ebook img

Belief Functions: Theory and Applications: 4th International Conference, BELIEF 2016, Prague, Czech Republic, September 21-23, 2016, Proceedings PDF

255 Pages·2016·16.191 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Belief Functions: Theory and Applications: 4th International Conference, BELIEF 2016, Prague, Czech Republic, September 21-23, 2016, Proceedings

Jirina Vejnarová Václav Kratochvíl (Eds.) 1 6 Belief Functions: 8 9 I A Theory and Applications N L 4th International Conference, BELIEF 2016 Prague, Czech Republic, September 21–23, 2016 Proceedings 123 fi Lecture Notes in Arti cial Intelligence 9861 Subseries of Lecture Notes in Computer Science LNAI Series Editors Randy Goebel University of Alberta, Edmonton, Canada Yuzuru Tanaka Hokkaido University, Sapporo, Japan Wolfgang Wahlster DFKI and Saarland University, Saarbrücken, Germany LNAI Founding Series Editor Joerg Siekmann DFKI and Saarland University, Saarbrücken, Germany More information about this series at http://www.springer.com/series/1244 ř á á í Ji ina Vejnarov V clav Kratochv l (Eds.) (cid:129) Belief Functions: Theory and Applications 4th International Conference, BELIEF 2016 – Prague, Czech Republic, September 21 23, 2016 Proceedings 123 Editors Jiřina Vejnarová Václav Kratochvíl Institute of Information Theory and Institute of Information Theory and Automation Automation Czech Academy ofSciences Czech Academy ofSciences Prague Prague Czech Republic Czech Republic ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notesin Artificial Intelligence ISBN 978-3-319-45558-7 ISBN978-3-319-45559-4 (eBook) DOI 10.1007/978-3-319-45559-4 LibraryofCongressControlNumber:2016949600 LNCSSublibrary:SL7–ArtificialIntelligence ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The theory of belieffunctions, also referred to as evidence theory or Dempster-Shafer theory, is a well-established general framework for reasoning with uncertainty. It has well-understood connectionstootherframeworks, suchasprobability,possibility,and impreciseprobabilitytheories.FirstintroducedbyArthurP.Dempsterinthecontextof statistical inference, the theory was later developed by Glenn Shafer into a general framework for modeling epistemic uncertainty. These early contributions have pro- vided thestartingpointsfor many importantdevelopments,including theTransferable Belief Model and the Theory of Hints. The biennial BELIEF conferences (organized by the Belief Functions and Appli- cations Society) are dedicated to the exchange of ideas, reporting of recent achieve- ments, and presenting the wide range of applications of this theory. This conference series was startedinBrest, France, in2010; thesecond event was held inCompiègne, France, in May 2012; and the third in Oxford, UK, in September 2014. Thepresentvolumecontainstheproceedingsofthe4thInternationalConferenceon Belief Functions, which took place in Prague, Czech Republic, on September 21–23, 2016. The book contains 25 peer-reviewed papers (out of a total number of 33 sub- missions)describingrecentdevelopmentsconcerningboththeoreticalissues(including combination rules, conflict management, and generalized information theory) and applications in various areas (such as image processing, material sciences, and navigation). The editors wouldlike tothank all those whocontributed tothisvolumeaswell as those who helped with organizing the conference. We would especially like to thank Thierry Denœux and Arnaud Martin, members of the Steering Committee, whose experience with conference organization was invaluable, and the members of the ProgramCommitteeandexternalreviewersforcarefullyreviewingallthesubmissions. We would also like to thank the administration of the Institute of Information Theory andAutomation oftheCzechAcademy ofSciences,wheretheconferencetook place. July 2016 Jiřina Vejnarová Václav Kratochvíl Organization Steering Committee Fabio Cuzzolin Oxford Brookes University, UK Thierry Denœux Université de Technologie de Compiègne, France Arnaud Martin Université de Rennes1/IRISA, France Program Committee Alessandro Antonucci IDSIA, Switzerland Giulianella Coletti Università degli Studi di Perugia, Italy Olivier Colot Université Lille 1, France Frank Coolen Durham University, UK Inés Couso University of Oviedo, Spain Fabio Cuzzolin Oxford Brookes University, UK Milan Daniel Jan Becher - Karlovarská Becherovka, a.s., Czech Republic Thierry Denœux Université de Technologie de Compiègne, France Sébastien Destercke CNRS, UMR Heudiasyc, France Jean Dezert Onera, France Zied Elouedi Institut Supérieur de Gestion de Tunis, Tunisia Thomas Fetz University of Innsbruck, Austria Michel Grabisch Université Paris 1, France Radim Jiroušek University of Economics, Czech Republic Anne-Laure Jousselme NATO CMRE, Italy Tomáš Kroupa Czech Academy of Sciences, Czech Republic Éric Lefèvre LGI2A Université d’Artois, France Weiru Liu Queen’s University Belfast, UK Liping Liu The University of Akron, USA Arnaud Martin Université de Rennes1/IRISA, France David Mercier Université d’Artois, France Enrique Miranda University of Oviedo, Spain Serafin Moral University of Granada, Spain Michael Oberguggenberger University of Innsbruck, Austria Michele Rombaut Gipsa-lab, France Prakash P. Shenoy University of Kansas School of Business, USA Johan Schubert Swedish Defence Research Agency, Sweden Barbara Vantaggi Università “La Sapienza”, Italy Jiřina Vejnarová Czech Academy of Sciences, Czech Republic VIII Organization Paolo Vicig University of Trieste, Italy Ronald Yager Machine Intelligence Institute - Iona College, USA BELIEF 2016 was organized by the Institute of Information Theory and Automation, Czech Academy of Sciences on behalf of BFAS - Belief Functions and Applications Society. Local Organizing Committee Jiřina Vejnarová (Chair) Czech Academy of Sciences, Czech Republic Milan Daniel Jan Becher - Karlovarská Becherovka, a.s., Czech Republic Radim Jiroušek University of Economics, Czech Republic Václav Kratochvíl Czech Academy of Sciences, Czech Republic Support The conference was supported by: Belief Functions and Applications Society Institute of Information Theory and Automation, Czech Academy of Sciences Contents Theoretical Issues Entropy of Belief Functions in the Dempster-Shafer Theory: A New Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Radim Jiroušek and Prakash P. Shenoy A New Matrix Addition Rule for Combining Linear Belief Functions . . . . . . 14 Liping Liu On Internal Conflict as an External Conflict of a Decomposition of Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Alexander Lepskiy Decission Designing an Evidential Assertion Language for Multiple Analysts. . . . . . . . 37 David Burke A New ER-MCDA Mapping for Decision-Making Based on Imperfect Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Simon Carladous, Jean-Marc Tacnet, Jean Dezert, Guillaume Dupouy, and Mireille Batton-Hubert Applying ER-MCDA and BF-TOPSIS to Decide on Effectiveness of Torrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Simon Carladous, Jean-Marc Tacnet, Jean Dezert, Deqiang Han, and Mireille Batton-Hubert Decision-Making with Belief Interval Distance. . . . . . . . . . . . . . . . . . . . . . 66 Jean Dezert, Deqiang Han, Jean-Marc Tacnet, Simon Carladous, and Yi Yang The BF-TOPSIS Approach for Solving Non-classical MCDM Problems . . . . 75 Jean Dezert, Deqiang Han, Jean-Marc Tacnet, Simon Carladous, and Hanlin Yin Use of Evidence Theory in Fault Tree Analysis for Road Safety Inspection . . . 84 Nopadon Kronprasert and Nattika Thipnee Classification Characterization of Experts in Crowdsourcing Platforms . . . . . . . . . . . . . . . 97 AmalBenRjab,MouloudKharoune,ZoltanMiklos,andArnaudMartin X Contents k-EVCLUS: Clustering Large Dissimilarity Data in the Belief Function Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 OrakanyaKanjanatarakul,SongsakSriboonchitta,andThierryDenœux SVM Classifier Fusion Using Belief Functions: Application to Hyperspectral Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Marie Lachaize, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Aude Maitrot, and Roger Reynaud Semi-supervised Evidential Label Propagation Algorithm for Graph Data. . . . 123 Kuang Zhou, Arnaud Martin, and Quan Pan Information Fusion ConjunctiveRulesintheTheoryofBeliefFunctionsandTheirJustification Through Decisions Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Andrey G. Bronevich and Igor N. Rozenberg A Relationship of Conflicting Belief Masses to Open World Assumption. . . . 146 Milan Daniel Idempotent Conjunctive Combination of Belief Functions by Distance Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 John Klein, Sebastien Destercke, and Olivier Colot IPFP and Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Václav Kratochvíl and Jiřina Vejnarová Entropy-Based Counter-Deception in Information Fusion. . . . . . . . . . . . . . . 174 Johan Schubert Identification of Elastic Properties Based on Belief Function Inference . . . . . 182 Liqi Sui, Pierre Feissel, and Thierry Denœux D-S Theory for Argument Confidence Assessment . . . . . . . . . . . . . . . . . . . 190 Rui Wang, Jérémie Guiochet, Gilles Motet, and Walter Schön Applications Evidential Correlated Gaussian Mixture Markov Model for Pixel Labeling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 LinAn,MingLi,MohamedElYazidBoudaren,andWojciechPieczynski The Capacitated Vehicle Routing Problem with Evidential Demands: A Belief-Constrained Programming Approach. . . . . . . . . . . . . . . . . . . . . . . 212 Nathalie Helal, Frédéric Pichon, Daniel Porumbel, David Mercier, and Éric Lefèvre

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.