ebook img

Bi-amalgamations subject to the arithmetical property PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bi-amalgamations subject to the arithmetical property

BI-AMALGAMATIONS SUBJECT TO THE ARITHMETICAL PROPERTY (⋆) 6 S.KABBAJ(1),N.MAHDOU,ANDM.A.S.MOUTUI 1 0 2 Abstract. This paper establishes necessary and sufficient conditions for a bi- amalgamationtoinheritthearithmeticalproperty,withapplicationsontheweak n global dimensionandtransferofthesemihereditaryproperty. Thenewresults a comparetopreviousworkscarriedonvarioussettingsofduplicationsandamal- J gamations,andcapitalizeonrecentresultsonbi-amalgamations. Allresultsare 8 backedwithnewandillustrativeexamplesarisingasbi-amalgamations. 2 ] C A . 1. Introduction h t a Throughout, allringsconsideredarecommutativewithunityandallmodules m are unital. Let f :A→B and g:A→C be two ring homomorphisms and let J [ and J′ be two idealsof B and C, respectively, such thatI := f−1(J)=g−1(J′). The o 1 bi-amalgamation(orbi-amalgamatedalgebra)ofAwith(B,C)along(J,J′)withrespect v 3 to(f,g)isthesubringofB×Cgivenby 5 6 A⊲⊳f,g(J,J′):= (f(a)+j,g(a)+j′)|a∈A,(j,j′)∈J×J′ . 7 n o 0 . Thisconstructionwasintroducedin[26]asanaturalgeneralizationofduplications 1 0 [12, 14, 17, 18, 27, 30] and amalgamations [15, 16, 19]. In [26], the authors pro- 6 videoriginalexamplesofbi-amalgamationsand,inparticular,showthatBoisen- 1 : Sheldon’sCPI-extensions[7]canbeviewedasbi-amalgamations(Noticethat[15, v i Example2.7]showsthatCPI-extensionscanbeviewedasquotientringsofamalga- X matedalgebras). Theyalsoshowhoweverybi-amalgamationcanariseasanatural r a pullback(orevenasaconductorsquare)andthencharacterizepullbacksthatcan ariseasbi-amalgamations. ThisallowedthemtocharacterizeTraverso’sglueings ofprimeideals[29,31,32,33]whichcanbeviewedasspecialbi-amalgamations. Then,thelasttwosectionsdeal,respectively,withthetransferofsomebasicring theoreticpropertiestobi-amalgamationsandthestudyoftheirprimeidealstruc- tures. Alltheirresultsrecoverknownresultsonduplicationsandamalgamations. Date:January29,2016. 2010Mathematics SubjectClassification. 13F05, 13A15, 13E05, 13F20, 13C10, 13C11, 13F30, 13D05, 16D40,16E10,16E60. (⋆)SupportedbyKingFahdUniversityofPetroleum&MineralsunderResearchGrant#RG1310. (1)Correspondingauthor. 1 2 S.KABBAJ,N.MAHDOU,ANDM.A.S.MOUTUI Finally,itisworthwilerecallingthat,veryrecently,Finocchiaroinvestigatedneces- saryandsufficientconditionsforanamalgamatedalgebratoinheritvariousPru¨fer conditions(includingthearithmeticalproperty)[19]. Thispaperstudiesthetransferofthearithmeticalpropertyandrelatednotions to bi-amalgamations. A ring R is arithmetical if every finitely generated ideal is locallyprincipal[20,25];andRissemihereditaryifeveryfinitelygeneratedidealis projective [11]. The following diagram of implications summarizes the relations betweenthemainthreenotionsinvolvedinthispaper: Rissemihereditary ⇓ w.dim(R)≤1 ⇓ Risarithmetical where w.dim(R) denotes the weak global dimension of R. Recall that all these propertiesare identical to the notion of Pru¨fer domain if R has no zero-divisors, andthattheaboveimplicationsareirreversible,ingeneral,asshownbyexamples provided in [1, 4, 5, 6, 8, 9, 10, 12, 13, 22, 23, 24]. Very recently, these conditions (amongotherPru¨ferconditions)werethoroughlyinvestigatedinvariouscontexts ofduplications[12]. Thispaperestablishesnecessaryandsufficientconditionsforabi-amalgamation toinheritthe arithmeticalproperty,withapplicationsonthe weakglobaldimen- sionandtransferofthesemihereditaryproperty. Section2isdevotedtothetransfer results,themainofwhich(Theorem2.1)statesthat”A⊲⊳f,g(J,J′)isarithmeticalifand onlyifboth f(A)+Jandg(A)+J′arearithmeticaland,foreverym∈Max(A,I ),J =0 o Sm orJ′ =0”. Followseveralapplicationsfeaturingthetransferofotherrelatedprop- S′m ertiesinbi-amalgamations,amalgamations,andduplications. Allobtainedresults recoverandcomparetopreviousworkscarriedonvarioussettingsofduplications andamalgamations,andcapitalizeonrecentresultsonbi-amalgamations. (Asto previousworksonpullbacks,seeRemark2.2.) InSection3,allresultsarebacked withnewandillustrativeexamplesarisingasbi-amalgamations. Notice,atthispoint,thatinthepresenceoftheequality f−1(J)=g−1(J′), J=Bif andonlyifJ′=C;andinthiscaseA⊲⊳f,g(J,J′)=B×C. Therefore,inthispaper,we willomit this case (i.e., J and J′ willalwaysbe proper)since itis known thatthe abovePru¨fernotionsarestableunderfiniteproducts(cf. [12,p. 251]). Throughout,foraringR,Spec(R)(resp.,Max(R))willdenotethesetofallprime (resp., maximal)idealsof R, and, for anyidealI of R, Spec(R,I) (resp., Max(R,I)) willdenotethesetofallprime(resp.,maximal)idealsofRcontainingI. BI-AMALGAMATIONSSUBJECTTOTHEARITHMETICALPROPERTY 3 2. Results Let f :A→Band g:A→Cbetworinghomomorphisms andlet J and J′ betwo properidealsofBandC,respectively,suchthatI := f−1(J)=g−1(J′). Allalongthis o section, A⊲⊳f,g(J,J′) will denote the bi-amalgamation of A with (B,C) along (J,J′) withrespectto(f,g). Thissectioninvestigatesthearithmeticalandsemihereditary propertiesaswellastheweakglobaldimensioninbi-amalgamations. The first main result establishes necessary and sufficient conditions for a bi- amalgamation to inherit the arithmetical property. To this purpose, let us adopt thefollowingnotation: Foranyp∈Spec(A,I )(resp.,∈Max(A,I )),considerthemultiplicativesubsets o o S := f(A−p)+J and S′ :=g(A−p)+J′ p p ofBandC,respectively,andlet fp:Ap→BSp and gp:Ap→CS′p bethecanonicalringhomomorphisms inducedby f and g. Onecaneasilycheck that f−1(J )=g−1(J′ )=(I ) . p Sp p S′p o p Moreover,by[26,Lemma5.1],P:=p⊲⊳f,g(J,J′)isaprime(resp.,maximal)idealof A⊲⊳f,g(J,J′)and,by[26,Proposition5.7],wehave A⊲⊳f,g(J,J′) (cid:27)A ⊲⊳fp,gp (J ,J′ ). P p Sp S′p (cid:16) (cid:17) Thesefactswillbeusedinthesequelwithoutexplicitreference. Recallthatalocal arithmetical ring is also called a chained ring (i.e., its lattice of ideals is totally orderedbyinclusion). Theorem2.1. Undertheabovenotation,wehave: (1) A⊲⊳f,g(J,J′)isachainedringifandonlyifboth f(A)+Jandg(A)+J′arechained ringsandJ=0orJ′=0. (2) A⊲⊳f,g(J,J′)isarithmeticalifandonlyifboth f(A)+Jandg(A)+J′arearithmetical and,foreverym∈Max(A,I ),J =0orJ′ =0. o Sm S′m Proof. (1) By [26, Proposition 3.1], A⊲⊳f,g (J,J′) arises as a pullback D:=α× β A withKer(α)=J,Ker(β)=J′,andp (D)= f(A)+J(resp.,p (D)=g(A)+J′)whereIop 1 2 1 (resp.,p )denotestherestrictiontoDoftheprojectionof(f(A)+J)×(g(A)+J′)into 2 f(A)+J (resp., g(A)+J′). Moreover, recall that the chained ring notion is stable underfactorringand f(A)+J (cid:27) g(A)+J′ [26,Proposition4.1(3)]). Therefore,theresult J J′ followsreadilyfrom[19,Proposition4.9]. (2) First note that (1) is the local version of (2). In order to see this, recall that A⊲⊳f,g (J,J′) is local if and only if both f(A)+J and g(A)+J′ are local; and 4 S.KABBAJ,N.MAHDOU,ANDM.A.S.MOUTUI m⊲⊳f,g (J,J′) is the maximal ideal of A⊲⊳f,g(J,J′), where m is the unique maximal idealofAcontainingI [26,Proposition5.4]. Moreover,inviewoftheisomorphism o A⊲⊳f,g(J,J′) (cid:27) f(A)+J 0×J′ givenby[26,Proposition4.1(2)],wededucethat m⊲⊳f,g(J,J′) ≃ f(m)+J 0×J′ is the maximal ideal of f(A)+J and, similarly, g(m)+J′ is the maximal ideal of g(A)+J′. HenceSm andS′m shallconsistofunitsonlysothat JSm =J and JS′′m =J′, asdesired. Now,assumethatA⊲⊳f,g(J,J′)isarithmetical. Letm∈Max(A,I )andM:=m⊲⊳f,g o (J,J′). Therefore Am⊲⊳fm,gm (JSm,JS′′m)(cid:27) A⊲⊳f,g(J,J′) M (cid:16) (cid:17) isachainedring(sincethearithmeticalpropertyisstableunderlocalization). By (1),J orJ′ isnull,asdesired. Next,letL∈Spec(f(A)+J)andconsidertheprime Sm S′m idealofA⊲⊳f,g(J,J′)givenby L:= L×(g(A)+J′) ∩ A⊲⊳f,g(J,J′) . (cid:16) (cid:17) (cid:16) (cid:17) IfJ*L,thenby[26,Proposition5.3(2)], (f(A)+J) (cid:27) A⊲⊳f,g(J,J′) L L (cid:16) (cid:17) isarithmetical. Next,assumethatJ⊆L. By[26,Lemma5.2],wehave L:=p⊲⊳f,g(J,J′) wherep:= f−1(L)∈Spec(A,I )andonecaneasilyverifythatL= f(p)+J. So, o A ⊲⊳fp,gp (J ,J′ )(cid:27) A⊲⊳f,g(J,J′) p Sp S′p L (cid:16) (cid:17) is a chained ring. By (1), f (A )+J is a chained ring and (as seen above) with p p Sp maximalideal f (pA )+J . Thefactthat f (A )+J islocalyields: p p Sp p p Sp Claim1. f (A )+J =(f(A)+J) . p p Sp L Indeed,firstobservethat S =(f(A)+J)\(f(p)+J)=(f(A)+J)\L p and, hence, both f (A )+J and (f(A)+J) are subrings of B . The forward p p Sp L Sp inclusionisobvious. Toprovetheother,letx∈(f(A)+J) ;thatis, L f(a)+i 1 f(a) i x= = + f(s)+j f(s)+j! 1 ! f(s)+j forsomea∈A,s∈A\pandi,j∈J. Clearly,itsufficestoshowthat 1 ∈ f (A )+J . f(s)+j p p Sp BI-AMALGAMATIONSSUBJECTTOTHEARITHMETICALPROPERTY 5 Thisistruesinceonecancheckthat f(s)+j f(s) j = + < f (pA )+J 1 1 1 p p Sp as f (pA )+J isthemaximalidealof f (A )+J ,provingtheclaim. p p Sp p p Sp By (1), (f(A)+J) is arithmetical. Consequently, f(A)+J is (locally) arithmetical L andsoisg(A)+J′viasimilararguments. Conversely,assume f(A)+Jandg(A)+J′arearithmeticaland,∀m∈Max(A,I ), o J or J′ is null. Let M∈Max(A⊲⊳f,g (J,J′)). Suppose that J×J′ *M. By [26, Sm S′m Proposition5.3(2)],thereisL,say,inSpec(f(A)+J)suchthat (A⊲⊳f,g(J,J′))M(cid:27)(f(A)+J)L. So,inthiscase,(A⊲⊳f,g(J,J′))Misobviouslyarithmetical. Next,supposeJ×J′⊆M. By[26,Proposition5.3(1)&Lemma5.1],thereisauniquem∈Max(A,I )suchthat o M=m⊲⊳f,g(J,J′). Byhypothesiswehave,say,J′ =0. Now,letL:= f(m)+J,aprimeidealof f(A)+J. S′m Itfollows,via[26,Proposition4.1(2)]andClaim1,that: A⊲⊳f,g(J,J′) M (cid:27) Am⊲⊳fm,gm (JSm,0) (cid:16) (cid:17) (cid:27) fm(Am)+JSm = (f(A)+J) . L So, in this case too, (A⊲⊳f,g (J,J′))M is arithmetical. Consequently, A⊲⊳f,g (J,J′) is arithmetical,completingtheproofofthetheorem. (cid:3) Remark 2.2. In Proposition 3.2 of [26], it is proved that every bi-amalgamation A⊲⊳f,g(J,J′) can be viewed as a conductor square with conductor J×J′. Boynton examined the transfer of the arithmetical property to conductor squares in the special case where the conductor ideal is regular [8, Theorem 3.3] (and also [9, Theorem 4.1]). We cannot appeal to this result in the context of Theorem 2.1 since, under the assumption “J×J′ is regular,” the bi-amalgamation A⊲⊳f,g (J,J′) can never satisfy the arithmetical property (because of the necessary condition: ∀m∈Max(A,I ), J =0or J′ =0). Thisremarkisalsovalidfortheforthcoming o Sm S′m Corollary 2.8 (on the weak global dimension) and Corollary 2.11 (on the semi- hereditaryproperty). Remark2.3. ObservethatTheorem2.1(1)canalsoreadasfollows: A⊲⊳f,g(J,J′)isa chainedringifandonlyif“J=0and g(A)+J′isachainedring”or“J′=0and f(A)+J is a chained ring” which is obvious from the facts that the chained ring notion is stableunderfactorringand f(A)+J (cid:27) g(A)+J′ [26,Proposition4.1(3)]). J J′ As an illustrative example for Theorem 2.1, Example 3.1 provides an original arithmeticalringwhicharisesasabi-amalgamation. 6 S.KABBAJ,N.MAHDOU,ANDM.A.S.MOUTUI RecallthattheamalgamationofAwithBalongJwithrespectto f isgivenby A⊲⊳f J:= (a,f(a)+j)|a∈A,j∈J . n o Clearly, every amalgamation can be viewed as a special bi-amalgamation, since A⊲⊳f J=A⊲⊳idA,f (f−1(J),J). Accordingly, Theorem 2.1 covers the special case of amalgamations,asrecordedbelow. Corollary2.4. Undertheabovenotation,wehave: (1) A⊲⊳f J isachainedringifandonlyifbothAand f(A)+Jarechainedringsand J=0or f−1(J)=0. (2) A⊲⊳f JisarithmeticalifandonlyifbothAand f(A)+Jarearithmeticaland,for everym∈Max(A,f−1(J)),JSm =0or fm−1 JSm =0. (cid:0) (cid:1) Remark2.5. Recently,Finocchiaroprovedthefollowingresultforthetransferofthe arithmeticalpropertytoamalgamations: ”Assumethat,foreachm∈Max(A,f−1(J)), either fm is surjective or fm−1 JSm ,0. Then, A⊲⊳f J is arithmetical if and only if A is arithmetical,J =0foreachm(cid:0)∈M(cid:1)ax(A,f−1(J)),andforanym′∈Max(B)notcontaining Sm J,theidealsofBm′ aretotallyorderedbyinclusion”[19,Proposition4.10]. Corollary2.4 covers this result due to the basic fact that if fm is surjective and JSm ,0 then fm−1 JSm ,0; combined with the two-type maximal ideal structure of A⊲⊳f J (cf. [16,(cid:0)Pro(cid:1)position 2.6]and[19, Proposition 2.5]);precisely,Am(cid:27)(A⊲⊳f J)m⊲⊳fJ when JSm =0andBm′ (cid:27)(A⊲⊳f J)m′ wherem′= (a,f(a)+j)∈A⊲⊳f J| f(a)+j∈m′ . n o Remark 2.6. Assume J,0. Then Remark 2.3 combined with [26, Corollary 4.6] yield: A⊲⊳f J is a chained ring (resp., valuation domain) if and only if f−1(J)=0 and f(A)+Jisachainedring(resp.,valuationdomain). For an original example of arithmetical ring arising as an amalgamation, see Example3.2. Next,letI beaproperidealofA. The(amalgamated)duplicationof AalongIisaspecialamalgamationgivenby A⊲⊳I:=A⊲⊳idA I= (a,a+i)|a∈A,i∈I . n o The above corollary recovers known results on the transfer of the arithmetical propertytoduplications,asshownbelow. Corollary2.7([12,Theorem3.2(1)&Corollary3.8(1)]). Wehave: (1) A⊲⊳IisachainedringifandonlyifAisachainedringandI=0. (2) A⊲⊳IisarithmeticalifandonlyifAisarithmeticalandIm=0,∀m∈Max(A,I). Asanother applicationof Theorem2.1, we getnecessaryandsufficient condi- tions for a bi-amalgamation to have weak global dimension at most 1. For this purpose,letNil(R)denotethenilradicalofaringR. BI-AMALGAMATIONSSUBJECTTOTHEARITHMETICALPROPERTY 7 Corollary 2.8. Assume w.dim(f(A)+J)≤1, w.dim(g(A)+J′)≤1, J∩Nil(B)=0, J′∩Nil(C)=0and,∀m∈Max(A,I ),J =0orJ′ =0. Thenw.dim A⊲⊳f,g(J,J′) ≤1. o Sm S′m TheconverseholdsifI isradical. (cid:16) (cid:17) o Proof. Recall that a ring R has weak global dimension at most 1 if and only if R is arithmetical and reduced [5, Theorem 3.5]. A combination of this fact with Theorem 2.1 and [26, Proposition 4.7] (on the transfer of the reduced property) leadstotheconclusion. (cid:3) The converseof Corollary2.8isnottrue ingeneral. Acounter-exampleinthe special case of amalgamations is given in Example 3.3. Also, as an illustrative example for this result, Example 3.4 features an original example of a ring with weakglobaldimension≤1whicharisesasabi-amalgamation. Forthespecialcaseofamalgamations,wegetamorewell-roundedresult: Corollary2.9. Undertheabovenotation,wehave: w.dim(A⊲⊳f J)≤1ifandonlyifw.dim(A)≤1, f(A)+Jisarithmetical(resp.,Gaussian), J∩Nil(B)=0and,foreverym∈Max(A,f−1(J)),JSm =0or fm−1 JSm =0. (cid:0) (cid:1) Proof. CombineCorollary2.4(2)and[26,Corollary4.9]withthewell-knownfacts thatw.dim(R)≤1ifandonlyifRisreducedandarithmetical(resp.,reducedand Gaussian)[5,Theorems3.5&4.8]. (cid:3) Remark2.5isalsovalidforCorollary2.9and[19,Proposition4.11]ontheweak globaldimension. SeeExample3.3wherew.dim(A⊲⊳f J)≤1andw.dim(f(A)+J)> 1. Corollary2.9recoversaknownresultforduplications: Corollary2.10([12,Theorem4.1(1)]). Wehave: w.dim(A⊲⊳I)≤1ifandonlyifw.dim(A)≤1andIm=0, ∀ m∈Max(A,I). A ring R is semihereditary if and only if R is coherent and w.dim(R)≤1 [5, Theorem3.3]. A combination of this factwith Corollary2.8and [26, Proposition 4.2]establishesthetransferofthesemihereditarypropertytobi-amalgamationsin thespecialcaseofNoetheriansettings. Corollary2.11. Assumethat f(A)+Jandg(A)+J′areNoetheriansemihereditaryrings, J∩Nil(B)=0,J′∩Nil(C)=0and,∀m∈Max(A,I ),J =0orJ′ =0. Then,A⊲⊳f,g(J,J′) o Sm S′m isaNoetheriansemihereditaryring. TheconverseholdsifI isradical. o For the special case of amalgamations, we have a more well-rounded general result. For this purpose, we first recall the following result which examines the transferofcoherencetoamalgamations. 8 S.KABBAJ,N.MAHDOU,ANDM.A.S.MOUTUI Lemma2.12([2, Theorem2.2]). Supposethat f−1(J)and J arefinitelygenerated inA and f(A)+J, respectively. Then: A⊲⊳f J is coherent if and only if A and f(A)+J are coherent. Contrast this result with [19, Proposition 4.14] on the transfer of coherence to amalgamations. ThenextresultisacombinationofthislemmaandCorollary2.9 withthewell-knownfactthatRissemihereditaryifandonlyifRiscoherentand w.dim(R)≤1[5,Theorem3.3]. Corollary 2.13. Suppose that f−1(J) and J are finitely generated in A and f(A)+J, respectively. Then: A⊲⊳f J is semihereditary ifand only ifA is semihereditary, f(A)+J is coherent arithmetical (resp., Coherent Gaussian), J∩Nil(B)=0 and, for every m∈ Max(A,f−1(J)),JSm =0or fm−1 JSm =0. (cid:0) (cid:1) SeeExample3.3whereA⊲⊳f Jissemihereditaryand f(A)+Jisnotsemiheredi- tary. Corollary2.13recoversaknownresultforduplications: Corollary2.14([12,Theorem4.1(2)]). SupposeIisfinitelygenerated. Then: A⊲⊳IissemihereditaryifandonlyifAissemihereditaryandIm=0, ∀ m∈Max(A,I). Contrastthisresultwith[19,Corollary4.15]onthetransferofthesemihereditary propertytoamalgamations. 3. Examples First, as an illustrative example for Theorem 2.1, we provide a family of non- reducedarithmeticalringswhichariseasbi-amalgamations. Example3.1. Let(A,m) be a valuationdomain, K:=qf(A), E a finitely generated A−modulesuchthatEm=0,andB:=A⋉EthetrivialringextensionofAbyE,and C:=K[[X]]. Consider the natural injective ring homomorphisms f :A֒→B and g:A֒→C and let J:=0⋉E. We claim that the bi-amalgamation R:=A⊲⊳f,g (J,0) is a non-reduced arithmetical ring. Indeed, notice first that f−1(J)= g−1(0)=0, f(A)+J = B, and g(A)= A. Further, B is (local) arithmetical by [28, Theorem 3.1]. So, R is a chained ring by Theorem 2.1. However, R is not reduced by [26, Proposition4.7]asJ2=0. Next, as an illustrative example for Corollary 2.4, we provide a non-reduced arithmeticalringwhicharisesasanamalgamation. Example 3.2. Let (A,m) be a valuation domain, E a nonzero divisible A-module whose submodules are totally ordered by inclusion (e.g., E:=qf(A)), and B:= A⋉E the trivial ring extension of A by E. Consider the natural injective ring homomorphism f :A֒→Bandlet J:=0⋉E. Then, theamalgamationR:=A⊲⊳f J BI-AMALGAMATIONSSUBJECTTOTHEARITHMETICALPROPERTY 9 isanon-reducedarithmeticalring. Indeed, f−1(J)=0and f(A)+J=Bisachained ringby[3,Theorem4.16]. So,RisachainedringbyCorollary2.4butnotreduced by[15,Proposition5.4]since J∩Nil(B),0. The converses of Corollary 2.8 and Corollary 2.11 are not true in general. A counter-example is given below in the trivial case of an amalgamation where A⊲⊳f J(cid:27)Aand f(A)+J=B. Example3.3. Considerthecanonicalsurjectiveringhomomorphism f :Z→Z/4Z andlet J denotethezeroidealofZ/4Z. Then,Z⊲⊳f J(cid:27)ZisaDedekinddomain and f(Z)+J=Z/4Zisnotreducedsothatw.dim(Z/4Z)>1. Next, in order to illustrate Corollary 2.8, one may use bi-amalgamations to enrich the literature with new examples of non-semihereditary rings with weak globaldimension≤1fromtheexistingones. Example 3.4. Let A be a Noetherian ring with w.dim(A ) ≤ 1 and let I be a o o proper ideal of Ao such that Im =0, ∀ m∈Max(Ao,I) e.g.,Ao :=Z/12Z and I:= 4Z/12Z; clearly, Im1 =0 and Im2 =0, where m1 :=2Z(cid:16)/12Z and m2 :=3Z/12Z . LetA:=A ⊲⊳I bethe amalgamatedduplicationof A alongI. ByCorollary2.10(cid:17), o o w.dim(A)≤1. Let D be any non-coherent ring with w.dim(D)≤1 (e.g., [24, Ex- ample 4.1]). Finally, consider the natural ring homomorphisms f :A։A and o g: A ֒→A×D, and let J :=I and J′ :=(I ⊲⊳I)×D. Then, the bi-amalgamation R:=A⊲⊳f,g (J,J′) is a non-semihereditary ring with weak global dimension ≤1. Indeed, notice first that f−1(J)=g−1(J′)=I⊲⊳I. Then, we have w.dim(f(A)+J)= w.dim(A )≤1 and w.dim(g(A)+J′)=w.dim((A×0)+((I⊲⊳I)×D))=w.dim(A× o D)=sup{w.dim(A),w.dim(D)}≤1. Moreover, let m⊲⊳I∈Max(A,I⊲⊳I). Neces- sarily,m∈Max(Ao,I). Therefore,Sm⊲⊳I = f(A−(m⊲⊳I))+J=(Ao−m)+I andhence JSm⊲⊳I =Im =0. Now, Ao and D are reduced and so are A and A×D. By Corol- lary 2.8, w.dim(R)≤1. Finally, note that R is not coherent (and, a fortiori, not semihereditary)since R (cid:27)g(A)+J′=A×Disnotcoherent(asDisnotcoherent). J×0 Next,asanillustrativeexampleforCorollary2.11,weprovideanewexample ofsemihereditaryringwhicharisesasabi-amalgamation. Example3.5. LetAbeaNoetheriansemihereditaryringandletIbeaproperideal of A such that Im =0, ∀ m∈Max(A,I) e.g., A:=Z/12Z and I:=4Z/12Z . Let B:=A⊲⊳Ibetheamalgamatedduplicati(cid:16)onofAalongIandletDbeaNoeth(cid:17)erian semihereditaryring. Finally, consider the naturalinjective ring homomorphisms f :A֒→Band g:A֒→A×D,andlet J:=I⊲⊳I=I×I and J′:=I×D. Then, thebi- amalgamationR:=A⊲⊳f,g(J,J′)isaNoetheriansemihereditaryring. Indeed,note that f−1(J)=g−1(J′)=Iand,∀ m∈Max(A,I),Sm:= f(A−m)+I×I= (A−m)+I × (cid:16) (cid:17) 10 S.KABBAJ,N.MAHDOU,ANDM.A.S.MOUTUI (A−m)+I . SothatJSm =(I×I)Sm(cid:27)Im×Im=0.Moreover, f(A)+J=A⊲⊳A=A×A a(cid:16)nd g(A)+(cid:17)J′=A×0+I×D=A×DareNoetheriansemihereditaryrings(sinceso areAandD). Therefore,Corollary2.11leadstotheconclusion. References [1] J.Abuihlail,M.JarrarandS.Kabbaj,Commutativeringsinwhicheveryfinitelygeneratedidealis quasiprojective,J.PureAppl.Algebra215(2011)2504–2511.2 [2] K.AlaouiIsmailiandN.Mahdou,Coherenceinamalgamatedalgebraalonganideal,Bull.Iranian Math.Soc.41(3)(2015)625–632.8 [3] D.D.AndersonandM.Winders,Idealizationofamodule,J.Commut.Algebra1(1)(2009)3–56.9 [4] C. Bakkari, S.KabbajandN.Mahdou, TrivialextensionsdefinedbyPru¨ferconditions, J.Pure Appl.Algebra214(2010)53–60.2 [5] S. Bazzoni and S. Glaz, Pru¨fer rings, in: J. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative IdealTheoryinCommutativeAlgebra: Atributetothework ofRobert Gilmer, Springer,NewYork,2006,pp.55–72.2,7,8 [6] S.BazzoniandS.Glaz,Gaussianpropertiesoftotalringsofquotients,J.Algebra310(2007)180–193. 2 [7] M.BoisenJr.andP.Sheldon, CPI-extension: overringsofintegraldomainswithspecialprime spectrum,Canad.J.Math.29(1977)722–737.1 [8] J.G.Boynton,Pullbacksofarithmeticalrings,Comm.Algebra35(2007)2671–2684.2,5 [9] J.G.Boynton,PullbacksofPru¨ferrings,J.Algebra320(2008)2559–2566.2,5 [10] J.G.Boynton,Pru¨ferconditionsandthetotalquotientring,Comm.Algebra39(5)(2011)1624–1630. 2 [11] H.Cartan,S.Eilenberg,HomologicalAlgebra,PrincetonUniversityPress,1956.2 [12] M.Chhiti,M.Jarrar,S.KabbajandN.Mahdou,Pru¨ferconditionsinanamalgamatedduplication ofaringalonganideal,Comm.Algebra43(1)(2015)249–261.1,2,6,7,8 [13] F.Couchot,Gaussiantrivialringextensionsandfqp-rings,Comm.Algebra43(7)(2015)2863–2874. 2 [14] M.D’Anna,AconstructionofGorensteinrings,J.Algebra306(6)(2006)507–519.1 [15] M.D’Anna,C.FinocchiaroandM.Fontana,Amalgamatedalgebrasalonganideal,in:M.Fontana, S.Kabbaj,B.Olberding,I.Swanson(Eds.),CommutativeAlgebraanditsApplications,Walterde Gruyter,Berlin,2009,pp.155–172.1,9 [16] M.D’Anna,C.FinocchiaroandM.Fontana,Propertiesofchainsofprimeidealsinanamalgamated algebraalonganideal,J.PureAppl.Algebra214(9)(2010)1633–1641.1,6 [17] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties,J.AlgebraAppl.6(3)(2007)443–459.1 [18] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative- canonicalideal,Ark.Mat.45(2)(2007)241–252.1 [19] C.Finocchiaro,Pru¨fer-likeconditionsonanamalgamatedalgebraalonganideal,HoustonJ.Math. 40(1)(2014)63–79.1,2,3,6,7,8 [20] L.Fuchs,UberdieIdealearithmetischerRinge,Comment.Math.Helv.23(1949)334–341.2 [21] S.Glaz,Commutativecoherentrings,LectureNotesinMathematics,1371,Springer-Verlag,Berlin, 1989. [22] S. Glaz, The weak global dimension of Gaussian rings, Proc. Amer. Math. Soc. 133 (9) (2005) 2507–2513.2 [23] S.Glaz,Pru¨ferconditionsinringswithzero-divisors,CRCPressSeriesofLecturesinPureAppl. Math.241(2005)272–282.2 [24] S.GlazandR.Schwarz,Pru¨ferconditionsincommutativerings,Arab.J.Sci.Eng.36(2011)967–983. 2,9 [25] C.U.Jensen,Arithmeticalrings,ActaMath.Hungr.17(1966)115–123.2 [26] S.Kabbaj,K.Louartiti,andM.Tamekkante,Bi-amalgamatedalgebrasalongideals,J.Commut. Algebra,toappear.harXiv:1407.7074i1,3,4,5,6,7,8 [27] H.MaimaniandS.Yassemi,Zero-divisorgraphsofamalgamatedduplicationofaringalongan ideal,J.PureAppl.Algebra212(1)(2008)168–174.1 [28] A.Mimouni, M.Kabbour, andN.Mahdou,Trivialringextensionsdefinedbyarithmetical-like properties,Comm.Algebra41(2013)4534–4548.8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.