ebook img

Bidding policies for market-based HPC workflow scheduling PDF

0.74 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bidding policies for market-based HPC workflow scheduling

1 Bidding policies for market-based HPC workflow scheduling Andrew Burkimsher, Leandro Soares Indrusiak {andrew.burkimsher, leandro.indrusiak}@york.ac.uk Department of Computer Science, University of York, Heslington, York, YO10 5GH, UK Abstract—This paper considers the scheduling of jobs on is most valuable [23]. There are real costs to HPC providers distributed, heterogeneous High Performance Computing (HPC) for running work, so it may sometimes be more worthwhile 6 clusters. Market-based approaches are known to be efficient for to discard work whose value is too low than to run it. 1 allocating limited resources to those that are most prepared to Work is run on computing clusters because it is valuable to 0 pay. This context is applicable to an HPC or cloud computing 2 scenario where the platform is overloaded. the users and organisations who submit it. This value can be Inthispaper,jobsarecomposedofdependenttasks.Eachjob represented as a real amount of money that users are willing n has a non-increasing time-value curve associated with it. Jobs to pay for their results. This value is not always fixed. This is a aresubmittedtoandscheduledbyamarket-clearingcentralised J becauseworkreturnedearliermayallowusersororganisations auctioneer. This paper compares the performance of several 6 policies for generating task bids. The aim investigated here is to tobemoreproductive,whereassomeworkmayhavenovalue 2 maximise the value for the platform provider while minimising at all if it is returned too late [5]. the number of jobs that do not complete (or starve). Scheduling large-scale computing systems has traditionally C] ItisfoundthattheProjectedValueRemainingbiddingpolicy been done through list scheduling [8], [16]. This is where all givesthehighestlevelofvalueunderatypicaloverloadsituation, the work in a queue is ranked by an appropriate metric, and D andgivesthelowestnumberofstarvedtasksacrossthespaceof allocatedtohardwareinsortedorder.Wherevalueisassigned . utilisation examined. It does this by attempting to capture the s urgency of tasks in the queue. At high levels of overload, some towork,market-basedprinciplescanbeappliedtoscheduling. c alternative algorithms produce slightly higher value, but at the The usefulness of work on list scheduling can be employed [ cost of a hugely higher number of starved workflows. in a market-based way. The values calculated for ranking in a 1 Index Terms—Market-Based, Scheduling, Value, HPC, Value, list scheduler can instead be used as bids that each piece of v Value-Curves,ValueRemaining,Workflows,Starvation,Respons- work submits to an auctioneer. Past research has investigated 7 4 iveness using value as bids [10]. However, the bids can be different 0 than just the values of jobs at a given moment in time. It has 7 been shown [5] that in the context of list scheduling, ordering I. INTRODUCTION 0 tasks by total job value does not necessarily give the highest 1. Inrecentyears,computationalperformancehasincreasingly overall value under overload. 0 been achieved through increasing parallelism rather than in- This paper explores the effectiveness of different bidding 6 creased single-core performance. This is mainly due to the policies in a market-based scheduling scenario. This is to 1 exponential increase in power consumption required to run evaluatewhichprovidethehighestvalue,especiallyinperiods : v processorsathigherclockspeeds[9].Processorshavebecome of overload when not all work is able to run. i multicore, and multicore processors have been grouped into X clusters and networks of clusters, known as grids [12]. These r II. LITERATURESURVEY a High Performance Computing (HPC) systems have grown to be huge in scale, especially those that support the operations Schedulingusingmarket-basedtechniqueshasbeenstudied of cloud computing corporations. over a long period, with pioneering early work by Sutherland ManykindsofworkrunonHPCsystemsarenotindepend- in the 1960s [21]. Since then, a great deal of work has been ent. Instead, workflows (or jobs) are run that are made up of doneonthestructureofmarkets,investigatingwhichstructures several individual pieces of software (tasks), each of which bestpromoteeconomicefficiency.Auction-basedmarketshave takes some input and produces some output. This leads to the been looked at by Waldspurger et al. [24] whereas market- notion of dependencies between tasks, which restrict tasks to clearingtechniqueswhereresourcesareallocatedtoworkuntil starting only once all their dependencies have completed and one or other is consumed were investigated by Miller and their input data transmitted. Drexler [17]. Lai et al. have examined doing the allocation of Large-scalesystemssuchasthesecanexperienceperiodsof resourcesinproportiontothevalueofbids[13].Popoviciand high demand. This can even extend into periods of overload, Wilkes [18] investigated market-inspired admission control. where work is arriving faster than it can be executed. HPC Dube [7] gives a good survey of the state of this research providers need to be able to effectively prioritise work during and concludes that various different market structures all hold these periodsto ensure the mostimportant work isrun. Cloud promise, showing the benefits of better allocation and greater providers who sell computing capacity on the open market decentralisaion(andhencescalabilityandfault-tolerance)than will wish to maximise their profits by running the work that traditional schedulers. 2 Anecessarypartofamarketbasedsystemisthatjobshave The critical path [11] of a job, Jk, is equivalent to the CP a certain value to users, and that this value is represented in largest upward rank of any of its component tasks: ∀Ti ∈ the market by their bids [10]. There has been much past work Jk : Jk = max(cid:0)Ti(cid:1) [22]. This is the length of time that CP R on scheduling to maximise the value of a workload [14]. The the job would take to execute if the number of cores requied problem of maximising workload value where job value is a wasunbounded,whichisequivalenttoitsminimumexecution function of time was extensively researched by Locke [15] time. for systems schedulable by the Earliest Deadline First list scheduling policy, and has subsequently been applied to more B. Platform Model general scheduling problems [5], [6]. It seems that there has been little research into using value The basic unit of the platform model is an execution core. curves rather than fixed job values when scheduling in a Eachclusterismadeupofanumberofcores.Multicoretasks market-based context. This is likely because markets need a must execute within a single cluster, and consume a number singlepriceforeachbidsubmittedbyajob,notacurve.Yetin of cores for the duration of their execution. Cores are not previous work [5], it has been shown that value curves can be shared between executing tasks. Within a cluster, cores are usedtocreatesinglerankingvaluesforlistschedulingatgiven assumed to have negligible communication delays between times in a simulation. This paper will extend this approach by them. For example, this could be due to all cores sharing a using these values as bids in a market-based framework. single networked file system. In the HPC context considered, executiontimesaremeasuredinhourstodays,sothehighest- III. MODELS speed communications within cores on the same multicore processororwithinthesameservercanreasonablybeassumed To evaluate which bidding policies are best, the simulator to be negligible. previouslydevelopedbytheauthors[5]wasextendedtousea Clusters communicate through a central router. Delays are market-based scheduling system. This simulator implements present for data transfers between clusters, and are adjustable several models representing the applications, the platform, using the Communication to Computation Ratio (CCR), sup- the scheduling scheme and the means of representing and plied as an input to the simulations. For a task executing for calculatingvalue.Thesimulationtakesplaceinadiscrete-time environment, where all events happen on time ticks τ ∈N0. Teixec,thetimetakenfordatatransferwouldbeTeixec×CCR. Heterogoneity is present in the model to a limited degree. Tasks and cluster cores have Kinds, which must match for a A. Application Model task to be able to run on a cluster. A task will always run for The application model represents the work to be run on the same amount of time on clusters of the same kind. Each the cluster. Tasks are non-pre-emptive, running to completion cluster is made up of cores of only one kind. This means that once they have begun. This represents the behaviour of the for jobs where tasks require different kinds, some network LSF/GridEngine systems commonly used to manage large communications are unavoidable, as some tasks must run on HPC systems. This lack of pre-emption is less of a problem different clusters. Where this is the case, the network delays at scale than it might seem, because in large-scale systems, are consideredin thecalculation ofthe criticalpath as wellas the turnover of work is sufficiently high. This means that it is just the execution times. very unlikely that any job will ever have to wait too long for something to finish so that it can start [4]. C. Scheduling Model For the purposes of this paper, a single, non-preemptible piece of work will be known as a task, denoted Ti. Each task The scheduling model is market-based and works by using will run for a duration Ti ∈ N(cid:63) on a number of cores a central auctioneer running on the central router. All jobs are exec Ti ∈ N(cid:63) concurrently. A set of tasks is known as a job, submitted to the central router, which maintains the queue of cores denoted Jk. Tasks can only depend on other tasks within the work.Jobsareimmediatelydecomposedintotheircomponent same job and the successors of each task will be known as tasks and, once their dependencies are satisfied, are added to Ti . The structure of the dependencies will be that of a the single global queue. This is different to previous work by succ Directed Acyclic Graph (DAG), which defines a topological the authors [5], where work is load-balanced on submission ordering over the tasks in a job: a partial order that they must and then spends time queueing on the clusters. be run in. Schedulingtakesplaceateachschedulinginstant,whichcan Having a dependency graph means several other useful be the arrival of a job or the completion of a task on any of metrics about a job can be calculated. The upward rank the clusters. At each instant, the tasks and the clusters submit [22] of tasks, Ti, is defined as the longest route from any bids to the auctioneer. The tasks bid according to a bidding R task to its latest-finishing successor: ∀Tj ∈ Ti : Ti = policy, and these bidding policies will be described below. succ R Ti +max(Tj).Sortingtasksbytheirupwardrankwillgive The clusters bid according to the number of cores they have exec R anorderingthatrespectsthepartialorderofthedependencies. available.Theauctioneerthenassignsthehighest-biddingtask Theupwardrankisalsousefultoestimatethefinishtimeofa to the cluster with the most cores free until there are no tasks jobifataskisrunimmediately.Asjobsonlyrealisetheirvalue leftortherearenoclusterswithsufficientcoresfreetorunthe once they have finished, this estimate is useful for scheduling highest-bidding task. This is an example of a market-clearing comparisons at runtime. architecture. 3 When a task is assigned to a cluster, it is run immediately, because there are guaranteed to be sufficient cores free on a cluster to run due to the bidding mechanism. Backfilling is not used where tasks other than the highest bidder could fit onto a cluster even where the highest bidder cannot. This is for several reasons. Most importantly, when running large-scale clusters, there is a high turnover of work. This means that the delay until the next running task finishes is likely to be small [4]. This means there is less likely to be much of a penalty without doing backfilling. Secondly, where execution times are only estimates, backfilling cannot be perfectly precise. This may mean that some previously lower-bidding tasks are still running when the previously Figure1. ValueCurveTemplate high-bidding task would have started. This can delay the executionofthehigh-biddingtask,penalisingtheoverallvalue Algorithm 1 Value Calculation achievable. Value(cid:0)jobJk,SLR(cid:1)= D. Value Model JVkMax ifSLR≤Dinitial Users submit work to HPC systems because running the 0 ifSLR≥D final work on their own computers is likely to take a prohibit- Jk ×factor(cid:0)Jk , SLR(cid:1) ifD <SLR<D ively long time. Furthermore, users tend to not really care VMax Ci initial final how busy the systems are overall, but instead care most about the responsiveness of their jobs. Therefore, a model of value curves is required that captures these perceptions beenreached,thevalueis0.Thealgorithmforcalculatingthis aboutresponsiveness.Itisassumedthatuserswilldefinethese factor is given in Algorithm 2. curves and submit them along with their jobs. This is because the decision and allocation of appropriate time and value is IV. BIDDINGPOLICIES context-dependent and is fundamentally a stakeholder issue. In a market, independent agents need to make bids for The authors previously concluded [3] that the most appro- the services they require. In this context of market-based priate measure of responsiveness for jobs with dependencies scheduling, tasks will each bid for computational resource. was Topcuoglu’s Schedule Length Ratio or SLR [22]. This In this market, it is necessary to have policies that calculate is the ratio of the job’s actual response time to the length of its critical path: SLR = (cid:0)Jk −Jk (cid:1) ÷ Jk. A the bids for the tasks. These bids can be based a number of finish arrive CP underlying attributes of the task. particularly useful feature of the SLR is that job SLR can Baseline policies are explicitly intended to be simplistic or beestimated(orprojected,henceP-SLR)fortasksinadvance naive, to show what is achievable with little processing work. if the submission time of the job, the current time and the upward rank of the task is known: Ti ∈Jk : PSLR(cid:0)Ti(cid:1)= Two baseline policies are considered, Random and First In (cid:0)(cid:0)Ti +τ (cid:1)−Jk (cid:1)÷Jk. First Out (FIFO). Random places a random bid for each task R current arrive CP in the queue at each round of bidding. FIFO places bids that Each job submitted will also be submitted with a value are proportional to the arrival time of each task’s parent job curve, JK. The curve Ci is an array of coordinates of the Ci Ti ∈ Jk, FIFO = Jk , with the smallest numerical bid points that define the curve. The time-axis of the value curve arrive being the highest priority. isdefinedusingtheSLRofthejob.Thismeansthattheinitial Several policies are considered that do not make use of the and final deadlines along with the time coordinates of points value curves. These instead use the upward ranks of tasks on the curve are defined in terms of SLR. This is so that the Ti within the dependency graph of their parent job. Shortest valuecurvecaneasilybescaledtojobsofdifferentsizes,total R values or lengths of critical path. This is also designed so that the future value of a task can be estimated using its P-SLR. Algorithm 2 Value Factor Calculation The value curve is undefined before an SLR of 1, as no job factor(cid:0)curveCi,SLR(cid:1): can finish before the length of its critical path. t_sort=(cid:2)p[0] forpinCi(cid:3) Figure 1 shows the template used to define value curves. v_sort=(cid:2)p[1] forpinCi(cid:3) EveryjobisassignedamaximumvalueV thatitcanreturn max low_index=|[tfortint_sortift≤SLR]| to the user. A value curve is defined as a piecewise function t_low=t_sort[low_index] withthreesubdomains,punctuatedbyaninitial(D )and initial t_high=t_sort[low_index+1] a final (D ) deadline, as defined in Algorithm 1. Before final v_low=v_sort[low_index] theinitialdeadline,thevaluereturnedisalwaysthemaximum v_high=v_sort[low_index+1] V . Between the initial and final deadlines, the value is (cid:16) (cid:17) max F =v_low+ SLR−t_low ×(v_high−v_low) calculated using linear interpolation between a sequence of t_high−t_low points which reach 0 at D . Once the final deadline has returnF final 4 Algorithm 3 Projected SLR algorithm projected_slr(taskTi, job Jk,curr_time, queueQ)= (cid:0)Ti +curr_time+1(cid:1)−Jk (cid:22)curr_time−Jk (cid:23)2 R arrive+ arrive Jk ∀Jn ∈Q:max(Jn) CP CP Remaining Time First (SRTF) and Longest Remaining Time First (LRTF) [25], [22] bid for tasks using their upward rank, with the smallest and largest bids being given priority, Figure2. ValueCurveshowingProjectedValueRemaining respectively. The Projected Schedule Length Ratio (P-SLR) policy bids Algorithm 4 Algorithm to compute Projected Value Remain- the P-SLR value, with the highest value being highest priority ing [3]. This is so that the tasks that are most late relative to their PVR(cid:0)Ti, τ (cid:1): current executiontimearegiventhehighestpriority,whichisintended to ensure that all jobs will have a waiting time proportional Jk = Ti to the length of their critical path, a desirable attribute for parent_job fairnessandresponsiveness[19].TheP-SLRasdefinedabove D = Jk final Ci is starvation-free as long as overloads are transient (overall (cid:0)TDif+inalτ (cid:1)−Jk loadisbelow100%).However,toensureP-SLRisstarvation- P_SLR = R current arrive free under extremely high load, a further term is added to ˆ JCkP the equation. The equation as used for P-SLR bidding in the PVR = DfinalValue(cid:0)Jk,s(cid:1) ds simulation is shown in Algorithm 3. One discrete time unit is P_SLR also added to the P-SLR calculation in order to preferentially return PVR prioritise smaller tasks that arrive at the same instant as larger ones. Several policies based on value are considered. Projected Value (PV) uses the estimated P-SLR to determine the parent area under the value curve remaining between the P-SLR at job’s value if it were to finish after the task’s upward rank. the current time and the final deadline Dfinal of the job. This PV then uses the highest bids as the most preferable. This is illustrated graphically in Figure 2. is similar to previous market-based policies where work has The tasks with the smallest value remaining are run first. fixed values rather than value curves Ti ∈ Jk : PV (cid:0)Ti(cid:1) = Urgent tasks would have a steeply sloping value curve, which Value(cid:0)Jk, PSLR(cid:0)Ti(cid:1)(cid:1). would give only a small area under the curve. Tasks about The issue with PV is that tasks that promise a large to time out would also have only a small area remaining. amount a value may also take a large amount of resource. Prioritising these tasks would reduce starvation and loss of Instead, the Projected Value Density (PVD) policy [15] looks value. at how profitable running each task may be, by comparing The value curves were designed using linear interpolation the value gained with the resource required to achieve this between the points so that the definite integral of this curve value. The resource required, Ti , is the sum of the would be quickly and exactly calculable using the trapezoidal succ_sum execution times, Ti , multiplied by the cores they require, method [2]. However, the policy method generalises to any exec Ti , of all the tasks that depend on the considered task valuecurveswherevaluecanonlydecreaseovertime,aslong ∀cTorjes∈ Ti : Ti = (cid:0)Ti ×Ti (cid:1)+(cid:80)Tj . as a final deadline is present. The algorithm to calculate PVR succ succ_sum exec cores succ_sum Having defined the resource required, we can define the value is given in Algorithm 4. density as the value divided by the resource required Ti ∈ Jk : PVD(cid:0)Ti(cid:1) = Value(cid:0)Jk, PSLR(cid:0)Ti(cid:1)(cid:1)÷Ti . succ_sum V. EXPERIMENTALMETHOD Higher density is prioritised as it will be most profitable. Aldarmi and Burns [1] suggested that squaring the value Inordertobeabletocomparedifferentschedules,appropri- density gives a better separation between tasks that will be ate metrics are required. For this work, the pertinent metric is profitable and those that should be starved to avoid wasting that of the proportion of maximum value achieved. The max- resources.ThisistermedtheProjectedValueDensitySQuared imumvalueofaworkloadisthesumofthemaximumvalueof (PVDSQ) policy, PVDSQ(cid:0)Ti(cid:1)=(cid:0)PVD(cid:0)Ti(cid:1)(cid:1)2. all possible jobs, and is the value that would be achievable if The Projected Value Remaining (PVR) policy [5] is de- the number of processors available was unbounded, there was signed to capture the relative urgency of a task at a given no contention between work and no network delays. Because moment. The other policies may project tasks to be valuable different workloads may have different maximum values, it is or not, but are unable to give an indication of whether that necessarytonormalisethesevaluesbetweenworkloads.Inthis value is likely to decrease with waiting much longer. PVR work,thevalueachievedunderagivensetofcircumstancesis uses the P-SLR to determine the earliest possible time a task divided by the maximum possible value to give a normalised could finish if it were run immediately. The PVR is then the figure. necessarytonormalisethesevaluesbetweenworkloads.Inthis work, the value achieved under a given set of circumstances is dinveicdeesds abryy ttoh en omrmaxailmisue mth epsoes vsiablulee sv baleutwe etoen g wivoer kal onaodrsm. Ianli stheids 5 figwuonrreek.c,e tshsea rvya tlou en oarcmhiaelviseed t huensdee vr aal ugeisv ebnet wseete onf wcoirrckulomasdtsa.n Icne sth iiss dUivwsideorerUskd , sa bterhryese tlavhirkaeele ulmlyeik aaetxoclyih mniteoouvtme ndoo nptuloonysnd scleiyabr rlaceea grvaeibavlaeoubnueo t s utetotht teoghifeir v icrweir wocaur oknmr,ko s,rbtmabunuta ctlaeialsssle soidos cafirgedu icwrvaeirh.deeetdwh ehbrey t ihtteh rwe iamtswa cxaoismmcupomlme tppelodest esoidbr loenr ovnta.o ltuT.ehT ethoree rgfeoifvroeer eath tneho enrmnuumamlibsbeeerdr of jfioUogbsfuser rjesos.t baasrrvese tladirk vieenldy a it nog ianvoegtni vo esnnelyt s eoctfa rocefi raccbiurocmuutsm ttashnteacinrec swe swowriklil,l lbaalusltso oa lbsbeoe excaamreei xUnwaesmhdeer.i sntAh eaed rjr.eo A iblti kijwsoe balcysoi sntcocso oimndnoesptri ldeeodetnre letdyod ochtoara rvhenea o avtsbe.t oasTrutvaht reetvdrhee ed(fiaor(n rawedn odtirhsik esr, ernbemuumotm ovavbeleseddor froofm cjaf orrtobeh msew sqhtthuaeerethvuqeeeurd) e iutoi nenw) caaeo s ng iccitev oheminatps hl seapetstae sdpos afeo sdrsc einirdtcosuti .tmfi sTnsfihatnael anredlcfeedoaser deawl ditlnihilnele e aDnlDusmofi bnbaeelr ase xdoaefmafi sjinondebeedsdfi .nb sAeytad rijvtboseyb d vi iatsis nlcu voeaan lcusguieidvrevceruneer. dvse et.to ohfa vceir cstuamrvsetadn (caensd w isil lr eamlsfooivn aeblde frToehmxea mTtbhhiiende edqdbiun.i edgAud eipjn)oog blo ipincsoic ecleiso c initaes rsiheda aesrer eevpdaea lvtusoasa lehtudeaad vtie etdis ns t fiiansnrivamseli dmud l(ueaalatnaidotdilno iin,ns e ,ru eusDmisnifongivgn eaalda syans tfhdrsoeeymtfinicnt h tehewdte i ocbqrykuw eliootusrae kd)vl oaoarlnuudcene nr cuiiunnt rngvhi neaos.gv peoarv sesare das yitnssyt hnfietnhtaieclt i cdpelpaaldtafltoifnoremr mD. .fTiThnhaeel aTssh imdee ufiblnaidte iddoi nnbsgy tpiatkose lvicapi leluasec eacruewr v ietehv .ianluaateddi scinre tsei- mtimuleatieonnv,i ruosnimn gen at, simulations take place within a discrete-time environment, im- syntimhTephtlieec m bwiednodtreikndlg o uapsdoi n lrigcuinetnhs ienagrS e i moevvPeayrl uaal it besrday rniynth [e s2tiim0c] uplianltaitot fhnoe,r muPs.y intThgho ena plseimms ylueannlnatthgteieudotaingcus e s.wti anTokghreke tlphoplaealdca teSf roiwumrnmiPtn hyicinnogl n iabso ird vsaiterssryc oraeif ntes 4-y0tthni0mte0heePc t eoiycnrt ehvspoirlnatootnftlaomalrn,emgno .ut r,ga Tiagmhnee-. - The ipseladtfionrtmo clcuosntesrisstsofo1f004000c0orecsoreeasch.toTtahlr,eeorcgluanstiesresdarientoof plesmimeun ltaetd io nuss itna gk e tphlea cSei mwiPt hyi nl iab rda irsyc reinte -tthi me eP e ynthv oirno nlmanegnut,a igme .- clustearrcshoitfec1t0u0re0Kcoinreds1,eaacnhd.oTnhereoefcKluinstde2r.sTarheeocfluasrtcehrsiteacreturaell KTinhpdelc1 eo,mp nlnaeaenntfctdoet edrdmo nu desici rnoeogcnf ts ltiyhsKtetsio n Sdotih2mfe . P4cTy0e h0nlet0irb arlccalorruyorse utsitene rr st,ot hwtaaehr le,eP ryeoatrlhtglho aencn oiaslnuaecnndtegi ocuintanegtdioes . dicrleuTcsrthtuleeynr .stp oNol atfeht tf1weo0 rocm0re0kn tdccrooealnlra esrysioss utesbta eecroth,wf .w eT4ehn0he0rrtee0he et hccceollu uraessutstee crrttssioo tainasrl e,ia sco ocrfruo guanarn.n ctNiehsdieettdefwco troiunrbrtkeyo deKlaicnyluduss1 sit,nbe greastna wodCef eo1onm0n 0emt0 hu oecnf oi crcKaeltsuii onsentdae2crtho.s . CTTishoh mera epcecuc lctuoalsuutitnsoettrneesrd rsa atarfireooe r o aoflfbl 0 ya.r c2co.uhnsintienecgct tuerade Figure3. Valueagainstloadfordifferentbiddingpolicies CddoeimrKdleaismciryun etsufldTcfi ynt1ec lbint,yic oee as tatntoywtnhtin odteesthn ehcce neoae ttlc nonieecet tnh rCwwateoroalo af smrr lcok Krlppluuooruitsuena ettstdadreee,ts2rr niws,.ow t w,nheT ie hesrhraer eaeceruath eitcs ohc tecwh ledouoe ouasff r ato unke0urctlrec.otse2idt avoi. doaanlnrf uweoi asi rsat ar isroulbulnmn yn..c .a T NodNuo neeseneittunwnewpgcsoout errorkakdef FFiigguurree33.. VVaalluueeaaggaaiinnssttloloaaddfoforrddififfefreernenttbibdiddidnigngpoploicliiceises CTodeme1nl0mas,y0yus0n n 0tihbcjeeaotttbwiicos enwwe ntioot rh ktCh5loeo-2 am0dcpsltuuawssttak eetsrriesop neui rssr e ajodtaibcof.co Tooruhfe niv0stae.g2 ldiu.v aeftsoior a np.bpyTro oxu eismninsaug te rleya Figure3. Valueagainstloadfordifferentbiddingpolicies suffiCTc1oei0enm0n sm,t0yu0snc0nthaicleteaatstiickwo swna siotnorpk erClaeoocsamhednspwt u,woteaerkatriecloo hnua sdwre.adotTi rofhko eloro feea vx0dae.2lcwu.uaatitsoionmn.ta iTdmoee eudnpissutorrife- 10su,0ffi0b0cuTiteejinoon nbts sysfnocwtrahiljteeoht biwc5s -awa2sno0 drpktratleaossskaekdsnsstp ,fw oeerlelarojceowh bue .sdweTdoah rfilkooslrgog -eaiuvvdnae ilwsfuoaaartsmpi opmnrdo.ia sxTdtioremi beuaunpttsei uolorynef. 10100s,,00u80f00fi00%c ijteooanbfstkst h sswec aiitntlahe s ke5wsa-ac2insh0 tpthwareesoskwreskon lprto,ke alerod aa.jc odhTbw .h weTero hereiksKxl eoigncaiudvd1te i,swo wnaas pit tphimrm2oa0exd% iemd uibaspettei rnlioy-gf bu1t0i1o00on,0,f 00fK0o00ri n tjjdaoo2sbbk.sss T wahininetd hd e te5aap-cs2ehk0n s dw teafonoskcrllkisoel wsopaeebdrde .jt owaTb e.hle oeTng h-ejiuoxsbn egsicfiuvofoterilmsol ona w pdtpieisdrmtoraxeibn imudetiaixsottpernoli.y-- 80b%u1ti 0noo0enfn, 0ttfhi0oae0lr tdjtaoiassbsktkrssis b a iunnitn dit o henteaa iscwnkhso n wrofkodolelrolkoadlwdeog aewrdde.e e ar.Te Tl hoKhege i-nseuedxne1sicy,f uonwtrtihmiotehn t di c2tiis0wmt%roeibr bkudletioisioantrdngis.- of8 0Kb%uiwn teiodorf2en .t hcfTeoreh rta eajt osedkdbess pu iasennin ndtdhg eteant hswckeiosem rsfk oelboltehlaotodwwd sweedeep nrua e bj lolKoibsgihsn- eudfdno1i,lfb lowyorwmiBteh udd r2 iks0aitn%mri bs ebhuxeetpirioonneg-t. neonf 8tiK0aal%li. nd[ d4oi2s]f.t. rtVhiTbaehul uettai esodkcneus p riievnnne ndsthoewend ecewri eeodsraek lgbslrooeeategwd.e enwTeeehnrrae etsje oeKdb sissny ydfnno1tthl,h leewottwiiiccteha dw l2l yo0a,r%nak n lebdoxeaphidnoasdg- wneeronefD t icaKirlne iindatdtiiesa2tdlr. iTbvuauhsltieuin oegdns e tprihnaeen nn ddmooedmneectl hyideoessd gesbrl eeepctewut.e beTdelhinbse hesjteoewd bse syeb nnfyot hl2Bleotuawinrcekd dwim 4oa,snrkhD leeofxria pndeoatsl- alw. [en4reve]na. ltcVuiraaeelsl audtbeeis edtctr wuiubresvueietnnisog n6 wt hieanern e nd moa1ldes0etoh, dogaedengsndr eeper5ua.- bt1Tel0idhs erhssaeyendn ds toyhbmneytt ,hiBcenatuoilrcnlky -w,ii mnaocnsrrkhdelae ohsrai andedgst Dailn.w i[pt4eior]aei.ln V tcsvaraeliunlauetebe cdseu twurrvaseneiensdng o.w mtehrleye masleesloteh cogtdeensd e prbuaetbetlwdis ehseyendn th2bey ta iBncadul rlk4y,i, m aDnshdfei hnr aaeldt vpaovDliaunivaDleunt laTtsi.siiel oth un[siiIn4iebe nnatra]seb lie.l bt eafsVwblvoettiw oeamtarewvtelleewuuua,tneehelleeianue e tsectn6e inwuosn6. r r anua av6rns,manae dndnsaabr o d densewms 1aodrue1l0m lmro0y1,ea lf,0 ey l aasld, caon lesosnacdlteorehdna le ctaed g5-ittc5om e-e t5n1-tndeih1-s0ned e10ru b 0a obtrvete rafeateasrwntldanwuvd ntedesahoedeyoleemunoon minefr mt, h2 ,j2 e,eoan xn trabon ieaeoncsoncnnadn-udwu-li -tl inni4iayn4onacs,,c, n vcr arpeDraDeneawriadloafsfaso ispiibhinniunonnlaaalgergldgdl-. pIonpinoctoissnin mtsisnu u im lnbae et b.tiwoeTtnweh,ea enter.einsa.,lthaaltlot hceaitrio vnaslu eofdevnas iltuye atarVem axunisav idaeilnatbicleal.. TheIrneIn f Ionspr iee msr,iiumoitldua swtliaooatfinso,on av,sr eserrua leomla aleda d,lalholtlochowaactateitovtiheonrnes, sjv ooaobfl fsu vemvaalaoulyfue eh jo aabvarrseee v wueuanrnysaavvpd aairifoilflaepabrboellrene-.t. tciooTt innohTtsaneiuvtolhrahmaeneletl fraoumeoetleo. fr toe t hTdho,rta ehehe vin,te at ihs n tniiwe tnugt i iuswamenv,sms uabe tsmbarbhe yseeraabscrtsdeua os ritumouffh fsfmoeeee cfirdecor et do hcrntve reohttea-rahrvm-leteauma- l tiemlta nuih ttnueidhienvut eeceuetv ne ustvausesraliv sruttlg hetuyehetsee hne ia osericotpfriy fr eeV. jecxojemxoiebax fiebxcseecs ucdu iwutswtiwt iaoia oiosnidsnl n lep p wnlwrwretoooiaopocpuduuoaollltldrrdo.d-- tIvhnaIvcenloapum IvclneepunoatBs r eh elnhuidpuure osamLiedereudovknro eiemsdiidinsanonm.seti desodegt Tnsi.iofrs tehs-ch iTfviaoseeoa ate rhrosvinftrber a veiyosbeeivtrebs t vcealbr,iedoeacl slaeiotra,aulfhc vlt.adufsotiaaahemde,sa[urtrae ,4 idhse etett ]eh,hs ohntd. t hoewhethtTo ew hioferevr fohewie evvarr evlva jeevlaoavuelvratatulbh,areeilru,vuesle rrj ue,,cio eej v ceou sbjdaa ucoubarscdleumrbvrscenvgr mseroenvmeas esrmeistasn dteaiws syyctiassy pyn yosyp he agpa.rh eacatkrheca tevilcta VvifiooeVfiviemaafieemea ldvdtea svxdhevxd o e ew bre iwriyswyraysi ymil d iildl ilddalj eddliu dlie tflieefslhfjefnfenutaefoaeetaetdsridddirdrctec eie antnantnttiolotlnogot.t. FFFFiiiigggguuuurrrreeee4444.... VVVVaaaalllluuuueeeeaaaaggggaaaaiiiinnnnssssttttllolloooaaaaddddffooffoorrrrddddiiffiiffffeeffrreeeerrnneetntntbtbiibbddididddiidndnigignngpgpooplplioioccliliieicecsisiee(s(DsD(e(eDtDtaaeielit)lta)aili)l) thLetohmgaei dmvh e achpvaaeinnva igknbs gved e vurveryair nyrdgi eidfwdfif eofrfreeokrnrein tn gttrh ehreleoa lutasirtavsimvea eenu udrgwrqgeouenirncekcytlye.o.rapde rbioyd saodvjuersntiinghgt the LianonLtaedodraa- datcr tarhcnieav nawb le eb eteivk maevrneaidser .ideoT dfhf oifsjroo erbt nhstse,hu era secasscmatomheraed t wimnwogaor nkrytkloolc oayatdchd le eb bsymyo feaatdodhvjjoueudsrslt toiininangdg Btuhretkh aieimnn dtsienhcrtea-etarrc -rhareiirtvnr iagavl-la u. ltp i[mt4ai]mre.es e Tpsor hefoes f ej naojrtbo,rsbiav,s am, al coarccraecotorecdrhsdi anialnglreg en t gotaoi ln stgthohe se ca edmmnjueaetrsthithoeooddfdo triionna giBvueB rspkuceirhmkaekisdmshu sedlheruer rreit thne agtan lwa. alo.[ 4cr[ko]4.ni ]ns.T gtaTh nhehto eaua rrrarrsrii vrvaiavanllad lr raqarteuatetieoses ft eawarr reope re akralilsaosonod d saa doodjnvjuueessrtttneheiddag t httiotos angdivg aeimvt peoteh rpaeeek rawsek pedsre uedkrsuieenrnnigntda g.wt i Tvwoehrokiorsikf neirgnne gash ulohrsuoeyrusssr t tseah mnaandst d. mq Uquasuinieineytget ecrtr yhp pcieselrermisioo edodtshfs o ooodvvv,eeelrrronnlaoiidggahhdistt varied between 70% and 140% of saturation, the state where anadna dcn aadtt c athth ietnh gwe- ewuepek eaekrneedn .pd Tr. ehTsihesni set ,ne sanu smrueroser ste ht hacath tam mllaeannnygy ic ncyygcc lsleecsse onofaf rooivove efrrolloora aadd the system must operate at full capacity to service the work scahneaddn cudal ectcra httcihnhaignn-g ua-pu cpao raenr sept rapenrsete sanertn,r ti,av aam lm oroaretree c chohaf alwlleleonngrgkini naggn sdsc ceoennnaaerr iitooh affoto rri saa arriving. Load above 100% represents overload, where not all msocrhsecet hhdreeeupdlwerueorl esrtekrh ntachtnaaan tniavb aeec oorcnuofsn nrt.seaWtanaltni tstah yrasrtrhitrveeiavmdla salr .ia rlUyatetsea io nnofdg fw w wthoeoiersrkk k lmy aanecntdydh c ooloednns,ee lo otfthhaladaott a iidisss, vamriomertdeor a rbrneees priteewrpneersteeeosnnve tena7rttl0aiov%taievd eosa fnwo rdfie l rla1elba4 esl0 ysp%syrtes etsomeefmn sts.s ae.U tvUuserisnanintbgige ot lnhtoh,iw sist hm1 me0e 0ets%ththaoottddeo, ,t alwlolohalaodedar ideiss. thvea vrsiayerdsiet edbm ebt wemtewueesnet n7o 0p7%0er% aat nead na d1t 41f0u4%0ll% co aofp fsa ascatiuttyurar attiotoi onsn,e ,r tvhthiece ess ttatahtteee wwwhhoeerrrkee artrhievth insey gss.y teLsmtoeam dm muabsuto sVvot epIo .ep1reR0ar0tEae%tS eUa tLar etTf puSfrlueAll slNc eacDnaptDpsa acIociStviCytey Ur tlSotooS a IsdOsee,rN rvwviichceee r tethh ene o wwt ooarrlklk thaer rawirvroiinrvkgin .c gLa. noL abodea dar buaonbv.o eWv e1i 0t1h00 %0th% er edrpeaprielrysee saennntsdt s o wovveeeerlrkolloayad dc, ,y wcwlhheeser reoe f nn loootta adall,ll trtahnetsh iwee nowTtrh okoer vckeea xcrnlpa onbear ebdi mersu ewrnnu.itn lsW.l wWbietehi rtpe htrh seteehst eed undaptia leiyslvuy eac nanhn dbtd hew awloeteewtehk kel1ylr0ye c 0cwy%ycicl lllteeoasst l aowolff a l lyoloosaaadbdd.e,, tratnrtasrniaesnniseti neontv toevorelvorelarodlaosda wsd swi,llis lblo eb teph rapetrsenesonetnt tea vellveenwn ob brekeloloiwsw a1 1b00l0e0%%to ttoortutaanll. lloToaahddis.. is why the proportion of maximum value is below 1.0 even at 70% loVadI..ARsElSoUadLTiSs AinNcrDe aDseIdS,CtUheSSpIrOoNportion of value de creases foVrVI.aI l.lRbREiSdE UdSiULnTLg ST pSAo ANliNcDiDe Ds D.ISTISChCU isUSSiSsSIIObO NoNund to hap pen trtarTnatTsnhrbmiaseheTenieonecesh rtnaixee eeutpxo nsetepvothex reevepiorretrmeivhlermoreeleioawrmneldamontidesslatoln,ssd wr,t bs essweoe,s woerw stert hoeohetar shr aettkesath et istast nteut hnt ounp eontpuor toesp t astu a ldusicllasuo clhl wnchltw het oowht. ohrtaodThrkatkroa thk ttieht siihtsin ehcs ear eharebaareabelb lwlegl wleew eii vntil tiollegtollo ln ea ar alrulrwitulwsuinwnman.at.a y.oe y yTsT,sTsfih h bthbnbihieisedsees FFFFiiiigggguuuurrrreeee5555.... SSSSttttaaaarrrrvvvvaaaattttiiiioooonnnnaaaaggggaaaaiiniinnnssssttttlloollooaaaaddddffooffororrrddididffififfefeffrreeeerrnneettnnbtbtiibdbdididddiindndgiginnpgpgooplplioicocliliieiecscsiieess policy, but FIFO is still a long way behind the other policies under overload. This is natural because it does not 6consider policy, but FIFO is still a long way behind the other policies the size or the relative urgency of jobs. under overload. This is natural because it does not consider thatmaAntylsomaadllelrevoenlesswbeillloswtarovev.eTrlhoiasda,fftehcetsPthVetoptoallivcyalupeerforms the size or the relative urgency of jobs. achiseuvrapbrlies,inangdlyitpaolosorlyle,aedvsetno twheormseostthtaansktshsetarravnindgomacrpoosslicy. PV At load levels below overload, the PV policy performs thegspoeecstrufomrotfheloaladr,gwesitthaonndlymLRosTtFvsatlaurvaibnlgemtaosrkes. Afitrsvte,rymeaning surprisingly poorly, even worse than the random policy. PV highthlaetvemlsanoyf slomaadl,lePrVondeoseswinloltstfaarlvlea.sTfhaisst aafsfescotmsethoethtoetral value goes for the largest and most valuable tasks first, meaning poliacciehsi,evthaobuleg,hanitdisitsatlisllobleeaatdesntobythtehemfloasvtotausrsksosftaVravliuneg across Dentshiatyt,mSaRnTyFsamnadllPeVr Ron.es will starve. This affects the total value the spectrum of load, with only LRTF starving more. At very Pa-SchLiReviasbldee,saignndedittaolseonsleuaredsthtoatththeemSoLsRt toafskjsobsstaarvcrionsgsacross high levels of load, PV does not fall as fast as some other thetehxeecsupteiocntrutimmeofspleocatdru,mwiitsheoqnulayl L(fRaiTrnFessstawrvitihngremspoercet.toAt very policies, though it is still beaten by the flavours of Value resphoingshivelenveeslss) [o3f].loUandd,ePrVhigdhoelesvenlostoffallloaads, hfaoswteavser,sothmise other Density, SRTF and PVR. canpmoeliacnietsh,atthmoaungyhjoibtsismasytilhlavbeeathteenirbfiynalthdeeafldlaivnoeubresfoorfe Value P-SLR is designed to ensure that the SLR of jobs across theDSLenRsitthya,tSiRsTcuFrraenndtlyPVbeRin.g achieved, meaning that many the execution time spectrum is equal (fairness with respect to will stPar-vSeLR(Fiigsurdees5i)g.nPe-dSLtoReinssuunreabtlheattothtaekeSLinRtooafccjooubnstacross responsiveness) [3]. Under high levels of load, however, this thetfhaectetxheactujtoibosnmtiamyehsapveecvtraurmyinigsleeqvuealslo(ffauirrngeesnscyw.ith respect to can mean that many jobs may have their final deadline before Trheesptownosivfleanveosus)rs[3o]f. Uvnaldueer hdiegnhsitlyeveblisddoifngloa(dP,VhDowaenvder, this PVDcthaSenQSm)LeaRarenthtchalaetatirmslyacnubyrertejtoenrbtlsythmabaneyinshgimavapeclhytiheuevsierindfig,nmavlealdauneeai-ndbglaisntehedabtemfoarney Figure6. Starvationagainstloadfordifferentbiddingpolicies(Detail) biddtwhineigll.SsLLtoaRcrvkteeha[(t1F5iisg]ucsruheorrwe5ne).dtlyPth-bSaetLifnRogriauscnhuipineraovbceledes,stomorestaacnkhieendgiunlttihnoagtamccaonuynt FFiigguurree66.. SSttaarrvvaattiioonnaaggaaininssttloloaaddfofrordidffifefreernetnbtidbdidindginpgopliocileicsie(Dse(Dtaielt)ail) of wthoerkflaocatdtshathtajtobasremaalysohasvcehevdaurlyaibnleg luesvienlgs oEfDuFr,gevnalcuye. will starve (Figure 5). P-SLR is unable to take into account densityThbeasetdwoschfledavuoliunrgswoafs ovpatliumeal.deNnastiutyrallbyi,dwdionrgklo(aPdVsD and the fact that jobs may have varying levels of urgency. thatPoVvDerSloQad) tahreeircplleaatfrolyrmbeartteernotthascnhesdiumlapblyle uussiinngg EvDalFu,e-based The two flavours of value density bidding (PVD and so tbhiedsdeinsgc.enLaoricoksea[r1e5]oushtsoidweedthtohsaetpfororvuedniporpotcimesaslo.rTshcihseduling PVDSQ) are clearly better than simply using value-based evaluation shows that in the overload scenarios considered, of workloads that are also schedulable using EDF, value bidding. Locke [15] showed that for uniprocessor scheduling other policies can do better than PVD. odfenwsiotyrkbloaasdesd tshcahtedaurelinaglswoasschoepdtiumlaabl.leNuastuinrgallyE,DwFo,rkvaloluaeds Interestingly, PVDSQ gives higher value than PVD (Figure dtheantsiotyvebrlaosaedd tshcehierdpullaintfgorwmasaroeptnimotals.chNeadtuulraablllye, uwsoinrkgloEaDdsF, 3). This is because PVDSQ starves many fewer tasks than tshoatthoevseerlosacdentahreiiorspalartefoormutsaidree ntohtossechperdouvlaebdleoputsiimngal.EDTFh,is PVD (Figure 5). By squaring the value density, jobs that are seovaltuhaetsieonscsehnoawrisosthaarteinoutthsiedeovtehroloseadprsocveendarioopsticmoanls.idTehreisd, not worth running are more cleanly starved, leaving the rest to beoevthaaleburlaeptiotoolnicruisenhsotwcoasncotdhmoaptlbeietnitotenthr.etPhVoavDneSrPlQoVaDadl.ssocestnaarrvieossacofenwsidered, moroethoIenfrtetphroeelsiltcainireggselysct,aPnjoVbdsDo,SbwQehttigechrivteghsiavnheisgPhVaeDlro.vtamluoerethsapnacPeVfDor(Figure othe3r)j.IonbTtsehrtieossrtiuisnng.blIyen,cteaPruVessDetinSPgQVlyDg,iPSvVeQsDhSstiQagrhavenerdsvSamRluaTenFytghifavenewPaelVrmDtoass(tkFsiguthraen indi3Pst)Vi.nDgTuhi(isFshiagibsulrebeel5ecva).eulsBseyoPfsVqvuDaalSuriQengascttrahoresvsevsathlmueealnodyaednfsesiwtpyee,crjtortubamssk.tshathtaanre HowPneVovtDerw,(oFSriRtghTuFrruens5tna)i.rnvBgesyarmseqaumnayroirnfeegwctelhereantvalasylkussetaodrvveenerdsail,tlyl,ebaejovcbainusgstehthatearreest SRTntFootpbrweiooarribtthilseersutonsmnriuanlngl ttaaorsekcsomwmoiprthelelctiiltoetlnae.ntlPiymVesDtarServmQeadia,nlislneoga.vsitnargvethsearefsetw EtmDoFobraeettaoabifnlesthttehoelrasurengceotsnotd-cjhooibgmsh,pelswetthiloeivcneh.lPgoVfivDveasSluQae albolestloomwsot1arr1ev0e%sspaacefewfor loadmot(ohFreiegrujoroefbst4h)te.oHrlauornwg.eeIvsntetrej,oriebtssst,ipnwegrhlfyoi,crmhPVagnDicveSesQfaalalsnldosttSeemRpTolyrFeagfsitpvearecaelmfoorst thato.intThdheisirstijnoisgbsubietsochaaruubsnlee.oInlnetcveereeltsshteionefgalryvl,iaePlsuVteDdeaSacQdroliasnnsedtthhSaeRtTilsoFabgdeivinsegpaelcmtrousmt. runiHgnedotwisstienivnteogru,thiseShRpaabTslFet,elsvetevareryvlsejosobfmstvaaarntlysuemfeiaswscirenorgsstitassthkdeseadloolvianederaaslnlpdebcetrcuamus.e FFigiguurree77.. RReessppoonnssiivveenneessss((SSLLRR))aaccrorossssthtehespsepcetrcutmrumofojofbjoebxeecxueticountitoimnetsimeslatenessstartscascading.Above110%load,thevalueattained aatFt1ig12u20r0%e%7ll.ooaaRddesponsiveness(SLR)acrossthespectrumofjobexecutiontimesby EHSDRoFwTFefavlpelsrr,iroaSrpiRtiidTsleyFsbssemthairanvldlestthaesmkaaslntewyrnitfahetiwvlieettrlpeotlatiiscmkieses roeevvmaelruaaailntleindb.ge.cause SRETDFFpraiottraiitnissesthsemsaelclotnasdk-hsiwghitehstliltetlveeltiomfevraelmueaibneinlogw. 110% at120%load After 120% load, the number of tasks starved by EDF also loaEdD(FFiagtutariens4)t.heHsoewcoevnedr-,hiigtshepsetrfleovrmelaonfcevaflaulelsbsetleoewpl1y1a0f%ter thepolicythatsufferstheleastlossofvaluegiventheincrease increases rapidly (Figure 6). is why the proportion of maximum value is below 1.0 even ltohaadt. (TFhigisuries 4b)e.cHauosweeovnecr,eittshepeerafrolrimesatndceeadfalilnlsesttheaetpliys abfetienrg in load, with the results shown in Figure 3. Below saturation and up to 110% load, PVR attains the aits7w0%hy ltohaedp.rAopsorlotiaodn iosf imncarxeiamseudm, tvhaeluepriospobretlioown 1o.f0veavleune trhuant.gTethsisinitsobtheecapuasset,oenvceerythjoebesatraliretsstmdiesasdinligneitsthdaetaidslibneeinangd LRTF is a policy commonly used in static scheduling as highest value of all the policies evaluated. This is due to daetcr7e0a%seslofoadr.aAllsbliodaddingispinoclirceiaesse.dT, hthiseipsrobpoourntidontoofhavpapluene rlautnengeestssisntatortsthceapscaastd,inevge.rAybjoobvest1a1rt0s%mliossaidn,gthitesvdaelaudeliantetaainnded it is good at bin-packing, and hence at reducing workload its ability to take into account the urgency of tasks. Small, bdeeccaruesaesetshefomr oarlel bwidodrkingtheproelicisiest.oTdhoisinisaboguivnedntotimhea,pptehne lbayteEneDsFssftaalrltssrcaapsicdaldyinbge.hAinbdotvhee1a1l0te%rnlaotiavde,tphoelivcaieluseeavtatlauinateedd. makespan[22].However,itisclearthatitisapoorchoicefor urgent tasks are able to run, which ensures their value is maboedrcyeanutahsmeeircethsewchimelldoubrleeintgwhoasctrekinsathrnieoor,tebdeioscnateuo.seTdiohtewincilhlaatellgneidnvgetoneriutsinmttoeh,efitnhdecaptbAuyrfetEderDb1Fe2ffo0ar%lelstlrhoaeapydid,sltytahrbeveenh.uinPmdVbRtehreaoacftlutetaralnlsyaktsihvasestaprtovhleeicdihebisgyheevEsatDluFateadls.o thmmeoopsrtoerlietchcyeenrtethlyawtaislrulrifvbfeeedrsthjotahbtesilsfieranssot.ttTlodhosissneois.fTbveahcleuauecshgeailvtlheeenngjtoehbesisimntcoorsetfiansderespAionnfctsreievraes1ne2ess0s%ra(ploliowdaleyds,t(tFShiLegRun)rueomf6b)a.ellrtohfe tpaoslkicsiesstaervvaelduabteydEfoDrF also inrtehcleoenapdtol,ylicwayrirtthihvaetthdeswurfieflelsruhslattsvheeshllooetawssntolfionwssoForikgfuvlreaefltu3et.ogdivoe,nanthdesioncbreeasesmailnlecBrrejeoalbsoesws(Frsaiagptuiudrrelayt7i)o(.FnIitgaudnrodees6ut)ph.istoby1o1n0l%y leltotiandg,tPheVlRargaetsttains the pinrLiolRoriTatidFs,edwisiotavheprthotehliocrseyesuctlhotsamtsmahrooewnslnyooiunnsFteodigfiuinnreissh3t.a.tIincasnchoevdeurlloinadg asjobshihgBahveeelsottwheviasraluStueLrRaotifoinnaclrlaeantsdhee.uHppoowtloicevi1ee1sr,0%ethvealloulaaardtge,edsP.tVjToRhbissacttaiasnindsuetheto itsitiusLaRtgiToonFo,djiosabtasbwpionill-lipcbayeckcsitonamrgt,emdaoncnodlynthiunesuneocduesilnaytbsrtueatdtinucecvisnecrghebdweuoalribnklgeloaadsoftehintisgahlasebositlbitevyatlhtuooesetaotkfheaatlilnarttoehemacopcsootluitconilteesrtahneetvautolrugwaetnaeicdtyi.ngTofhtiimstaesi:kssif.duSemtaoll, mtiotakfiiesnsipsghao.noIdt[s2av1ta]l.ubHeinoa-wcphaeicvekveiern,dgiit,niasthncidsledahyrenntahcmaeticaittciarsseeadiupscoeionvgrencwhwoooirrckseelofaodra joiubtsrgtaeaknbeitslimttyaoskntosthstaartkeoerauibnnlt,eoitatmoccaoryuunbn,et awthbheleicuthorgteeannkcseuyareofsfewtthamsekiorsr.evSamluaell,is atmhdaaynkneathsmpeaibcnass[c2ehl1ien].deuHrlaoinnwdgeovsmceerp,noiatlriiicsoy,.cbleeacratuhsaetiittwisilalpteonodr ctohoriucnetfhoerdaysucaragpnetdunurtesdtearssbkwesfiloalrrneeottahmbeliyendst.otTahrrviusen.m, PewaVnhRsicthhaactettnuhsaeullrvyeasluhetahsceuitrrhveevsahluieghiesst maodTsythnreeacmFeIinFctOlsychpaeordrliiuvclyeidnigsjosabcesfnfiaairrrsioti.,mTbpherciosavueissmebeinettcwaouinlslettehthneedrjtaoonbdrsoumnmtohsetarecrlieakspeptluoyrnetsodivdebenecefroesasres(eltorhewelayetsivtsetSalyLrvRger.)adoPufVaalRllyl.athcteuaplolylichieassetvhaeluhaitgehdefsotr pmooliscty,rebcuetnFtlIyFOarriisvestdilljoablsofingrstw.aTyhbisehisinbdetchaeusoethtehrepjoolbicsiemsost Artesvpeorynshivigenhelsesve(llsowoefsltoSadL,RP)VoRf’sallletahdeipsoelricoideesdeavnadluaitted for recently arrived will have lots of work left to do, and so be smaller jobs (Figure 7). It does this by only letting the largest urencdeenrtloyvearrloriavde.dTwhiisllishanvaetulroatlsboefcawusoerkitledfotestondoot,coannsdidseor befallssmbeahllienrdjoSbRsT(FFiagnudreP7V)D. IStQdoaensdthisisebqyuaolnleldy lbeyttiPnVgDtheatlargest prioritised over those that are soon to finish. In an overload jobs have their SLR increase. However, the largest jobs can tphreiosriizteiseodr tohveerreltahtoivseeutrhgaetnacyreosfojoonbs.to finish. In an overloadthejhoibgshehsatvleevtehleoirf SloLaRd eivnaclrueaatseed.. HWohwenevtehre,rteheisltaorogemstucjohbs can situation, jobs will be started continuously but never be able often also be those that are most tolerant to waiting time: if sitAuattiloona,djolebvselwsilblebloewstoavrteerdloacdo,nttihneuoPuVslypboulitcynepveerrfobremsableworokfttoenruanl,soPVbRe ttehnodssetothkaeteapremmosotsjotbtsolreurnannitngtobywastiatirnvgingtime: if tofinish.Itsvalueachievedinthisdynamiccaseisevenworse a job takes months to run, it may be able to take a few more stuorfiprniissinhg.lIytspvoaolurley,aecvheienvewdorinseththisandytnhaemraicndcoamsepisoleivcye.nPwVorsethealarjgoebsttaokneess.mYoenttthhsetloarrguenst,jiotbmsacyanbaelsaoblbeettohetaokneesatfheawt more than the baseline random policy. daysanduserswillnotmind.Thismeansthatthevaluecurves goes for the largest and most valuable tasks first, meaning supply the most value. As can be seen from Figure 7, SRTF than the baseline random policy. daysanduserswillnotmind.Thismeansthatthevaluecurves The FIFO policy is a fair improvement on the random are likely to decrease relatively gradually. The FIFO policy is a fair improvement on the random are likely to decrease relatively gradually. 7 penalises the largest jobs a little less, meaning that it keeps [5] Andrew M. Burkimsher. Fair, responsive scheduling of engineering more value overall under extreme overload. Saying that, PVR workflowsoncomputinggrids,EngDThesis,UniversityofYork,2014. [6] Ken Chen and Paul Muhlethaler. A scheduling algorithm for tasks has the lowest number of starved jobs across the spectrum described by time value function. Real-Time Systems, 10(3):293–312, of load (Figure 6). PVR manages to ensure that only 5% of 1996. jobsareincompletebytheirfinaldeadline,evenat140%load. [7] Nicolas Dube and Marc Parizeau. Utility computing and market- basedscheduling:Shortcomingsforgridresourcessharingandthenext This low level of starvation is likely to be attractive to grid steps. In Proceedings of the 22nd International Symposium on High operatorsbecauseitwillkeepusersatisfactionhigh,asnouser Performance Computing Systems and Applications, 2008, HPCS 2008, wishes to have their job starve. pages59–68,June2008. [8] RonaldL.Graham.Boundsonmultiprocessingtiminganomalies.SIAM JournalonAppliedMathematics,17:416–429,1969. VII. CONCLUSION [9] Intel Corporation. Enhanced Intel SpeedStep technology for the Intel PentiumMprocessor-whitepaper,March2004. In this paper, a number of bidding policies for market- [10] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase. Balancing risk based scheduling in a distributed grid computing scenario and reward in a market-based task service. In Proceedings of the 13th IEEE International Symposium on High Performance Distributed wereexamined.TheProjectedValueRemaining(PVR)policy Computing,HPDC2004,pages160–169,Washington,DC,USA,2004. was shown to achieve the highest levels of value as long as IEEEComputerSociety. overload was not excessive. Even under extreme overload, the [11] JamesE.Kelley,Jr.Critical-pathplanningandscheduling:Mathematical basis. OperationsResearch,9(3):pp.296–320,1961. relatively low levels of starved jobs are likely to be more [12] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New acceptable to users than the slight improvement in overall ComputingInfrastructure.MorganKaufmannPublishers,SanFrancisco, value offered by the PVDSQ policy. PVR is also likely to be CA,USA,November1999. [13] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. preferabletoSRTFunderextremeoverload,becausemostjobs Huberman. Tycoon: An implementation of a distributed, market-based still have high responsiveness, and it is the largest jobs, for resourceallocationsystem.MultiagentandGridSystems,1(3):169–182, which responsiveness is usually less critical anyway because August2005. [14] Chen Lee, John Lehoczky, Dan Siewiorek, Ragunathan Rajkumar, and theirexecutiontimesaresolong,thatmustwaitlonger.PVR’s Jeff Hansen. A scalable solution to the multi-resource QoS problem. abilitytocaptureurgencyinitsbiddingmetriciswhatenables InProceedingsofthe20thIEEEReal-TimeSystemsSymposium(RTSS it to give these results. 1999), pages 315–326, Washington, DC, USA, 1999. IEEE Computer Society. Afurthernotableconclusionisthatthedifferencesbetween [15] Carey Douglass Locke. Best-effort decision-making for real-time theleadingpoliciesarereallyquitecloseintermsofthevalue scheduling. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, achieved, even when the number of jobs they starve is wildly USA,May1986. [16] Muthucumaru Maheswaran, Tracy D. Braun, and Howard Jay Siegel. different. This evaluation shows that different policies achieve Heterogeneous distributed computing. In Encyclopedia of Electrical similar levels of value using quite different behaviour. Some andElectronicsEngineering,pages679–690.JohnWiley,1999. policies run just the largest jobs and starve everything else [17] MarkS.MillerandK.EricDrexler. Marketsandcomputation:Agoric opensystems. InB.A.Huberman,editor,TheEcologyofComputation, (PV), others the smallest (SRTF), while others try to achieve pages133–176,Amsterdam,1988.North-HollandPublishingCompany. balance across the space of execution times (EDF, PVDSQ, [18] Florentina I. Popovici and John Wilkes. Profitable services in an PVR). uncertainworld. InProceedingsoftheACM/IEEESC2005Conference onSupercomputing,pages36–36,November2005. Thisworkconsidersthescenariowhereallworkisadmitted [19] Erik Saule, Doruk Bozdag˘, and Umit V. Catalyurek. A moldable butmaybeleftinthequeuetostarve.Thismaybelessuseful onlineschedulingalgorithmanditsapplicationtoparallelshortsequence to users than a system with an admission controller. Users mapping. InEitanFrachtenbergandUweSchwiegelshohn,editors,Job SchedulingStrategiesforParallelProcessing,volume6253ofLecture could then know up-front whether their jobs were accepted, NotesinComputerScience,pages93–109.SpringerBerlinHeidelberg, and find out sooner if their jobs were not going to be run. 2010. A natural direction for future work would be to see whether [20] TeamSimPy. Welcometosimpy,2015. [21] IvanEdwardSutherland. Afuturesmarketincomputertime. Commu- integrating the current approaches with the addition of an nicationsoftheACM,11(6):449–451,June1968. admission controller could achieve similar levels of value. [22] Haluk Topcuouglu, Salim Hariri, and Min-You Wu. Performance- effectiveandlow-complexitytaskschedulingforheterogeneouscomput- The research described in this paper is partially funded by ing.IEEETransactionsonParallelandDistributedSystems,13(3):260– the EU FP7 DreamCloud Project (611411). 274,March2002. [23] William Voorsluys, James Broberg, and Rajkumar Buyya. Cloud Computing: Principles and Paradigms, chapter Introduction to Cloud REFERENCES Computing,pages1–44. WileyPress,NewYork,USA,February2011. [24] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. [1] SaudA.AldarmiandAlanBurns.Dynamicvalue-densityforscheduling Kephart, and W. Scott Stornetta. Spawn: a distributed computational real-time systems. In Proceedings of The 11th Euromicro Conference economy. IEEETransactionsonSoftwareEngineering,18(2):103–117, onReal-TimeSystems,pages270–277,June1999. February1992. [2] Fernando L. Alvarado. Parallel solution of transient problems by [25] Henan Zhao and Rizos Sakellariou. Scheduling multiple DAGs onto trapezoidal integration. IEEE Transactions on Power Apparatus and heterogeneoussystems.InProceedingsofthe20thInternationalParallel Systems,PAS-98(3):1080–1090,1979. andDistributedProcessingSymposium(IPDPS),2006. [3] AndrewBurkimsher,IainBate,andLeandroSoaresIndrusiak.Asurvey ofschedulingmetricsandanimprovedorderingpolicyforlistschedulers operating on workloads with dependencies and a wide variation in execution times. Future Generation Computer Systems, 29(8):2009 – 2025,October2013. [4] Andrew Burkimsher, Iain Bate, and Leandro Soares Indrusiak. A characterisation of the workload on an engineering design grid. In Proceedings of the High Performance Computing Symposium, HPC 2014,pages8:1–8:8,SanDiego,CA,USA,2014.SocietyforComputer SimulationInternational.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.