nanomaterials Article Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni Fe Antidot Matrix: Synthesis 80 20 by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties MarcoCoïsson1,*,FedericaCelegato1,GabrieleBarrera1,GianlucaConta1,2, AlessandroMagni1andPaolaTiberto1 1 INRIM,NanoscienceandMaterialsDivision,StradadelleCacce91,10135Torino,Italy; [email protected](F.C.);[email protected](G.B.);[email protected](G.C.); [email protected](A.M.);[email protected](P.T.) 2 ChemistryDepartment,UniversitàdiTorino,viaPietroGiuria7,10125Torino,Italy * Correspondence:[email protected] Received:28July2017;Accepted:19August2017;Published:23August2017 Abstract: A bi-component nanostructured system composed by a Co dot array embedded in a Ni Fe antidotmatrixhasbeenpreparedbymeansoftheself-assemblingpolystyrenenanospheres 80 20 lithographytechnique. ReferencesamplesconstitutedbythesoleCodotsorNi Fe antidotshave 80 20 alsobeenprepared,inordertocomparetheirpropertieswiththoseofthebi-componentmaterial. Thecouplingbetweenthetwoferromagneticelementshasbeenstudiedbymeansofmagneticand magneto-transportmeasurements. TheNi Fe matrixturnedouttoaffectthevortexnucleation 80 20 fieldoftheCodots,whichinturnmodifiesthemagneto-resistancebehaviourofthesystemandits spinwaveproperties. Keywords: bi-componentnanostructuredsystem;self-assembling;magneticcoupling 1. Introduction Compositemagneticmaterialshavebeenthesubjectofintensiveresearchbothforfundamental investigationsandappliedresearch. Inrecentdecades,theinterplayamongmagneticphaseshaving different coercivity values and their exchange coupling (i.e., soft/hard magnetic nanocomposites, nanocrystallinesoftgrainsdispersedinanamorphousmagneticmatrix)hasbeendeeplyinvestigated. Theseinvestigationshaveledtoviablesoftmagneticalloysformagnetictransformersandsoft/hard magneticsystemsforverycompetitivepermanentmagnets[1,2]. Generally, nanocomposites are constituted by coupling different materials, and at least one displays magnetic properties. They can come in the form of magnetic particles dispersed in non-magneticmedia(eithermetallicorinsulating)[3,4],core–shellnanoparticleswherethemagnetic core is coated with a layer of antiferromagnetic or ferro/ferrimagnetic shell [5,6], multilayers, andstackedoradjacentelements(superlattices)[7–11],magnoniccrystals[12,13]. Dependingonthe chosencompositionandshape(i.e.,layerornanoparticle),exchangecouplingamongdifferentmagnetic phases occurs and gives rise to different effects. Among these emerged long-range magnetostatic interactions[14]areexchangebias[15,16], orinterfaceinteractions[17–19].Inturn, thesegiverise to uncommon and artificial magnetic and magneto-transport properties [7,11,17,20–22], such as giant[19]andtunnelmagneto-resistance[18],andspinoscillationsaffectingspinwaves[10,22–24]. Thevarietyofpossibleapplicationsandneedsinspintronics[25]requirestheavailabilityofdifferent preparationtechniquesofsuchmaterials,eachoptimizedforthemostcriticalaspects,e.g.,featuresize, interfacequalitybetweenthematerials,lowcost,highyield,etc.Thisquesthasbeenpartlyachieved Nanomaterials2017,7,232;doi:10.3390/nano7090232 www.mdpi.com/journal/nanomaterials Nanomaterials2017,7,232 2of17 by the advent of nanolithographic techniques that opened up the design of a variety of magnetic nanostructureswithfunctionalproperties[26]. Inparticular,thepossibilitytotunelatticegeometryof patterning(i.e.,honeycomb,rhomboid)gaverisetomagnetoresistanceresponsestronglydependent onlatticegeometry[27]. Inthiscontext,self-assemblinglithographytechniques[28–31]haveproven their viability for obtaining low-cost, large-area nanopatterned magnetic systems with interesting magneticandmagneto-transportproperties. Inthispaper,weexploitaself-assemblingpolystyrenenanosphereslithographyprocess[31,32]to obtainabi-componentnanostructuredsystemcomposedofCodotsdispersedinaNi Fe antidot 80 20 matrix. Throughmagneticandmagneto-transportinvestigations,theirmutualmagneticinteractions willbediscussed.Dependingontheapplications,thepreparationtechniqueandinvestigationmethods discussed in this paper can be exploited to pick suitable magnetic materials to be coupled, and to optimisethedotssizeandtheircentre-to-centredistanceinordertoreachthedesiredeffect. 2. Experimental Two-dimensionalbi-componentnanostructured(BN)arrays,constitutedbyCodotsembedded in a Ni Fe antidot matrix (Co/Ni Fe ), are synthesized by the self-assembling of polystyrene 80 20 80 20 nanospheres(PN).Thistechniqueoffersalow-cost, fastapproachtoobtainalargeareapatterned systemsinformsofdotsorantidotsarrays,attheexpenseofareduceddegreeoforderofthepatterns with respect to conventional lithography techniques (e.g., optical, electron beam), which seldom significantlyaffectstheirmagneticproperties[33].Themulti-stepfabricationprocessisschematically illustrated in Figure 1, and accompanied by the relevant scanning electron microscopy (SEM, FEI Inspect-F;thesampleshavebeenimagedas-isinhigh-vacuumusingsecondaryelectrons,without further preparation) images. Initially, a continuous Co magnetic thin film (thickness t = 40 nm) Co is deposited by rf sputtering on a Si substrate covered with a native oxide layer (Figure 1a). Then,amonolayerofcommerciallyavailablePN(startingdiameter500nm)isdepositedwiththe floatingtechniqueontotheCothinfilm,resultinginaclose-packedhexagonallatticeofnanospheres (Figure1b). Inthethirdstep,thePNdiameterisreducedbyplasmaetchinginAr+,byputtingthe sampleinafloatingpotentialintoanionizedAr+plasmaobtainedinavacuumchamberwithabase pressureof~10−3 mbar: thePNremainapproximatelyinthesameplace,buttheirsizeisreduced asafunctionoftheetchingtime;inthepresentcase,theirfinaldiameteris~350nm. Subsequently, thepolystyrenenanospheresareusedasahardmaskforsputteretchingwithAr+ionsthemagnetic material(Co)thatremainsexposedamongthenanospheres(Figure1d). Thistime,thesampleisplaced inavacuumchamberwithabasepressureof~10−7mbar,andisusedasanelectrode(cathode)forthe formationoftheplasma,andtheAr+ionsremovetheexposedmagneticmaterialbybombardment. With a suitable calibration of the etching time, the Co layer can be completely removed, exposing againthesubstrate,andleavinganarrayofCodotsunderneaththePN.Ofthese,thedotspreservethe diameter(350nm,determinedduringthesizereductionprocess)andthecentre-to-centredistance (500nm,determinedbytheinitialnanospheresdiameter),whereastheirthicknessisequalto40nmas thecontinuousColayerfromwhichtheyhavebeenobtained. ThePNarethenexploitedasecond timeasahardmaskinthefollowingstep: aNi Fe layer(thicknesst =30nm)isdepositedbyrf 80 20 NiFe sputteringontopofthePN,andamongthemonthesubstrate(Figure1e). Finally,thePNareremoved bysonicationindeionizedwater(Figure1f);theNi Fe depositontopofthemcomesawaywiththe 80 20 nanospheres,whereasthematerialthathasbeendepositedonthesubstrateamongthenanospheres forms an antidot array. Therefore, the final sample is constituted by an Ni Fe matrix in which 80 20 circularholesarrangedinapartiallydisorderedhexagonalconfigurationarefilledwithslightlythicker Codots. InthecorrespondingSEMimage,somedefects(e.g.,vacancies,dislocations)arevisibleinthe idealhexagonallatticeofthefinalBNarray,asiscommonlythecasewhenself-assemblytechniques areused[30]. InadditiontotheBNarray,tworeferencesampleshavealsobeenprepared,onewithanarray ofCodotshavingsimilardiameter,centre-to-centredistance,andthickness,andonewithaNi Fe 80 20 Nanomaterials2017,7,232 3of17 Nanomaterials 2017, 7, 232 3 of 17 aannttiiddoott ((AADD)) aarrrraayy,, wwiitthh ccoommppaarraabbllee hhoollee ggeeoommeettrryy aanndd mmeettaalllliicc llaayyeerr tthhiicckknneessss.. BBootthh hhaavvee bbeeeenn pprroodduucceedd bbyy uussiinngg tthhee ssaammee sseellff--aasssseemmbblliinngg ppoollyyssttyyrreennee nnaannoosspphheerreess tteecchhnniiqquuee [[3322]],, aanndd wwiillll sseerrvvee aass rreeffeerreennccee ssaammpplleess.. GGiivveenn tthhee cchhaarraacctteerriissttiiccss ooff tthhee ffaabbrriiccaattiioonn pprroocceessss,, tthhee CCoo ddoott aannddN Ni8i080FFee2200 aannttiiddoott aarrrraayyss ooff tthhee rreeffeerreennccee ssaammpplleess sshhaallll bbee ccoonnssiiddeerreedd ssttaattiissttiiccaallllyy eeqquuiivvaalleenntt ttoo tthhee rreessppeeccttiivvee ccoommppoonneennttss ooff tthhee BBNN ssaammppllee.. FFiigguurree 11.. (C(oClooluoru ornolinnlein) eS)chSecmheem oef tohfe tphreeppareraptaiorant ipornocpersosc oefs sCoo fdCotos danodts Nain80dFeN20i anFteidota anrtriadyost 80 20 constituting bi-component nanostructured systems, by polystyrene nanospheres lithography. (a) arraysconstitutingbi-componentnanostructuredsystems,bypolystyrenenanosphereslithography. I(na)itIinali ticaolnctoinnutionuuso uCsoC loayleary.e (rb;)( bP)oPloylsytystryerneen enannaonsopshpehreerse sseslefl faasssesemmbblyly. ;((cc)) NNaannoosspphheerreess ddiiaammeetteerr rreedduuccttiioonn.; ((dd)) EExxcceessss CCoo rreemmoovvaall bbyy AArr++ eettcchhiinngg;. ((ee)) NNii80FFee20 ddeeppoossiittiioonn. ;((ff)) NNaannoosspphheerreess rreemmoovvaall,, 80 20 ffiinnaall bbiiccoommppoonneenntt ssttrruuccttuurree.. Hysteresis loops and first order reversal curves (FORCs) have been measured at room Hysteresisloopsandfirstorderreversalcurves(FORCs)havebeenmeasuredatroomtemperature temperature on both the BN array and the reference samples by means of an alternating gradient onboththeBNarrayandthereferencesamplesbymeansofanalternatinggradientfieldmagnetometer field magnetometer (LakeShore 2900 AGFM, Princeton Measurement Corporation, Princeton, NJ, (LakeShore2900AGFM,PrincetonMeasurementCorporation,Princeton,NJ,USA)operatinginthe USA) operating in the field range −18 kOe < H < 18 kOe, with the magnetic field applied in the fieldrange−18kOe<H<18kOe,withthemagneticfieldappliedinthesamples’plane. Additionally, samples’ plane. Additionally, isothermal hysteresis loops have been measured in the temperature isothermal hysteresis loops have been measured in the temperature interval 5–300 K by a SQUID interval 5–300 K by a SQUID magnetometer (Quantum Design MPMS3 VSM-SQUID, Quantum magnetometer (Quantum Design MPMS3 VSM-SQUID, Quantum Design, San Diego, CA, USA) Design, San Diego, CA, USA) operating in the field range of −70 kOe < H < 70 kOe, with the magnetic operatinginthefieldrangeof−70kOe<H<70kOe,withthemagneticfieldappliedinthesamples’ field applied in the samples’ plane. On cooling from room temperature down to 5 K, the samples plane. Oncoolingfromroomtemperaturedownto5K,thesampleshavebeeneitherdemagnetised have been either demagnetised (zero field cooling, ZFC) or submitted to a field of 10 kOe (field (zerofieldcooling,ZFC)orsubmittedtoafieldof10kOe(fieldcooling,FC),beforemeasuringthefirst cooling, FC), before measuring the first hysteresis loop at 5 K. Subsequent loops have been measured hysteresisloopat5K.Subsequentloopshavebeenmeasuredatincreasingtemperaturesupto300K. at increasing temperatures up to 300 K. Atomicforce(AFM)andmagneticforcemicroscopy(MFM)hasbeenperformedwithaBruker Atomic force (AFM) and magnetic force microscopy (MFM) has been performed with a Bruker Multimode V Nanoscope 8 microscope (Bruker, Billerica, MA, USA) operated in intermittent Multimode V Nanoscope 8 microscope (Bruker, Billerica, MA, USA) operated in intermittent contact/liftmodetoimagemagnetisationconfigurationsusingacommercialferromagneticCo-Cr contact/lift mode to image magnetisation configurations using a commercial ferromagnetic Co-Cr coatedtip(MESP-HR,coercivefield≈900Oe,Bruker,Billerica,MA,USA).Imagesofallsampleshave coated tip (MESP-HR, coercive field ≈900 Oe, Bruker, Billerica, MA, USA). Images of all samples beenacquiredattheremanenceafterapplicationofanin-planesaturatingmagneticfield. Imageshave have been acquired at the remanence after application of an in-plane saturating magnetic field. beentakenwithapixelresolutionof~10nmwiththeoscillationfrequencyandamplitudesetpoint Images have been taken with a pixel resolution of ~10 nm with the oscillation frequency and obtainedduringtuningofthecantilever. amplitude set point obtained during tuning of the cantilever. Magnetoresistance (MR) measurements at room temperature have been performed by means of a standard four-contacts technique at constant current intensity, both in the longitudinal (current Nanomaterials2017,7,232 4of17 NanomMatearigalns e20to17r,e 7s, i2s3t2a n ce(MR)measurementsatroomtemperaturehavebeenperformedbym4 eoaf n17s ofastandardfour-contactstechniqueatconstantcurrentintensity,bothinthelongitudinal(current parallel to magnetic field) and transverse (current perpendicular to magnetic field) configuration, parallel to magnetic field) and transverse (current perpendicular to magnetic field) configuration, uunnddeerr aa mmaaxxiimmuumm aapppplliieedd ffiieelldd HHmax = =1 1kOkOe.e . max The high-frequency measurements were performed by placing the samples face down on a The high-frequency measurements were performed by placing the samples face down on a coplanar waveguide (CPW) in an experimental setup that is schematically shown in Figure 2. The coplanarwaveguide(CPW)inanexperimentalsetupthatisschematicallyshowninFigure2.TheCPW CPW has a ground-signal-ground structure with a signal line width of 50 μm, and a signal-ground has a ground-signal-ground structure with a signal line width of 50 µm, and a signal-ground gap gap of 20 μm. The CPW has been insulated by spinning an AZ5214E (Merck Performance Materials, of 20 µm. The CPW has been insulated by spinning an AZ5214E (Merck Performance Materials, Wiesbaden, Germany) resist layer approximately 1 μm thick to obtain the electrical insulation from Wiesbaden,Germany)resistlayerapproximately1µmthicktoobtaintheelectricalinsulationfrom the sample. The CPW is used to deliver short rise-time magnetic field pulses perpendicular to the the sample. The CPW is used to deliver short rise-time magnetic field pulses perpendicular to waveguide, by a Picosecond 4050B pulse generator (10 V pulses with 45 ps rise time, 1 MHz the waveguide, by a Picosecond 4050B pulse generator (10 V pulses with 45 ps rise time, 1 MHz repetition rate, Tektronix, Bracknell, UK). The sample, placed on top of the waveguide, is in the gap repetition rate, Tektronix, Bracknell, UK). The sample, placed on top of the waveguide, is in the of a four-pole electromagnet for generating magnetic fields in arbitrary directions in the sample gapofafour-poleelectromagnetforgeneratingmagneticfieldsinarbitrarydirectionsinthesample plane. For the measurement, the sample was subject at first to a background measurement under plane. For the measurement, the sample was subject at first to a background measurement under ssaattuurraattiinngg ttrraannssvveerrssee DDCC ffiieelldd HHref == 6622..55 OOee,, ppaarraalllleell ttoo HHpulse, ,inin oorrddeerr ttoo pprroovviiddee aa rreeffeerreennccee ref pulse condition. The measurement is then repeated by applying a longitudinal bias field H in the range of condition. ThemeasurementisthenrepeatedbyapplyingalongitudinalbiasfieldHintherangeof 0–900 Oe. Each data acquisition is obtained by averaging 20 thousand measurements with a LeCroy 0–900Oe. Eachdataacquisitionisobtainedbyaveraging20thousandmeasurementswithaLeCroy Wavemaster SDA816Zi oscilloscope (LeCroy, Chestnut Ridge, NY, USA) acquired in sampling WavemasterSDA816Zioscilloscope(LeCroy,ChestnutRidge,NY,USA)acquiredinsamplingmode, mode, at a data point resolution of 5 ps. The acquisition at each bias field is then processed with the atadatapointresolutionof5ps. Theacquisitionateachbiasfieldisthenprocessedwiththereference reference measurement; both measurements are smoothed using a Gaussian weighted filter, to measurement;bothmeasurementsaresmoothedusingaGaussianweightedfilter,toremovemost remove most of the high frequency noise. Then, any drift in the voltage of the waveforms between ofthehighfrequencynoise. Then,anydriftinthevoltageofthewaveformsbetweenthereference the reference and data is minimised, as is any trigger difference. After subtracting the reference anddataisminimised,asisanytriggerdifference. Aftersubtractingthereferencemeasurementfrom measurement from the data, the processional response of the magnetisation around the direction of thedata,theprocessionalresponseofthemagnetisationaroundthedirectionofthebiasfieldHis the bias field H is obtained. By Fourier transform of the induced signal, we obtain the resonance obtained. ByFouriertransformoftheinducedsignal,weobtaintheresonancefrequencyf,ateachbias frequency f, at each bias field. With this technique, we characterised both the BN sample and the field. Withthistechnique,wecharacterisedboththeBNsampleandtheNi Fe ADreferencesample, 80 20 Nbui8t0Fwee20 hAaDve rbeefeerneunncea bslaemtoplme,e bausut rweeth heaCvoe bdeoetns aumnpablel,es tion cmeeinastuhrise stehteu pCoit ddoote ssanmotpglee,n seirnactee ianl athrgise setup it does not generate a large enough signal. enoughsignal. Figure2.(Colouronline)Schemeofthehigh-frequency,coplanar,waveguide-basedmeasurementsystem. Figure 2. (Colour online) Scheme of the high-frequency, coplanar, waveguide-based measurement system. MicromagneticsimulationshavebeenperformedwiththeMuMax3.9software(DyNaMatGroup GhenMtiUcrnoimveargsniteyt,icG hseimntu,lBaetilognius mh)aovne abe2e.6n µpmer×for2m.6eµdm wgirthid trheep eMatuedMfiaxv3e.9ti msoefstwinaerea c(hDdyiNreacMtioant Gcornoutapin GinhgeCnto Udontisvewrsitihtya, Gdihaemnet,t eBreolfgi3u5m0n) mona na d2.s6u rμrmou n× d2e.d6 bμyma gNriid Freepemateadtr ifxi.vSet atinmdeasr dinv aelaucehs 80 20 direction containing Co dots with a diameter of 350 nm and surrounded by a Ni80Fe20 matrix. Standard values for the properties of the magnetic materials have been used. Periodic boundary Nanomaterials2017,7,232 5of17 for the properties of the magnetic materials have been used. Periodic boundary conditions have beenimposed. Thedotshavebeenarrangedinadisorderedconfigurationcloselyresemblingtypical arrangementsobservedinSEMimagesofsimilarsize. 3. ResultsandDiscussion The room temperature hysteresis loop of the reference Ni Fe antidot array is reported in 80 20 Figure 3a. A reduced remanence ratio of M /M = 0.7 and a coercive field value of H = 19 Oe r s c characterisethissample,whosehysteresisloopisnottoodifferentfromthatofaNi Fe continuous 80 20 thinfilmwiththesamethickness(notshownhere,[31]). However,thesample’shystersisloophasa largercoercivitytobeascribedtotheanisotropyenergycontributionderivingfromtheholesarray, whichforcesthemagnetisationeithertorotatearoundthem,ortoformfreepolesattheiredges[31,34]. The field H , at which the most significant magnetisation reversal process takes place, can be put 1 inevidencebyplottingthederivativeofthemagnetisationcurvewithrespecttotheappliedfield (solid line in Figure 3a). For convenience of comparison with FORC distributions, the derivative oftheascending(lower)branchhasbeencalculated. IntheNi Fe antidotarray,H islocatedin 80 20 1 correspondenceofthecoercivefield. InFigure3b,thehysteresisloopofthereferenceCodotarrayisshown: itsshapeistypicalof thosesystemswhereamagneticvortexnucleatesatsufficientlylowappliedfields,andthenmovesas thefieldisprogressivelyreverseduntilthevortexisexpelled. Thisresultisexpected,asCodotswith comparablesizeandthicknesshavebeenreportedtoshowsuchbehaviour[35,36]. Themagnetisation jumpsthatcorrespondtothevortexnucleationandannihilationareclearlyvisible,andaremarked with the fields H and H in the field derivative of the lower loop branch. Contrary to what is 2 3 often observed in dot arrays, a relatively large hysteresis is observed close to zero applied field (M /M =0. 19andH =55Oe);inproximityofthecoercivefield,asignificantmagnetisationreversal r s c process occurs, identified by H . The presence of a non-vanishing coercive field is unexpected in 4 non-interactingdotarraysdisplayingavortexdomainconfiguration. However,coercivitymaybeseen toincreaseinthepresenceofmagneticinteractionsamongthedotscausedbythepartialdisorderof thearray,wheredotsmaysometimesbeverycloseoreventouch(seetheSEMimageofFigure1ffora representativeexampleontheBNsample). Finally,themagnetisationreversalofthetwo-dimensionalbi-componentnanostructuredarray Co/Ni Fe isreportedinFigure3c. Whentheappliedmagneticfieldisreducedfromsaturationto 80 20 zero,themagnetisationremainsalmostconstant(M /M =0.7),asintheNi Fe antidotreference r s 80 20 sample. When the applied magnetic field is further reduced and reverses, a rapid magnetisation jumpappears,notdissimilartothemagnetisationreversaloftheantidotreferencesample,evenifthe coercive field (H = 89 Oe) is significantly larger (peak identified as H ). Further increase of the c 5 magneticfieldtowardssaturationintheoppositedirectionbringsareversalprocessthatresembles thatoftheCodots(vortexexpulsion),withaminorpeakH inthederivativeofthemagnetisation 6 curvethatislocatedatafieldwithlowerabsolutevaluewithrespecttoH . Itisworthnotingthat 3 the equivalent of the magnetisation jump occurring at H in the Co dot reference sample (vortex 2 nucleation)isnotobservedintheBNsample. Nanomaterials2017,7,232 6of17 Nanomaterials 2017, 7, 232 6 of 17 FFiigguurree 33.. ((CCoolloouurr oonnlliinnee)) RRoooomm tteemmppeerraattuurree,, iinn--ppllaannee hhyysstteerreessiiss llooooppss ooff NNii80FFee20 aannttididoot taarrrraayyss ((aa)), ; 80 20 Co dot arrays (b) and bi-component nanostructured systems (c). Black lines are the field derivative of Codotarrays(b)andbi-componentnanostructuredsystems(c).Blacklinesarethefieldderivativeof tthhee lloowweerr bbrraanncchh ooff tthhee MM//MMS eexxppeerrimimeenntatal lvvaalulueess. .HHoorirzizoonntatal lssccaaleles shhaavvee bbeeeenn aaddjujusstteedd ttoo ppuutt iinn S evidence the features of the loops for the different samples. evidencethefeaturesoftheloopsforthedifferentsamples. The hysteresis loop of the BN sample is clearly not the linear combination of those of the two ThehysteresisloopoftheBNsampleisclearlynotthelinearcombinationofthoseofthetwo reference samples; therefore, the BN sample is not simply the superposition of the Ni80Fe20 AD and of reference samples; therefore, the BN sample is not simply the superposition of the Ni Fe AD the Co dot samples. This indicates that the two magnetic materials, the Co constituting the8 0dot2s0 and andoftheCodotsamples. Thisindicatesthatthetwomagneticmaterials,theCoconstitutingthe the Ni80Fe20 constituting the antidot matrix, are not independent; rather, they are mutually dotsandtheNi Fe constitutingtheantidotmatrix,arenotindependent;rather,theyaremutually interacting. To 8f0urth20er investigate this aspect, we performed FORC measurements on all three interacting. Tofurtherinvestigatethisaspect,weperformedFORCmeasurementsonallthreesamples, samples, whose results are reported in Figure 4. FORCs are an effective means of identifying the whoseresultsarereportedinFigure4. FORCsareaneffectivemeansofidentifyingtheirreversible irreversible processes (which give a signal) and distinguishing them from the reversible ones (which processes(whichgiveasignal)anddistinguishingthemfromthereversibleones(whichdonotgive do not give any signal) occurring during the magnetisation reversal in magnetic samples [37–39]. anysignal)occurringduringthemagnetisationreversalinmagneticsamples[37–39]. The FORC distribution for the Ni80Fe20 reference sample (Figure 4a) is characterised by a not TheFORCdistributionfortheNi Fe referencesample(Figure4a)ischaracterisedbyanot very sharp peak at very low applied fi8e0ld, 2i0ndicating that the reversal of the magnetisation in this verysharppeakatverylowappliedfield, indicatingthatthereversalofthemagnetisationinthis sample occurs with a sequence of irreversible jumps peaked at H1 (which is practically Hc) and sampleoccurswithasequenceofirreversiblejumpspeakedatH (whichispracticallyH )andslightly slightly distributed around this field value. This leads to the co1nclusion that the reverscal process in distributedaroundthisfieldvalue. Thisleadstotheconclusionthatthereversalprocessintheantidot the antidot array is mostly a large-scale process, where large regions of the sample reverse their arrayismostlyalarge-scaleprocess,wherelargeregionsofthesamplereversetheirmagnetisationat magnetisation at the same time in single, irreversible jumps. thesametimeinsingle,irreversiblejumps. The FORC distribution of the Co dots (Figure 4b), conversely, is characterised by the presence TheFORCdistributionoftheCodots(Figure4b),conversely,ischaracterisedbythepresenceof of four irreversible features, clearly located. One is a sharp peak at low H and HR values that fourirreversiblefeatures,clearlylocated. OneisasharppeakatlowHandH valuesthatcorresponds corresponds to the H4 reversal process observed in Figure 3; this process Rcould be ascribed to the to the H reversal process observed in Figure 3; this process could be ascribed to the reversal of reversal o4f the magnetisation in clusters of nearby interacting dots, which results from imperfections themagnetisationinclustersofnearbyinteractingdots,whichresultsfromimperfectionsofthePN of the PN lithography process (as discussed earlier). Due to these imperfections, a collective lithographyprocess(asdiscussedearlier). Duetotheseimperfections,acollectivereorientationofthe reorientation of the magnetisation occurs without the nucleation of a magnetic vortex in the magnetisationoccurswithoutthenucleationofamagneticvortexintheindividualdots. Twoother individual dots. Two other peaks coincide with the nucleation and expulsion of the vortex [40,41] peaks coincide with the nucleation and expulsion of the vortex [40,41] (H and H respectively (H2 and H3 respectively following the nomenclature of Figure 3). Of these, the2 sharpest3 (negative H) following the nomenclature of Figure 3). Of these, the sharpest (negative H) coincides with the coincides with the nucleation, whereas the one located on the same horizontal line (positive H, nucleation,whereastheonelocatedonthesamehorizontalline(positiveH,negativeH )coincides negative HR) coincides with the expulsion at the opposite edge of the dot with resRpect to the withtheexpulsionattheoppositeedgeofthedotwithrespecttothenucleation. Finally,aweakerpeak nucleation. Finally, a weaker peak measured by the reversal curves at positive HR values, therefore symmetrically located with respect to the nucleation one, marks the expulsion along the same dot edge where nucleation has occurred [41]. Nanomaterials2017,7,232 7of17 Nanomaterials 2017, 7, 232 7 of 17 measuredbythereversalcurvesatpositiveH values,thereforesymmetricallylocatedwithrespectto R thenucleationone,markstheexpulsionalongthesamedotedgewherenucleationhasoccurred[41]. As already discussed for the hysteresis loops, the FORC diagram of the BN sample (Figure 4c) is not sAimspallrye athdey sduipsecurpsosesditifoonr othf ethhoysset eorfe tshise lroeofeprse,ntchee sFaOmRpClesd; iraagtrhaemr, oitf htahse dBiNstisnacmt fpelaetu(Freigs,u ervee4nc )ifi s niot tmsiamy prelysetmhebsleu pthearpt oosf ittihoen Coof tdhootsse. oTfhteh peeraekfe lroecnacteedsa amt pslmesa;llr aHth aenr,dit HhaR svdaliusteins cctofienactiudreess ,weivthen thifei t mlaaryger emseamgbnleetitshaatitoonf tjhuemCpo Hd5o tdse.tTehcteepde baky ltohcea theydsatetrsemsiasl lloHopa.n dInH tRhev aclausees ocfo itnhcei dNesi8w0Fiet2h0 tahnetildaorgt e msaamgnpeleti,s tahtiiso pnejaukm cporHre5spdoentedcetded tob tyheth laerhgye-sstcearlees imsalogonpet.isInatitohne rceavseerosaflt ihne tNhei 8a0nFteid20ota nartridayo tins acmlopsele , thpirsopxiemakityco orfr ethspeo cnoderecdivtoe ftiheeldla. rIgne t-hseca claesme oagf ntheeti sBaNti osnamrepvleer, shaolwinetvheer,a antt itdhoe tsaarmraey pionscitliovsee Hpr voaxliumeist y oaf sthhaercpo peercaikv leoficaetledd. aInt ntehgeactiavsee HofR tvhaeluBeNs aspapmeaprlse., Ihno awnaelvoegry, awtitthhe thsae mcaesep oofs itthive eCHo dvoatlsu, ethsias psheaakrp pceaank bleo cinatteerdparettnedeg aast itvhee HnuRcvleaaltuioens aopf ptheea rvso.rItnexa nina ltohge yCwo idthottsh ien ctahsee BoNf tshaemCpoled. Hotosw,tehviserp, eina kthciasn bceasine,t etrhper entuedcleaasttihone nisu ctrleigagtieornedo fbtyh ethveo rrteevxeirnsatlh eprCoocedsos tisni nthteh eaBntNidsoatm mpaletr.ixH, owwheivcher ,ininditchaitsecsa ase , tshiegnniuficclaenatt icoonuipsltirnigg gbeertewdebeny tthhee trwevoe mrsaalgpnreoticce csosminptohneeanntst iodfo tthme aBtNri xs,awmhpilceh. Tinhdeirceafoterse,a thsieg nvoifircteaxn t cdoouepsl innogt bneutcwleeaetne itnh ethtew Coom daogtns eotfi cthceo mBNpo snaemnptsleo bfetfhoereB rNeascahminpgl eth.Te hmearegfnoerteic, trheemvaonretnecxed. Aoess fonro t ntuhcel eCaot ediontst haeloCnoe,d aot trseomfathneenBcNe tshaem Cpole dboetfso arreer setaicllh ainlmgothste smataugrnateetdic. rTehmisa nise inncdei.cAatsedfo bryth teheC loardgoet s arleomnea,naetnrceem vaanlueen coef tthhee Clooopd ortespaorretesdt iilnl aFlmiguosret s3act,u arnadte don.lTyh iins itshein cdoircraetsepdobnydetnhceel aorfg tehere cmoearnceivnec e vfaielulde owfthheenl otohpe rempaogrtneedtiisnatFioignu rien3 ct,haen dNoi8n0Flye2i0n tahneticdoortr esmpaotnridxe nrceevoerfstehse, caote rcwivheicfihe ldpowinhte nththe e mmaaggnneettiissaattiioonn iinn atht eleNasit inF ea feawn otifd tohtem doattsr idxerveevleorpsse as, vaotrwtehx iscthrupcotuinret.t Ihne tmhea hgynsetteirseastiiso nlooinp,a tthleesaes t 80 20 intwao fepwroocefstshees dooctcsudr esviemloupltsanaevoourstleyx asntrdu cgtuivree .rIisne thtoe hthyes tesriensgilse loHo5p ,ptehaeks,e wtwheoreparso ctehses eFsOoRccCu r sdimisturlitbaunteioonu scllyeaarnlyd dgeitveectrsi stehetomt hinedsivinidgulealHly. pWehaken, wthhee rfieealsd tihse fuFrOthReCr idnicsrteraibseudti,o tnhecnle, athrley vdoertteecxt s 5 thexepmuilnsidoinv idpueaakllsy .aWppheeanr thbeotfihe lidn isthfue rtlhooerpi nacnrdea sine dt,hteh eFnO,tRhCe vdoirstterxibeuxtpiounls, iobnutp ewaiktsh aspipgneaifricbaontthlyin threedluocoepda nHd ivnaltuheesF. OTRhCesde isvtarilbuuesti oinn,dbicuattew iathgasiing naifi sctarnotnlyg remdaugcneedtiHc vcoaulupelsin.gT hbeestewveaelnu esthien dtiwcaot e amgaaignnaetsitcr coonmgpmoangennetsti ocfc tohuep BliNng sabmetpwlee,e wnitthhe thtwe oanmtiadgont emtiactrcioxm foprocninegn ttsheo fdtohtes tBoN sastaumraptiloe,nw eaitrhliethr e atnhtaidn oint mthaet rciaxsfeo orcf itnhge tihsoeladtoetds dtootssa. turationearlierthaninthecaseoftheisolateddots. Figure4.Cont. NNaannoommaatteerriiaallss 22001177,, 77,, 223322 88 ooff 1177 Nanomaterials 2017, 7, 232 8 of 17 FFiigguurree 44.. ((CCoolloouurr oonnlliinnee)) FFiirrsstt oorrddeerr rreevveerrssaall ccuurrvveess ((FFOORRCC) ) oof fN Ni8i08F0Fee202 0a anntitdidoot ta rarraryasy s( a()a; )C; Co od odto t Figure4.(Colouronline)Firstorderreversalcurves(FORC)ofNi Fe antidotarrays(a);Codotarrays arrays (b) and bi-component nanostructured systems (c). The c8o0lou2r0 plots represent the distribution arrays (b) and bi-component nanostructured systems (c). The colour plots represent the distribution (b)andbi-componentnanostructuredsystems(c).Thecolourplotsrepresentthedistributionofthe of the second derivative of the normalised magnetisation with respect to the applied field, H, and the of the second derivative of the normalised magnetisation with respect to the applied field, H, and the secondderivativeofthenormalisedmagnetisationwithrespecttotheappliedfield,H,andthereversal firreeevlvdeerrHssaall (ffiinieellOdd eH−H2RR) .((Viinna luOOeees−−22o))..f tVVhaaelluudeeisss t rooibff uttthhioee n ddcilissottrsrieibbutuottiiozonenr occlcoloossreer e tsotpo o znzeedrorot o cocrorerrvereserpsspoibonlnded m tota ogr nerveeetviressraisbtiilboeln e magnetRisation processes, whereas the values of the distributions different than zero correspond to magnetisation processes, whereas the values of the distributions different than zero correspond to processes, whereas the values of the distributions different than zero correspond to irreversible irreversible magnetisation processes. Regions highlighted with dashed lines better put in evidence irreversible magnetisation processes. Regions highlighted with dashed lines better put in evidence magnetisationprocesses. Regionshighlightedwithdashedlinesbetterputinevidencethefeatures tthhee ffeeaattuurreess mmaarrkkeedd wwiitthh HH33 aanndd HH66.. markedwithH andH . 3 6 TThhiiss ppiiccttuurree iiss ccoonnffiirrmmeedd bbyy tthhee AAFFMM//MMFFMM iimmaaggeess rreeppoorrtetedd i nin F Figiguurere 5 5, ,w whhereer et hthe em magangenteicti c ccoommpTpohonniseenpntti c iitssu trtaaekkieesnnc oaantt fitthhrmee erreedmmbaaynnteehnnecceeA aaFffMtteer/r MhhaaFvvMiinnggim ssaaatgtuuerrsaatrteeedpd o thtrhteee ds saiamnmpFplielge uw wrietiht5h ,a wann hi neinr-pe-pltahlnaene mea paappglnpieelidtei dc cffoiieemllddp.. o InInne ntththeies AtAaFkFMeMn aiimmttaahggeeer,, ettmhheea nddeoonttcsse aaapfptppeereaahrra viinnin aga sbbarrtiuiggrhhattt eccdooltolhoueurrs aoomnn p ala e ddwaarikrthk babanackcinkg-grporlouaunnnded.a .pI npI nlfi aefcdatc,fi t,ae lsad s. IdndiistschcuuesssAseeFddM iinn i SmSeeacctgtiieoo,nnt 2h2,,e tthhdeeoyyts aarareep ssplleiiggahhrttillnyy tathhbiiccrkkigeerhr ttthhcaaonnl ot thuhere s osunurrrarooudunandrdkininbgga ac ankntgitdridoouot tnm mda.atrtIirnxix;f t;a htchits,i sma msakdaekissec stuh tsehsmeemd icnclleeSaaerrcllytyi ovvniissi2ibb,llteeh iienny tthhaeree ttoosppliooggghrrtaalypphhthiicci c iikmmeaarggtehe..a TTnhhteeh MMeFsFuMMr r ioimmuanaggdeei,n ,a agss ea exnxptpiedecoctettedmd, ,da dotroeiesx s;n ntohoti tss hsmhoowawk ae nasnyt yhfe efaemtautcruleresea sor floy f vvviosoirrbttiliceceeisns iitnnh etthhteeo pddooogttsrs.a. pCChooinncvvimeerrasseeglleyy.,, TtthhheeeyyM aaFrreMe aalillml mmagaaegg,nnaeesttieiccxaaplllleyyc stseaadttu,urdraoateteedsd,n ,a oasts as ahlrloerweaaddayny dy disfiecsuactusussresedesd eo aefravlrioelirret:r iac: eta st iznzeertroho e aapdppopltlisiee.dd C ffioieenllddv,,e vrvsooerrlttyee,xxt hnneuuyccllaeearaettiiooannll iimnn atthghene eddtoiocttass l ilinyn tsthaheteu BrBNaNt e sdsaa,mmapsplelae lh rheaaass dy yyeetd tt iotso cc uocsomsmeed,e ,b ebeaceracliuaeusre:s eao tfo zft heterho e aiinpntpteelriraeadccttifiiooennld ww,viittohhr ttthehxee nNNuiic8800lFFeeea22t00i oaannnttiiinddtoohtt e mmdaaotttrrsiixxi.n. TTtwhweooB eeNxxaasmmampplpleeslse a ahrreae sp pyuuet tti nitno e ecvovidmideeen,ncbecee ic nian ut htshee emo mfatrahkreekdiend at erareraaecsat soio fon f wFFiiigtghuurtrehe e 55,N, wwiiitthFh e mmaaaggnnnteeidttiiocc tssmaattuuatrrraaittxii.oonTnw iinnoddeiicxcaaattmeeddp lbbeyys tathhreee bpbruriigtghihntt ec covolioldoueurnr ct oteo ti nhthete hl eeleftmf,t ,aa anrnkdde td hthea erde daaraskro kcf ocFloiogluourur rteo t5 o, 80 20 wtthhieteh rrimigghahtgt..n eticsaturationindicatedbythebrightcolourtotheleft,andthedarkcolourtotheright. Figure 5. (Colour online) AFM image (a) and corresponding Magnetic force microscopy (MFM) FFiigguurree 55.. ((CCoolloouurr oonnlliinnee)) AAFFMM iimmaaggee ((aa)) aanndd ccoorrrreessppoonnddiinngg MMaaggnneettiicc ffoorrccee mmiiccrroossccooppyy ((MMFFMM)) image (b), taken at the magnetic remanence after saturation along the horizontal direction, of a iimmaaggee (b(b),),t atkaeknena tatth ethme amgnaegtnicertiecm raenmenanceenacftee rasfatetur rsaattiounraatlioonng atlhoenhg otrhizeo nhtoarlizdoirnetcatli odni,roecftaiopno, rtoifo na portion of the bi-component nanostructured system. Highlighted areas put in evidence the Co dots opfotrhtieonbi -ocfo tmhep obni-ecnomtnpaonnoesntrt uncatnuoresdtrusyctsuteremd. sHysigtehmlig. hHtiegdhlairgehatsedp uatreinase pvuidt einnc eevtihdeenCcoe dthoet sCwo hdoostes whose magnetisation at zero applied field is close to the saturated state. mwahgonseet misaatgionnetaistazteioron aapt pzelireod afipepldlieids cflioelsde itso ctlhoeses attou trhaete sdatsutaratet.ed state. NanNoamnaotmeraitaelrsia2l0s 1270,177,, 273, 2232 9 o9f 1o7f 17 The above interpretation is further confirmed by the micromagnetic simulations; these results Theaboveinterpretationisfurtherconfirmedbythemicromagneticsimulations;theseresultsare are summarised in Figure 6. The simulated portion of the BN sample has been saturated at positive summarisedinFigure6. ThesimulatedportionoftheBNsamplehasbeensaturatedatpositivefield, field, then brought at remanence (Figure 6a). All the Co dots still appear saturated and strongly thecnoubproleudg whtitaht Nreim80Faen20e mncaetr(iFxi, gwuhreic6ha i)s. iAn lalgthreeemCoendt owtsitsht itlhlea pMpFeMar ismataugrea otef dFiagnudres 5tr. oAntg aly ficeoldu polfe d wit−h90N Oi8e0,F i.ee2.0, vmerayt rcilxo,swe thoi cthhei msienasaugrreede mcoeenrctiwvei tfhieltdh e(sMeeF FMiguimrea 3gce), oaf sFigingiufircean5.t rAetoraiefinetladtioonf −of9 t0heO e, i.e.m, vagenryeticslaotsioent oin tthhee mNie8a0Fseu2r0 eadntcidooetr cmivaetrifixe tladke(sse pelaFcieg u(Friegu3rce) ,6ba).s iIgnn tihfiec asinmturleaotiroienns,t athtiiosn evoefntth e matgakneest ipsalatcioesn iinn at hfeewN sitepFse in aa nlimtiditoetdm fiealtdri rxatnagkee (sFpigluacree 6(Fc)i,g aunrde i6sb a)c.cIonmtphaensieimd ubyla ati roenosr,iethntiasteiovne nt 80 20 takoefs tphlea cmesaginneatifseawtiosnte pofs tinhea Cliom ditoetds.fi Helodwreavnegre, (aF figewur eof6 cth),eamn dreimsaacinco dmepcoaunpieldedb yfroamre othriee natnattiidoont of themmatargixn,e tainsadt iodnevoeflothpe aC ovodrotetsx. Hstoruwcetuvreer ,(adfoetws iodfetnhteifmiedre mwiatihn dtheiccokuerp lbeodrfdreorms itnh eFaingutirdeo t6m), aitnr ix, andagdreevemeloenpt awviothrt ethxes thryusctteurreesi(sd lootospisd eanntdifi FeOdRwCit hantdh iMckFeMrb moredaesrusrienmFeingtusr. eIt6 )is, iinntaegrreesetimnge ntto wpiotihntt he hysotuetr ethsiast liofo tphse asnimduFlOatRioCnsa nardeM caFrMriemd eoaustu froerm oerdnetsr.edIt aisrrianytesr, eas tminogret ohpomoinogteonuetotuhsa tbiefhthaveisoiumr utalakteios ns place, with a sharper inversion of the magnetisation with respect to the applied field and a stronger arecarriedoutfororderedarrays,amorehomogeneousbehaviourtakesplace,withasharperinversion oftchoeupmlianggn eotfi stahteio nCow idthotrse swpiethct tthoet hNeia80pFpe2l0i eadnfitiedlodt amndatarixs.t rTonhge evrocrotuexp lninugcloefattihoen Cino dsoomtsew ditohtst he occurring at the same time that the antidot matrix reverses its magnetisation seems therefore Ni Fe antidotmatrix. Thevortexnucleationinsomedotsoccurringatthesametimethattheantidot 80 20 particularly enhanced by the presence of defects, dislocations in the lattice, and disorder in these matrixreversesitsmagnetisationseemsthereforeparticularlyenhancedbythepresenceofdefects, systems prepared by nanospheres lithography. dislocationsinthelattice,anddisorderinthesesystemspreparedbynanosphereslithography. The magnetic behaviour of the three samples has also been investigated at low temperature by Themagneticbehaviourofthethreesampleshasalsobeeninvestigatedatlowtemperatureby means of hysteresis loops measurements performed in zero-field cooled (ZFC) condition. The meansofhysteresisloopsmeasurementsperformedinzero-fieldcooled(ZFC)condition. Thesamples samples have been demagnetised at room temperature by applying an oscillating magnetic field of havebeendemagnetisedatroomtemperaturebyapplyinganoscillatingmagneticfieldofprogressively progressively decreased amplitude, and then cooled in zero applied field to the minimum decreasedamplitude,andthencooledinzeroappliedfieldtotheminimumtemperature. Fromthere, temperature. From there, hysteresis loops have been measured in sequence, with increasing hysteresisloopshavebeenmeasuredinsequence,withincreasingtemperature. temperature. Figure 6. (Colour online) Micromagnetic simulations of a portion of a BN system with a size of 2.6 Figure 6. (Colour online) Micromagnetic simulations of a portion of a BN system with a size of μm × 2.6 μm. Colours and arrows indicate the direction of the magnetisation (see legend to the right). 2.6µm×2.6µm. Coloursandarrowsindicatethedirectionofthemagnetisation(seelegendtothe The dashed circles identify the Co dots inside the Ni80Fe20 matrix. (a) At magnetic remanence after right).ThedashedcirclesidentifytheCodotsinsidetheNi Fe matrix.(a)Atmagneticremanence 80 20 saturation at a positive field (aligned horizontally to the right); (b) at a field of −90 Oe (aligned aftersaturationatapositivefield(alignedhorizontallytotheright);(b)atafieldof−90Oe(aligned horizontally to the left); (c) at a field of −125 Oe (aligned horizontally to the left). In (b,c), the thicker horizontallytotheleft);(c)atafieldof−125Oe(alignedhorizontallytotheleft).In(b,c),thethicker circles indicate dots where a vortex magnetisation has developed. circlesindicatedotswhereavortexmagnetisationhasdeveloped. Figure 7 reports the coercivity values obtained from these measurements. In the antidot sample, theF isghuarpee 7orf etphoe rhtsysthteerecsoise rlcoiovpit yrevmaaluiness porbatcatiincaeldlyf rthoem stahmees einm tehaes wurheomlee ntetms.pIenrathtueraen rtaindgoet,s wamithp le, thejusshta pa esomfatlhl einhcyrsetaesree soisf lcoooeprcrievmitya inbselporwa c2ti5c aKll yththaet sdaomese ninott hseeewmh otloe tmemodpifeyr atthuer emraanggnee,tiwsaittihonju st asrmevaellrsianlc rmeaecsheaonfiscmoes.r cHivoiwtyevbeerl,o won2 t5heK dthotast sdaomepslne,o tthseereem ist oanm oobdsiefryvethde smteaadgyn eitnicsraetaiosen oref vtehres al meccohearnciivsem fsie.lHd oacwroesvse trh,eo nwthhoeled toetmspsaermatpulree, trhanergee iuspaonno rbedseurcvinedg Tst. eIanddyeeidn,c trheiass heaosf toth beec aosecrrcibiveed fitoe ld acrtohses Hth4 epweahko olef Fteigmupree r3abt.u Treher avnogreteux pnounclreeadtiuocni nagndT .eIxnpduelesido,nt hfiiesldhsa sretmoabiena aslcmriobsetd utnoalttheereHd bpy etahke of 4 temperature reduction, with just an expected slight increase on decreasing the sample temperature. Figure3b. Thevortexnucleationandexpulsionfieldsremainalmostunalteredbythetemperature The dot clusters, on the other hand, not showing vortex magnetisation and being responsible for the reduction,withjustanexpectedslightincreaseondecreasingthesampletemperature. Thedotclusters, onHth4 epoetahke rbhecaonmd,e nportosghroeswsiivneglyv omrtaegxnmetiacganlleyt ihsaatridoenr aansd thbee integmrpesepraotnusreib lies froerdtuhceedH. Tpheisa kcabne cboem e 4 ascribed to the magnetic interaction among these dots, which becomes progressively stronger as the progressivelymagneticallyharderasthetemperatureisreduced. Thiscanbeascribedtothemagnetic temperature decreases, as expected. In the case of the BN sample, at all temperatures the description interactionamongthesedots,whichbecomesprogressivelystrongerasthetemperaturedecreases, given for Figure 3c still holds. The coercive field larger than those of the Co dots and the Ni80Fe20 as expected. In the case of the BN sample, at all temperatures the description given for Figure 3c antidot matrix has to be ascribed to the coupling between the two magnetic materials. The dots do stillholds. ThecoercivefieldlargerthanthoseoftheCodotsandtheNi Fe antidotmatrixhasto 80 20 beascribedtothecouplingbetweenthetwomagneticmaterials. Thedotsdonotnucleateavortex Nanomaterials 2017, 7, 232 10 of 17 Nanomaterials2017,7,232 10of17 not nucleate a vortex magnetisation until a sufficiently large magnetic field opposite to the initial msaatugrnaettiiosna tiiso napupnltiielda, swuhffiicchie nfotrlycelsa rtghee mtwaog nmetaigcnfieetlidc coopmpopsointeentots tthoe dineictoiaulpslaet. uArat titohnis ipsoaipnpt,l itehde, wanhtiicdhotf omrcaetsritxh reetvwerosems aigtsn emtiacgcnoemtispaotinoenn t(swtiothd ae croeulaptliev.elAyt ltahrigsep moiangtn,tehtiec afnietlidd)o, tamnda ttrhixe rCevoe drsoetss idtsevmealogpn eat visoarttieoxn s(twruitchtuarere. lOatniv deelycrleaarsgiengm taegmnpeetircafituerled,) t,haen dpitchtuerCe oredmoatsindse pvrealoctpicaalvlyo rttheex ssatrmuec,t ubruet. Othne dcoeecrrceiavsiitnyg otfe tmhep deroatt uclrues,ttehrse pprioctgurreessrievmelayi ninscpreraascetisc.a Hllyowtheevesra,m ine ,thbeu BtNth esacmoeprlcei vailtsyo,o tfhtehsee ddoott cclluusstteerrss parreo gmreasgsniveetilcyailnlyc rceoauspesle.dH wowitehv tehre, ianntthideoBtN msaatmrixp,l egiavlisnog, trhisees etod oa tccoleursctievristya riencmreaagsnee tthicaatl liys cino-ubpeltewdewenit thhteh aelmanotsidt oztermoa vtarirxia,gtiiovnin ogbrsiesrevteoda inc otherec Nivii8t0yFien20c raenatsideothtsa atnisdi nth-bee sttweaedeny tvhaeriaaltmioons otfz ethroe vCaor idaotitosn. observedintheNi Fe antidotsandthesteadyvariationoftheCodots. 80 20 FFiigguurree 77.. ((CCoolloouurr oonnlilninee) )TTeemmppeerraatuturree ddeeppeennddeenncec eofo fthteh ecoceorecricviev feiefildel dofo NfiN80Fie2F0 eantiadnottid aorrtaayrsr,a Cyso, 80 20 Cdootd aortraayrrsa, yans,da nbid-cboim-copmonpeonnt ennatnnoasntrousctrtuurcetudr seydssteymstes.m s. The picture becomes more complex when the hysteresis loops are measured as a function of The picture becomes more complex when the hysteresis loops are measured as a function of temperature in a field cooled condition, i.e., with the sample brought to the minimum temperature temperatureinafieldcooledcondition,i.e.,withthesamplebroughttotheminimumtemperature from room temperature under the application of a saturating magnetic field of +10 kOe. Examples of fromroomtemperatureundertheapplicationofasaturatingmagneticfieldof+10kOe. Examplesof hysteresis loops in the BN sample are reported in Figure 8 for three selected temperatures. It can be hysteresisloopsintheBNsamplearereportedinFigure8forthreeselectedtemperatures. Itcanbe observed that as the temperature is reduced, the loops measured in the ZFC and FC conditions observed that as the temperature is reduced, the loops measured in the ZFC and FC conditions become progressively different, and the latter is also significantly asymmetric. This effect is common becomeprogressivelydifferent,andthelatterisalsosignificantlyasymmetric. Thiseffectiscommon in exchange-biased systems, where a ferromagnetic and antiferromagnetic layer are exchange inexchange-biasedsystems,whereaferromagneticandantiferromagneticlayerareexchangecoupled coupled through their interface. In such systems, the cooling in the magnetic field below the Néel throughtheirinterface.Insuchsystems,thecoolinginthemagneticfieldbelowtheNéeltemperatureof temperature of the antiferromagnet causes its alignment to the cooling field, while at the interface theantiferromagnetcausesitsalignmenttothecoolingfield,whileattheinterfacewiththeferromagnet with the ferromagnet a preferential orientation of its magnetisation is imposed by the exchange a preferential orientation of its magnetisation is imposed by the exchange coupling between the coupling between the two materials. As a result, the hysteresis loops become deformed and twomaterials. Asaresult,thehysteresisloopsbecomedeformedandasymmetricbelowtheNéel asymmetric below the Néel temperature, as the interaction field at the interface is superimposed to temperature,astheinteractionfieldattheinterfaceissuperimposedtotheappliedfield[15,16]. the applied field [15,16]. Inourcase,anintrinsicantiferromagneticlayerdevelopsspontaneouslyintheCodots,bothalone In our case, an intrinsic antiferromagnetic layer develops spontaneously in the Co dots, both andembeddedintheNi Fe matrix. Infact,anativeoxidelayerdevelopsonthetopsurfaceofthe alone and embedded in 8t0he N20i80Fe20 matrix. In fact, a native oxide layer develops on the top surface Codots. SinceCo-oxideisanantiferromagnet[42],itcanbethesourceofthisexchangebiaseffect[43]. of the Co dots. Since Co-oxide is an antiferromagnet [42], it can be the source of this exchange bias Indeed,thebiasfieldisreportedinFigure8dfortheCodotsandtheBNsamples,showingthatthe effect [43]. Indeed, the bias field is reported in Figure 8d for the Co dots and the BN samples, effectisidentical. NobiasfieldisobservedfortheNi Fe antidotsample. Thebiasfieldchanges showing that the effect is identical. No bias field is obse80rve2d0 for the Ni80Fe20 antidot sample. The bias signwhenthecoolingisdoneunderafieldwiththeoppositesign(notshownhere),whiletheNéel field changes sign when the cooling is done under a field with the opposite sign (not shown here), temperaturebelow75KiscompatiblewithananostructuredCo-oxide[44,45]thatprobablyhasa while the Néel temperature below 75 K is compatible with a nanostructured Co-oxide [44,45] that thicknessofjustafewnanometers,andasub-optimalinterfacecouplingbetweenCoandCo-oxide, probably has a thickness of just a few nanometers, and a sub-optimal interface coupling between Co sincethelatterdevelopsspontaneouslythroughnaturaloxidationintheair. and Co-oxide, since the latter develops spontaneously through natural oxidation in the air.
Description: