Nonlinear Physical Science Marat Akhmet Ardak Kashkynbayev Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities Nonlinear Physical Science Nonlinear Physical Science Nonlinear Physical Science focuses on recent advances offundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical scienceandnonlinearmathematicswithengineeringapplications. TopicsofinterestinNonlinearPhysicalScienceincludebutarenotlimitedto: – Newfindingsanddiscoveriesinnonlinearphysicsandmathematics – Nonlinearity,complexityandmathematicalstructuresinnonlinearphysics – Nonlinearphenomenaandobservationsinnatureandengineering – Computationalmethodsandtheoriesincomplexsystems – Liegroupanalysis,newtheoriesandprinciplesinmathematicalmodeling – Stability,bifurcation,chaosandfractalsinphysicalscienceandengineering – Nonlinearchemicalandbiologicalphysics – Discontinuity,synchronizationandnaturalcomplexityinthephysicalsciences Series editors AlbertC.J.Luo NailH.Ibragimov DepartmentofMechanicalandIndustrial DepartmentofMathematicsandScience Engineering BlekingeInstituteofTechnology SouthernIllinoisUniversityEdwardsville S-37179Karlskrona,Sweden Edwardsville,IL62026-1805,USA e-mail:[email protected] e-mail:[email protected] International Advisory Board PingAo,UniversityofWashington,USA;Email:[email protected] JanAwrejcewicz,TheTechnicalUniversityofLodz,Poland;Email:[email protected] EugeneBenilov,UniversityofLimerick,Ireland;Email:[email protected] EshelBen-Jacob,TelAvivUniversity,Israel;Email:[email protected] MauriceCourbage,UniversitéParis7,France;Email:[email protected] MarianGidea,NortheasternIllinoisUniversity,USA;Email:[email protected] JamesA.Glazier,IndianaUniversity,USA;Email:[email protected] ShijunLiao,ShanghaiJiaotongUniversity,China;Email:[email protected] JoseAntonioTenreiroMachado,ISEP-InstituteofEngineeringofPorto,Portugal; Email:[email protected] NikolaiA.Magnitskii,RussianAcademyofSciences,Russia;Email:[email protected] JosepJ.Masdemont,UniversitatPolitecnicadeCatalunya(UPC),Spain; Email:[email protected] DmitryE.Pelinovsky,McMasterUniversity,Canada;Email:[email protected] Sergey Prants, V.I.Il’ichev Pacific Oceanological Institute of the Russian Academy of Sciences, Russia;Email:[email protected] VictorI.Shrira,KeeleUniversity,UK;Email:[email protected] JianQiaoSun,UniversityofCalifornia,USA;Email:[email protected] Abdul-Majid Wazwaz, Saint Xavier University, USA; Email: [email protected] PeiYu,TheUniversityofWesternOntario,Canada;Email:[email protected] More information about this series at http://www.springer.com/series/8389 Marat Akhmet Ardak Kashkynbayev (cid:129) Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities 123 Higher Education Press Marat Akhmet Ardak Kashkynbayev Department ofMathematics Department ofMathematics Middle EastTechnical University Middle EastTechnical University Ankara Ankara Turkey Turkey ISSN 1867-8440 ISSN 1867-8459 (electronic) Nonlinear Physical Science ISBN978-981-10-3179-3 ISBN978-981-10-3180-9 (eBook) DOI 10.1007/978-981-10-3180-9 JointlypublishedwithHigherEducationPress,Beijing ISBN978-7-04-047450-3 LibraryofCongressControlNumber:2016963160 ©SpringerNatureSingaporePteLtd.andHigherEducationPress2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublishers,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublishers,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publishers nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publishers remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#22-06/08GatewayEast,Singapore189721,Singapore To our beloved families Preface Thisbookisdevotedtobifurcationtheoryindiscontinuousdynamicalsystems.The mainnoveltyistheconsiderationofbifurcationindifferentialandhybridequations bymeansofmethodsdevelopedbyauthorsinrecentyears.Hopfbifurcationresults are obtained for planar and three-dimensional systems. Results in nonautonomous bifurcationtheoryarepresentedfordifferentialequationswithdiscontinuities.This is the first time illustrations for nonautonomous bifurcation are provided. This theory is among vast developing subjects in the recent years. The subjects in this book are evolved from: (cid:129) Bifurcation theory for autonomous and nonautononmous ODEs; (cid:129) B—equivalence method is developed for impulsive differential equations with nonfixed moments of impacts and principles of discontinuous dynamical systems; (cid:129) Theory of differential equations with piecewise constant argument of general- ized type; and (cid:129) Theory of differential equations with discontinuous right-hand side. Weexpectthattheresultsobtainedinthisbookwillbeappliedtovariousfields suchasneuralnetworks,braindynamics,mechanicalsystems,weatherphenomena, andpopulationdynamics.Thus,wethinkthatinnearfuturethistheorywillbeone ofthemostattractingareasindynamicalsystemsanditsapplications.Withoutany doubt,bifurcationtheoryshouldbefurtherdevelopedintoothertypesofdifferential equation. In this sense, we strongly believe that the present book will be a leading one in this field. Bifurcation of periodic solutions and nonautonomous systems is yet to develop in multidimensional case. Center manifold theory is one of the interesting topics to investigate. We have published several papers and books related to bifurcation theory in recent years. In this book, we provide results in discontinuous dynamical systems that are developed parallel to ODEs. The reader will benefit from recent results obtainedinthetheoryofbifurcationandwilllearnintheveryconcretewayhowto apply this theory to differential equations with various types of discontinuity: impulsive differential equations, differential equations with piecewise constant vii viii Preface argument,anddifferentialequationswithdiscontinuousright-handside.Moreover, the reader will learn how to analyze nonautonomous bifurcation scenarios in these equations. The present book is devoted to Hopf, transcritical, and pitchfork bifur- cations, and it is reasonable to discuss a new possibilities in other types of bifur- cation such as Neimark–Sacker bifurcation, Shilnikov bifurcation, Bautin bifurcation, Bogdanov–Taken bifurcation, and bifurcation of almost periodic solutions. Thisbookwillbe ofabiginterest both for beginners andexpertsinthefieldof bifurcation theory. For the former group of specialists, that is, undergraduate and graduate students, this book will be useful since it provides strong impression that bifurcation theory can be developed not only for discrete and continuous systems but also for those which combine these systems in very different ways. The latter group of specialists will find in this book several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impacts, differential equations with piecewise constant argument of generalized type,andFilippovsystems.Asignificantbenefitofthispresentbookisexpectedto beforthosewhoconsiderbifurcationsinsystemswithdiscontinuitiessincetheyare presumablynonautonomoussystems.Consequently,nonautonomousbifurcationis compulsory subject to discuss. The authors would like to offer their sincere thanks to those who contributed to thepreparationofthisbook,DuyguAruğaslan ÇinçinandMehmetTuranfor their collaboration,andtheserieseditorProf.AlbertLuoandeditorofHEPLipingWang fortheirinterestinthemonographandpatienceduringthepublicationofthebook. Ankara, Turkey Marat Akhmet Ardak Kashkynbayev Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 1.1 General Description of Differential Equations with Discontinuities .. ..... .... .... .... .... .... ..... .... 2 1.1.1 Impulsive Differential Equations.... .... .... ..... .... 3 1.1.2 Differential Equations with Piecewise Constant Argument .... ..... .... .... .... .... .... ..... .... 4 1.1.3 Differential Equations with Discontinuous Right-Hand Sides ... .... .... .... .... .... ..... .... 5 1.2 Nonautonomous Bifurcation. .... .... .... .... .... ..... .... 6 1.3 The Bernoulli Equations.... .... .... .... .... .... ..... .... 8 1.4 Organization of the Book... .... .... .... .... .... ..... .... 8 2 Hopf Bifurcation in Impulsive Systems ... .... .... .... ..... .... 11 2.1 Hopf Bifurcation of a Discontinuous Limit Cycle .... ..... .... 11 2.1.1 The Nonperturbed System. .... .... .... .... ..... .... 11 2.1.2 The Perturbed System.... .... .... .... .... ..... .... 14 2.1.3 Foci of the D-System .... .... .... .... .... ..... .... 16 2.1.4 The Center and Focus Problem. .... .... .... ..... .... 19 2.1.5 Bifurcation of a Discontinuous Limit Cycle ... ..... .... 21 2.1.6 Examples .... ..... .... .... .... .... .... ..... .... 25 2.2 3D Discontinuous Cycles... .... .... .... .... .... ..... .... 26 2.2.1 Introduction... ..... .... .... .... .... .... ..... .... 26 2.2.2 The Nonperturbed System. .... .... .... .... ..... .... 26 2.2.3 The Perturbed System.... .... .... .... .... ..... .... 30 2.2.4 Center Manifold .... .... .... .... .... .... ..... .... 34 2.2.5 Bifurcation of Periodic Solutions ... .... .... ..... .... 37 2.2.6 Examples .... ..... .... .... .... .... .... ..... .... 41 2.3 Periodic Solutions of the Van der Pol Equation.. .... ..... .... 43 2.3.1 Introduction and Preliminaries.. .... .... .... ..... .... 43 2.3.2 Theoretical Results .. .... .... .... .... .... ..... .... 46 ix x Contents 2.3.3 Center Manifold .... .... .... .... .... .... ..... .... 57 2.4 Notes . .... .... .... ..... .... .... .... .... .... ..... .... 62 3 Hopf Bifurcation in Filippov Systems .... .... .... .... ..... .... 65 3.1 Nonsmooth Planar Limit Cycle from a Vertex... .... ..... .... 65 3.1.1 Introduction... ..... .... .... .... .... .... ..... .... 65 3.1.2 The Nonperturbed System. .... .... .... .... ..... .... 67 3.1.3 The Perturbed System.... .... .... .... .... ..... .... 69 3.1.4 The Focus-Center Problem .... .... .... .... ..... .... 73 3.1.5 Bifurcation of Periodic Solutions ... .... .... ..... .... 75 3.1.6 An Example .. ..... .... .... .... .... .... ..... .... 78 3.2 3D Filippov System .. ..... .... .... .... .... .... ..... .... 80 3.2.1 Introduction... ..... .... .... .... .... .... ..... .... 80 3.2.2 The Nonperturbed System. .... .... .... .... ..... .... 81 3.2.3 The Perturbed System.... .... .... .... .... ..... .... 84 3.2.4 Center Manifold .... .... .... .... .... .... ..... .... 89 3.2.5 Bifurcation of Periodic Solutions ... .... .... ..... .... 91 3.2.6 An Example .. ..... .... .... .... .... .... ..... .... 94 3.3 Notes . .... .... .... ..... .... .... .... .... .... ..... .... 96 4 Nonautonomous Bifurcation in Impulsive Bernoulli Equations. .... 97 4.1 The Transcritical and the Pitchfork Bifurcations.. .... ..... .... 97 4.1.1 Introduction... ..... .... .... .... .... .... ..... .... 97 4.1.2 Preliminaries.. ..... .... .... .... .... .... ..... .... 98 4.1.3 The Pitchfork Bifurcation . .... .... .... .... ..... .... 100 4.1.4 The Transcritical Bifurcation... .... .... .... ..... .... 104 4.2 Impulsive Bernoulli Equations: The Transcritical and the Pitchfork Bifurcations ... .... .... .... .... ..... .... 110 4.2.1 Introduction and Preliminaries.. .... .... .... ..... .... 110 4.2.2 Bounded Solutions .. .... .... .... .... .... ..... .... 112 4.2.3 The Pitchfork Bifurcation . .... .... .... .... ..... .... 115 4.2.4 The Transcritical Bifurcation... .... .... .... ..... .... 117 4.2.5 Illustrative Examples. .... .... .... .... .... ..... .... 120 4.3 Notes . .... .... .... ..... .... .... .... .... .... ..... .... 122 5 Nonautonomous Bifurcations in Nonsolvable Impulsive Systems........ 123 5.1 The Transcritical and the Pitchfork Bifurcations.. .... ..... .... 123 5.1.1 Introduction... ..... .... .... .... .... .... ..... .... 123 5.1.2 Preliminaries.. ..... .... .... .... .... .... ..... .... 124 5.1.3 Attractivity and Repulsivity in a Linear Impulsive Nonhomogeneous Systems .... .... .... .... ..... .... 126 5.1.4 The Transcritical Bifurcation... .... .... .... ..... .... 129 5.1.5 The Pitchfork Bifurcation . .... .... .... .... ..... .... 131 5.2 Finite-Time Nonautonomous Bifurcations... .... .... ..... .... 133 5.2.1 Introduction and Preliminaries.. .... .... .... ..... .... 133