ebook img

Beit Qad Commercial Aquaponic system Technical Manual PDF

19 Pages·2013·3.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Beit Qad Commercial Aquaponic system Technical Manual

Beit  Qad  Commercial  Aquaponic  system         Technical  Manual         Philip  Jones     April  2013     1 Beit  Qad  Commerical  Aquaponic  System     Technical  Manual     By  Philip  Jones                                                           ©  Byspokes  and  Ma’an  Development  Centre,  2013   All  text,  illustrations  and  photos  by  Philip  Jones.     www.byspokes.org   [email protected] Table  of  contents   SYSTEM  OVERVIEW   1   SYSTEM  COMPONENTS   2   Fish  tanks   2   Solids  filtration   3   Biological  filtration   4   Mineralisation   6   Hydroponic  component   7   Seedling  production   8   Pumping  and  aeration   8   MANAGEMENT   10   Cycling   10   Aquaculture  system   10   Hydroponic  system   11   Water  quality   12   SYSTEM  OPERATION   13   Daily  tasks   13   Weekly  tasks   13   Monthly  tasks   13   TROUBLESHOOTING   14   DIRECTORY   15 System  overview     The  commercial  aquaponic  system  designed  for  the  Beit  Qad  demonstration  site   consist  of  two  interlinked  components;  a  recirculating  aquaculture  system  (RAS)   and  a  hydroponic  system.  The  two  systems  are  linked  by  a  double  sump  tank   which  has  been  designed  to  allow  for  the  RAS  and  hydroponic  components  to  be   operated  independently  (as  aquaculture  and  hydroponic  systems)  or  together   (as  an  aquaponic  system).    The  RAS  component  has  been  designed  to  be  a  “low   head”   system   –   i.e.   with   minimal   vertical   height   difference   between   the   maximum  and  minimum  water  levels  across  the  components.  This  is  to  reduce   the  energy  required  for  pumping  water.         Figure  1:  Overview  of  the  aquaponic  system  showing  aquaculture  component  (left)  and   hydroponic  component  (right).     When  both  components  are  operating  together,  then  dissolved  nutrients  from   the  aquaculture  wastes  are  delivered  to  the  hydroponic  component  to  be  taken   up   by   plants.   During   independent   operation,   nutrients   from   the   aquaculture   system   are   not   passed   to   the   hydroponic   system   and   so   supplementary   hydroponic  nutrients  must  be  used.  However,  enabling  the  two  systems  to  be   operated  independently  greatly  enhances  the  system’s  resilience;  a  problem  in   one  of  the  systems  may  be  isolated  without  risking  the  other  system.             1 System  components     Fish  tanks     The   aquaponic   system   consists   of   four   separate   round   fish   tanks   each   of   approximately  2.1m3,  thus  the  total  fish  tank  water  volume  is  around  8.4m3.    The   fish  tanks  are  constructed  from  standard,  2.5m3  (1.46m  diameter)  water  storage   tanks  (white,  to  reduce  heat  gain  in  the  summer),  which  have  been  opened  by   cutting  off  the  top,  just  below  the  shoulder  (1cm  above  the  uppermost  moulding   line).       The  fish  tanks  are  positioned  close  to  each  other  in  order  to  be  able  to  share   common  drain  and  influent  pipe  main  lines.  The  fish  tanks  are  all  levelled  with   each  other,  and  excavated  slightly  into  the  ground  (floor  height  -­‐40cm)  in  order   to  facilitate  levelling  of  the  other,  shorter,  components.   Figure  2:  Fish  tanks  being  put  into  place  (left)  and  detail  of  common  fish-­‐tank  drain   (right).       Effluent  water  is  drawn  from  the  bottom  centre  of  the  fish  tank  using  a  “solids  lift   overflow”  which  sets  the  maximum  water  depth  in  the  fish  tank  to  135cm.  The   overflow  pipes  (50mm  diameter)  from  all  the  fish  tanks  extend  outside  the  tanks   towards  a  central  point  between  the  tanks  where  they  are  united  by  a  110mm   collector  trap.  The  common  drainage  is  by  110mm  pipe  from  this  point.     Influent  water  is  delivered  to  each  fish  tank  at  a  height  just  above  the  water   surface  level,  at  a  rate  of  around  3m3/h  (to  fully  exchange  fish  tank  water  volume   1.4  times  per  hour).  The  water  is  delivered  parallel  to  the  fish  tank  wall  in  such  a   way  as  to  set  up  a  clockwise  rotational  current  within  the  tank.  This  circular  flow   facilitates  settling  of  the  solid  wastes  in  the  bottom  centre  of  the  fish  tanks.             2 Solids  filtration     Coarse  solids  are  removed  from  the  system  via  a  “radial  flow  separator”.  The   radial  flow  separator  works  by  forcing  the  water  flow  to  change  direction  and   velocity,  which  encourages  solid  particles  to  settle  out.  Radial  flow  separators   are   very   space   efficient   when   compared   to   standard,   gravity   based   settling   ponds,  and  typically  operate  with  loading  rates  of  10m3/m2/hour.  Thus,  to  match   the   fish   tank   effluent   flow   rate   of   this   system   (12m3/hour),   a   radial   flow   separator  of  1.2m2  surface  area  is  needed.       The   radial   flow   separator   is   also   constructed   from   a   white,   standard   water   storage  tank  (1.5m3;  1.35m  diameter  -­‐  thus  1.4m2  water  surface  area)  with  the   top  removed.  The  top  of  the  water  tank  is  inserted  upside-­‐down  into  the  tank  to   make  a  slightly  conical,  funnel  like  false  floor  to  facilitate  collection  of  all  solid   wastes  in  the  centre.  The  tank  is  positioned  such  that  the  upper  rim  level,  and   water  surface  level  are  the  same  as  those  of  the  fish  tanks.   Figure  3:  Design  of  the  radial  flow  filter,  showing  major  components  and  internal  layout.       3 The  fish  tank  effluent  water  enters  the  radial  flow  separator  via  a  110mm  pipe   which  extends  into  the  centre  of  the  separator,  where  there  is  an  upward  facing   elbow,   directing   water   flow   vertically   upwards.   Around   this   elbow   is   a   radial   flow   column   made   from   a   200L   blue   barrel,   which   extends   slightly   above   the   water   surface   level.   This   forces   the   incoming  water  to  change   direction   from   up-­‐flowing   to  down-­‐flowing.  Once  the   water   flows   beyond   the   lower   end   of   this   radial   flow   column,   it   changes   Figure  4:  Constructed  radial  flow  filter   direction  once  again  and  flows  upwards.  With  each  change  of  direction,  the   velocity  of  the  water  also  decreases,  which  gives  solid  wastes  the  chance  to  settle   to  the  bottom  of  the  separator  by  gravity.       Water  exits  the  radial  flow  separator  via  a  110mm  pipe  positioned  just  below  the   water  surface  level.  Solids  can  be  periodically  drawn  out  from  the  bottom  of  the   separator  via  a  sludge  drain,  made  from  50mm  pipe  drawing  from  just  above  the   bottom  centre  of  the  separator.  Sludge  is  discharged  to  a  mineralisation  tank   where  it  can  be  converted  back  to  liquid  plant  nutrients.     In  addition  to  this  coarse  solids  separator,  all  water  passes  through  a  60μm  in-­‐ line  filter  before  reaching  the  hydroponic  component.         Biological  filtration     Biological  filtration  (the  conversion  of  toxic   ammonia   in   fish   wastes   into   nitrite   and   then  nitrate)  is  achieved  by  a  “Moving  Bed   Biofilm  Reactor”  MBBR.  MBBRs  are  relative   newcomers   to   the   aquaculture   industry.   MBBR   technology   uses   thousands   of   polyethylene   biofilm   carriers   (Error!   Reference  source  not  found.)  operating  in   mixed   motion   within   an   aerated   wastewater   treatment   basin.   Biocarriers   provide   a   very   large,   protected   surface,   which  supports  the  growth  of  heterotrophic   and  autotrophic  bacterial  communities.  The   specific   surface   area   (SSA)   of   biocarrier   media   is   typically   around   500m2/m3.   Figure  5:  Kaldness  type  biomedia     4 However,  MBBRs  function  best  at  fill  rates  below  70%  (usually  40-­‐60%)  as  this   ensures  adequate  movement  of  filter  media  within  the  MBBR.  Effective  surface   area  within  the  MBBR  vessel  is  therefore  200-­‐300m2/m3.  TAN  (total  ammonia   nitrogen)  removal  rates  fluctuate  depending  on  a  range  of  environmental  factors   (pH,  alkalinity,  temperature,  DO,  BOD  of  influent  water)  but  for  the  purposes  of   this  project  can  be  assumed  to  be  in  the  region  of  1g/m2/day.  Another  advantage   of  the  MBBR  is  that  it  allows  for  supplemental  oxygenation  and  CO  stripping  of   2 the  wastewater  –  further  enhancing  the  quality  of  effluent.     Daily  TAN  production  is  directly  related  to  the  amount  of  food  given,  and  the   protein  content  of  the  food,  and  can  be  calculated  using  the  following  equation:     TAN  =  Feed  weight  x  Protein  content  x  0.092                                                                            Time     It   is   proposed   to   use   32%   protein   feed,   delivered   at   2%   body   mass   (for   a   standing  crop  of  around  200kg)  in  this  system.  The  daily  total  feed  is  therefore   around  4kg.  This  gives  a  daily  TAN  production  of  118g.  118m2  of  surface  area  is   required  for  bacterial  nitrification  of  this  ammonia.  Given  the  biocarrier  SSA  of   500m3/m2,  then  236l  of  biocarrier  media  will  be  required,  in  a  vessel  of  787l    (at   30%  fill).    The  MBBR  in  this  system  has  been  purposefully  oversized  to  allow  for   future  expansion  of  the  aquaculture  component.  The  MBBR  is  constructed  from   two  1m3  IBC  tanks,  each  with  a  maximum  fill  volume  of  800l.  Thus,  at  maximum   operating  capacity,  and  a  biocarrier  fill  rate  increased  to  60%,  the  MBBR  could   denitrify  480g  TAN/day  –  equivalent  to  16kg  feed.     Figure  6:  Completed  MBBR  chamber  (left  image)  showing  influent  pipe  (lower  left  of   image),  effluent  pipe  (top  of  image)  and  aeration  grid  (at  the  base  of  the  chamber).     Images  on  the  right  detail  assembly  of  the  aeration  grid.     5 Water  enters  and  leaves  the  MBBR  via  110mm  pipe.  Aeration  is  provided  via  5   parallel  20mm  PVC  pipes,  with  2mm  holes  drilled  each  20mm  along  opposing   sides,  located  at  the  bottom  of  each  MBBR  chamber.    Water  exits  the  MBBR  via   110mm  pipe  to  the  aquaculture  sump  tank.       Mineralisation     Mineralisation  is  an  aerobic,  bacterial  process  by  which  the  complex  organic   molecules  found  in  solid  wastes  are  broken  down  into  simple  mineral  ions.  Full   mineralisation  requires  approximately  28  days  of  aerobic  bacterial  activity,  thus   a   mineralisation   tank   must   be   large   enough   to   allow   a   minimum   28-­‐day   residence  time  of  discharged  sludge.     Sludge  from  the  radial  flow  separator  is  discharged  into  a  mineralisation  tank  –   constructed  in  the  same  was  as  one  of  the  MBBR  chambers,  from  an  IBC  tank  and   aeration  grid.  Biocarrier  media  is  added  to  the  mineralisation  tank  to  provide   additional  surface  area  for  bacterial  activity,  and  also  to  facilitate  mechanical   breakdown  of  larger  particles  through  collision  and  agitation.  The  daily  sludge   discharge  volume  is  around  20l  (around  5l  sludge  is  produced  per  1kg  feed),  thus   a  minimum  volume  of  560l  is  required  to  provide  the  requisite  28-­‐day  residence   time.  The  functional  volume  of  the  mineralisation  tank  is  actually  800l,  and  so   this  requirement  is  exceeded  in  the  current  system  design.       Figure  7:  Mineralisation  tank  showing  vigorous  aeration  (left)  and  screened  pump   chamber  (right).       As   fresh   slurry   is   discharged   into   the   mineralisation   tank,   the   water   level   increases  slightly  and  the  supernatant  overflows  into  a  mineralised  nutrient   sump.   The   overflow   is   screened   to   prevent   the   exit   of   larger   particles,   and   effluent  passes  through  a  60μm  filter  before  reaching  the  sump.  The  sump  is   fitted  with  a  float-­‐switch  activated  pump  to  deliver  this  nutrient  laden  water   directly  to  the  hydroponic  system.     6

Description:
Figure 2: Fish tanks being put into place (left) and detail of common . constructed in the same was as one of the MBBR chambers, from an IBC tank
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.