................175 II.2 The Leray–Schauder Degree ..............................178 II.3 Application of the Degree in Bifurcation Theory.............182 II.4 Odd Crossing Numbers...................................186 II.4.1 Local Bifurcation via Odd Crossing Numbers .........190 II.5 A Degree for a Class of Proper Fredholm Operators and Global Bifurcation Theorems ................195 II.5.1 Global Bifurcation via Odd Crossing Numbers ........205 II.5.2 Global Bifurcation with One-Dimensional Kernel ......206 II.6 A Global Implicit Function Theorem.......................210 II.7 Change of Morse Index and Local Bifurcation for Potential Operators...................................211 II.7.1 Local Bifurcation for Potential Operators.............214 II.8 Notes and Remarks to Chapter II .........................217 III Applications ...............................................219 III.1 The Fredholm Property of Elliptic Operators ...............219 III.1.1 Elliptic Operators on a Lattice ......................225 III.1.2 Spectral Properties of Elliptic Operators .............230 Contents VII III.2 Local Bifurcation for Elliptic Problems.....................232 III.2.1 Bifurcation with a One-Dimensional Kernel...........233 III.2.2 Bifurcation with High-Dimensional Kernels ...........238 III.2.3 Variational Methods I..............................239 III.2.4 Variational Methods II.............................244 III.2.5 An Example ......................................245 III.3 Free Nonlinear Vibrations ................................251 III.3.1 Variational Methods ...............................260 III.3.2 Bifurcation with a One-Dimensional Kernel...........261 III.4 Hopf Bifurcation for Parabolic Problems ...................268 III.5 Global Bifurcation and Continuation for Elliptic Problems.....................................275 III.5.1 An Example (Continued)...........................280 III.5.2 Global Continuation ...............................281 III.6 Preservation of Nodal Structure on Global Branches......................................283 III.6.1 A Maximum Principle .............................284 III.6.2 Global Branches of Positive Solutions ................285 III.6.3 Unbounded Branches of Positive Solutions............290 III.6.4 Separation of Branches.............................293 III.6.5 An Example (Continued)...........................293 III.6.6 Global Branches of Positive Solutions via Continuation ..................................300 III.7 Smoothness and Uniqueness of Global Positive Solution Branches .........................302 III.7.1 Bifurcation from Infinity ...........................309 III.7.2 Local Parameterization of Positive Solution Branches over Symmetric Domains ...........................313 III.7.3 Global Parameterization of Positive Solution Branches over Symmetric Domains and Uniqueness.............320 III.7.4 Asymptotic Behavior at (cid:1)u(cid:1)∞ =0 and (cid:1)u(cid:1)∞ =∞.....325 III.7.5 Stability of Positive Solution Branches ...............329 III.8 Notes and Remarks to Chapter III.........................333 References.....................................................335 Index..........................................................343 This page intentionally left blank 0 Introduction Bifurcation Theory attempts to explain various phenomena that have been discoveredanddescribedinthenaturalsciencesoverthecenturies.Thebuck- ling of the Euler rod, the appearance of Taylor vortices, and the onset of oscillations in an electric circuit, for instance, all have a common cause: A specific physical parameter crosses a threshold, and that event forces the sys- tem to the organization of a new state that differs considerably from that observed before. Mathematically speaking, the following occurs: The observed states of a systemcorrespondtosolutionsofnonlinearequationsthatmodelthephysical system.Astatecanbeobservedifitisstable,anintuitivenotionthatismade precise for a mathematical solution. One expects that a slight change of a parameter in a system should not have a big influence, but rather that stable solutionschangecontinuouslyinauniqueway.Thatexpectationisverifiedby theImplicitFunctionTheorem.Consequently,aslongasacontinuousbranch of solutions preserves its stability, no dramatic change is observed when the parameter is varied. However, if that “ground state” loses its stability when the parameter reaches a critical value, then the state is no longer observed, and the system itself organizes a new stable state that “bifurcates” from the ground state. Bifurcation is a paradigm for nonuniqueness in Nonlinear Analysis. We sketch that scenario in Figure 1, which is referred to as a “pitchfork bifurcation.” The solutions bifurcate in pairs which describe typically one state in two possible representations. Also typically, the bifurcating state has less symmetry than the ground state (also called “trivial solution”), in which case one calls it “symmetry breaking bifurcation.” In Figure 1 we show the solution set of the odd “bifurcation equation,” λx−x3 = 0, where x ∈ R represents the state and λ∈R is the parameter. Inthecaseinwhichsolutionscorrespondtocriticalpointsofaparameter- dependent functional, Figure 2 shows how a slight change of the potential turns a stable equilibrium into an unstable one and creates at the same time