ebook img

Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals. PDF

0.71 MB·English
by  CebePeggy
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals.

Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals SUBJECTAREAS: PeggyCebe1,XiaoHu2*,DavidL.Kaplan2,EvgenyZhuravlev3,AndreasWurm3,DanielaArbeiter3{ SOFTMATERIALS &ChristophSchick3 BIOMATERIALS BIOMATERIALS-PROTEINS 1DepartmentofPhysicsandAstronomy,MedfordMA,02155,USA,2DepartmentofBiomedicalEngineeringTuftsUniversity, BIOPHYSICS MedfordMA,02155,USA,3InstituteofPhysics,UniversityofRostock,18051Rostock,Germany. Received Beta-pleated-sheetcrystalsareamongthemoststableofproteinsecondarystructures,andareresponsible 16August2012 fortheremarkablephysicalpropertiesofmanyfibrousproteins,suchassilk,orproteinsformingplaquesas inAlzheimer’sdisease.Previousthinking,andtheacceptedparadigm,wasthatbeta-pleated-sheetcrystalsin Accepted thedrysolidstateweresostabletheywouldnotmeltuponinputofheatenergyalone.Hereweoverturnthat 19December2012 assumptionanddemonstratethatbeta-pleated-sheetcrystalsmeltdirectlyfromthesolidstatetobecome randomcoils,helices,andturns.Weusefastscanningchipcalorimetryat2,000 K/sandreportthefirst Published reversiblethermalmeltingofproteinbeta-pleated-sheetcrystals,exemplifiedbysilkfibroin.Thesimilarity 24January2013 betweenthermalmeltingbehavioroflamellarcrystalsofsyntheticpolymersandbeta-pleated-sheetcrystals isconfirmed.Significanceforcontrollingbeta-pleated-sheetcontentduringthermalprocessingof biomaterials,aswellastowardsdiseasetherapies,isenvisionedbasedonthesenewfindings. Correspondenceand requestsformaterials shouldbeaddressedto Manystructuralproteins,inthesolidstate,containextremelystablebetapleatedsheets(Fig.1).These P.C.(peggy.cebe@ secondary structures are stabilized by inter-chain hydrogen bonding in which every amino acid is tufts.edu)orC.S. laterally bonded twice to its nearest neighbor chain segments. The hydrogen bonds are responsible (christoph.schick@ fortheextraordinaryphysicalpropertiesofseveralnaturalproteins,likesilknotedforitshightensilestrength uni-rostock.de) (0.5,1.3 GPa),toughness(63104,163104 J/kg)1–4,biocompatibility,andbiodegradability.Theyalsoenable theformationofinsolublebeta-pleated-sheetstructuresinmanydisease-formingproteinssuchthosethatform plaques,asinAlzheimer’sdisease.Thepresentpioneeringinsights,whichdemonstratethefeasibilityofthermal *Currentaddress: meltingofbeta-pleated-sheets,suggestalternativeprocessingstrategiesfortheclassoffibrousproteins,andeven DepartmentofPhysics possiblyfornoveldiseasetherapies,relatedtobeta-pleated-sheetformingproteinswhichcouldbemeltedbylaser &Astronomy,and fastheating.Thisworksuggestsnewwaystothermallyprocesssolidproteinsintonovelmaterialforms,usefulfor Departmentof biomaterials.Theabilityreversiblytochangethebeta-pleated-sheetcrystalcontentinfibrousproteinsbyfast thermaltreatmentswillhaveanimpactonmanyaspectsofbiomaterialpropertiesthatneedtobecontrolledfor Biomedical optimalstructure-functionrelationships,including,e.g.,mechanicalproperties,thinfilmprocessing,andcon- Engineeringand trolleddrugreleasebehavior.Biologicaloutcomes,relatedtoratesofdegradabilityinvivo,andresponsesofcells Sciences,Rowan tosilkmaterialscaffoldsbothcriticallydependuponbeta-pleated-sheetcrystalcontent2,5,6.Forexample,lower University,Glassboro, beta-pleated-sheetcrystalcontentresultsinmorerapidratesofremodelingofsilk-basedbiomaterialsinvivoas NJ08028,USA. wellastheresponseofstemcellsgrownonthesefibrousproteinsubstrates6,7.Growthofstemcellscouldalsobe directedalongapatternedsubstrate,createdbyselectivemeltingofbeta-pleated-sheetcrystalsonthesubstrate. {Currentaddress: Theabilitytocontrolthiscrystalphasetransitionbyareversiblethermalprocesshaspotentialapplicationsinthe InstituteforBiomedical fieldsofsoftmaterials(e.g.,ultrathinfilms,hydrogels,microspheres,nanoparticles,nanofibers,orcomposites), controlled drug release and delivery, biosensors, biophotonics, nano-biotechnology, and tissue regeneration. Engineering, Beta-pleated-sheet crystalcontentisdirectly correlated, forexample, toreleasekineticsofmodelcompounds UniversityofRostock, ordrugssequesteredinsilkbiomaterials8. 18051Rostock, Previousthinking,andtheacceptedparadigm,wasthatunlikehelicalsecondarystructuresorbetastrands Germany. whichcandenatureinsolution,thesebeta-pleated-sheetcrystalsinthedrysolidstatecouldnotmeltuponinput ofheatenergyalone.Thefastheatingmethodsemployedinthepresentstudyprovethatevenbeta-pleated-sheet crystaldominatedstructuralproteinslikesilk,willthermallymeltundertheappropriateconditionsassketchedin Fig.1candverifiedbyFTIRspectroscopy. Hereweusesilkasanexemplarystructuralprotein.Similartosyntheticpolymerlamellarcrystals,thebio- molecularsilkchainundergoeschainfoldingtoformtwo-dimensionalsheetswhichstacktogethertoformthree- SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 1 www.nature.com/scientificreports Figure1|SilkFibroinStructureBeforeandAfterAssumedThermalMelting. (a)Athree-chainsilksequenceisdepictedbasedontheaminoacid hexamer,GAGAGS,withanti-parallelmolecularchainaxes.Thechaincomprisesatomsofcarbon(gray),nitrogen(blue),oxygen(red),andhydrogen (white),whichhaveintermolecularhydrogenbonding(representedasthreeshortverticallines).(b)Themolecularchainsstacktogethertoformthe three-dimensional,betapleatedsheetcrystal.Thissecondarystructureisformedbyspidersandsilkwormsnaturallyduringfiberspinningfromthe solutionstate,whichprocessconvertsrandomcoils,turns,andhelicesintothree-dimensionalcrystals.(c)Thetemperaturevs.timeprofileisshown duringfastthermaltreatment,whichcausesthebetapleatedsheetcrystals(atpointA)tobecomemeltedwithinafewtenthsofasecond,reversingthe naturalfiberspinningprocess,andrestoringthematerialtothenon-crystallinesolidstate(atpointB).Theon-chipmeltingusesheatingandcoolingrates ofthousandsofdegreespersecond. dimensionalcrystals(Fig.1b).IntheB.moridomesticatedsilkworm, and stability that makes silk useful in garments and in surgical beta-pleated-sheetcrystalsareinducedtoformnaturallyduringthe sutureshasalsoimpededeffortsbyscientiststostudyitsformation process of silk fiber spinning from water solution in the salivary andexplain itsproperties. Attempts to meltthebetapleated sheet gland5,9–15. Silk fibroin protein reconstituted from degummed silk crystalsthatcomprisesilk16havealwaysresultedindecomposition also crystallizes into beta-pleated-sheet crystals from concentrated whichobscuresthemeltingprocess(Fig.2a).Inorderfullytochar- water solutions, or from the dry state upon exposure of the non- acterizefibrousproteinslikesilk,knowledgeoftheirthermalbeha- crystallinefibrointomethanol(MeOH) ortohotwater vapor5,9,10. viorisessential.Recently,heatcapacitymeasurementswereusedto Onceformed,thebeta-pleated-sheetcrystalsstabilizethestructure investigatetheglasstransition(T )andcrystallization(T)processes g c andgivesilkitsuniquephysicalproperties.Theremarkablestrength insilkfibroin16–18,andshowedthesimilarityofthesetwotransitions Figure2|ComparisonofThermalCharacteristicsofSilkandSyntheticPolymeratDifferentHeatingRates.Observabletransitionsduringfirst(1,red) andsecond(2,blue)heatingincludeglasstransition(T),crystallizationexotherm(T),meltingendotherm(T ),andthermaldegradation(T ). g c m d Endothermsarepresentedwithdownwarddeflection.(a)FilmofreconstitutedB.morisilkfibroinproteinduringDSCheatingat2K/min.Thesample degradesandlosesmassuponfirstheating.Thesecondheatingscandoesnotretracethefirst,andnoglasstransitionorcrystallizationcanbeobserved. (b)Syntheticpolymer(exemplifiedbyisotacticpolystyrene,iPS)duringDSCheatingat2K/min.Sampledoesnotdegradeafterheatingto538K,andthe overlappingsecondheatingtraceshowsthesamethermaltransitions.(c)FilmofreconstitutedB.morisilkfibroinprotein,nowheatedat2,000K/susing fastscanningchipcalorimetry,showsmeltingofbetapleatedsheetcrystals.Thesecondtrace,aftercoolingfromthemeltat2,000K/s,confirmsthenon- crystallinenatureofthefilmafterbeta-pleated-sheetsweremeltedduringthefirstscan.(d,e)Samplefrom(c),imagedatroomtemperaturewith unpolarizedlightusinga203objectiveontheflat,opticallytransparentsensor,before(d)andafter(e)fastheatingto650K.Asaresultofmeltingthe filmchangesshapeslightly. SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 2 www.nature.com/scientificreports tothoseseen inflexible-chain syntheticpolymers. However,when overlapped curve 2, indicating that no thermal decomposition has performingheatflowmeasurementsattherelativelyslowratesof1– occurred. 20 K/min,typicalofdifferentialscanningcalorimetry(DSC),thesilk ThedataofFig.2cwereobtainedusingverysmallsamplemasses, melting transition (T ) is obscured by decomposition16–18, even on the order of tens of nanograms heated on a chip calorimeter m thoughthemeltingtransitionisseeninpolymersheatedundersim- (Supplementary Fig. S3). The chip calorimeter contains heating ilar conditions. Thermogravimetric studies of silk heated at 2 K/ and temperature sensing elements and gives a direct measure of min12undernitrogengasatmosphereshowedthatthermaldecom- the sample’s heat capacity through analysis of the differential positionbeginsat470 K,andcontinuestooccuroverabroadtem- power22–25 (Supplementary Figs. S3–S7). All fast scanning experi- perature range7, causing mass loss and converting the silk to black ments are conducted under an inert nitrogen atmosphere. In the char(SupplementaryFig.S1,insetimages).Correspondingheatflow centerofthechipsensor,thesilkfilmissupportedon,500 nmthin dataofdrysilk(SupplementaryFig.S2,step4drying)undernitrogen SiNxmembranecoveredbyasimilarlythickSiO2layer,whichallows gas atmosphere (Fig. 2a, and Supplementary Fig. S1) shows that infraredradiationtobetransmittedthroughthesampleforinsitu endothermic heat flow also occurs along with decomposition (sig- spectroscopic analysis after different stages of thermal treatment. nified by T ). The sample loses 25% of its mass by the time the The chain conformation in the crystals yields particular bands in d temperaturehasreached548K(SupplementaryFig.S1).Incontrast, the Fourier transform infrared (FTIR) spectra allowing detection an unambiguous crystal melting transition occurs in polymers with ofcrystallinityevenintheseverysmallsamples16,17,26,27. flexiblemolecularchains,suchaspolystyrene(Fig.2b),polyolefins,or TheSiNxmembraneisalsoopticallytransparentanddirectoptical nylons.Butinsilk,beta-pleated-sheetcrystalmeltingcannotbesepa- imagingofsampleswasperformedbeforeandafterfastheating,as rated from degradation using DSC, even though silk has flexible showninFig.2d,e,respectively.Themicroscopywasperformedat molecularchainsandisachemicalanaloguetonylon-2. roomtemperature,in-situ,whilethesampleremainedinplaceonthe Theinterchain bondingin fibrousproteins issostrongthat the sensor.Silkfibroin filmscontainedalargefraction, 0.30–0.4016,of intrachaincovalentbondsbegintodegradewellbeforethemelting beta-pleated-sheetcrystalsbutneverthelesswereopticallytranspar- transition. As a result, important information about the thermal ent. This suggests the beta-pleated-sheet crystals are in the nan- properties of silk, such as the temperature range of the beta sheet ometer size scale, and therefore do not scatter visible light. Silk crystal melting, is unable to be assessed using conventional DSC fibroin films were found to adhere slightly to the sensor. Visual heatingrates.Itwasourthinkingthatwecouldmitigatethedegra- indicationofmeltingcanbeseeninsmoothingofthecutfilmedges dationprocess,whichoccursevenunderaninertgasenvironment, andsomefilmshrinkage(Fig.2d,e)orformingadropletoutofsilk byemployingaveryfastheatingrate19,suchasratesnowavailable fiberswithlossofbirefringence(Figs.3d,eand4a,b).Moreimpor- throughuseofchipcalorimetry(Fig.1c).Then,itwouldbepossible tantly,thesilkfilmsandfibersafterfastheatingto650 Khavenot beenblackenedbydecomposition. to observe the thermal melting of beta-pleated-sheet crystals and providefundamentalinformationthatwouldcompletetheanalogy Weusedaseriesofthermaltreatments(Fig.3)todemonstratethat betweensyntheticpolymerthermaltransitionsandthoseoffibrous meltingandcrystallizationforsilkfibroinwerefullyreversible.The samplewasheatedandcooledonthechipsensorat2,000 K/swhile proteins. heatflowdatawerecollected.Beforeandafterfastheating,thesec- ondarystructureofthesamplewasexaminedin-situusingFourier Results transform infrared spectroscopy (FTIR) (Fig. 3a)16 of the spectral Thetechniqueoffastscanningchipcalorimetryallowsasampletobe regionsofAmideI(1600,1700 cm21,assignedtothepeptideback- heatedandcooledextremelyrapidly,withheatingrates19–21andalso bone)andAmideII(1500–1600 cm21)26,27.Secondarystructurewas coolingrates22–25ofmanythousandsofkelvinpersecond,providinga correlatedwiththetreatmentconditions(SupplementaryFig.S8). temperaturevs.timeprofileillustratedinFig.1c(seeSupplementary First, initially non-crystalline film (Fig. 3a, curve M0) contains Fig.S2).Inchipcalorimetry,timeofexposureofasampletohigh onlyhelices,turns,randomcoilsandsidegroupsecondarystructures temperaturesisgreatlyreducedsothatanentireheat/coolcycleis inAmideI,butnobeta-pleated-sheetcrystals.IntheAmideIIregion, completedin,0.3 s.Throughthistechnology,weobtainheatflow the Tyrosine ring vibration at 1515 cm21 increases after drying, dataofproteinswithinfractionsofasecondduringheatingtoavery whichwereportedpreviouslyforthicksilkfibroinfilms16.Thesame hightemperature(.700 K),preventingthermaldecompositionthat samplewasthenexposedaltogetherthreetimestoMeOH(bysoak- occursformostproteinsattemperaturesbeginningaround,500 K. ingtheentiresensor1sampleinavesselcontainingMeOHandthen This provides us a unique opportunity to investigate the melting dryinginair)toinducetheformationofthebeta-pleated-sheetcrys- behavior of solid protein crystals in the high temperature region tals,andeachexposurewasthenimmediatelyfollowedfirstbyinsitu (500–700 K). FTIRspectroscopytoverifythepresenceofbeta-pleated-sheetcrys- Thermalanalysisoffibroinusingfastscanningchipcalorimetryis talsandbyopticalmicroscopytodocumentshapeandcolorofthe showninFig.2c(redcurve1).Silkfibroincontainingbeta-pleated- sample, and then by heating at 2,000 K/s in the rapid scan calori- sheet crystals, when heated in an inert atmosphere at 2,000 K/s, metertomeltthejust-formedbeta-pleated-sheetcrystals.Afterthe displaysitsglasstransitionatTg(,474 K,atthisheatingrate)fol- rapid calorimetric heating scans the state of the sample was again lowedbyacompletemeltingendothermatTm(endothermpeakisat checked by FTIR spectroscopy and optical microscopy. Without ,530 K).Coolingthefilmatthesamefastratepreventstheoccur- removingthesamplefromthesensorthiscyclewasrepeatedthree renceofanyre-crystallizationofthebeta-pleated-sheetsandacom- times. pletelynon-crystallinesampleresults(Fig.1c).Whenthissampleis Absorption spectra after crystallization (i.e., after exposure to heatedasecondtime(Fig.2c,bluecurve2)theheatflowoverlapsthe MeOH) but before melting (Fig. 3a, red curves C1–C3) show the first scan at both low and high temperature. The heat flow trace characteristicvibrationalbandoftheantiparallelbeta-pleated-sheet showsareductionofT (to,467 K)andaslightlylargerstepincre- crystalsat1629 cm2116.Thecrystallinesamplewasthenheatedto g mentatT (becausethereisnowmorenon-crystallinematerialpre- 650 Ktomeltthecrystals,cooled,andexaminedagainwithFTIR. g sent)andnomeltingendotherm(becausetherearenomorebeta- Absorptionspectra(Fig.3a,bluecurvesM1–M3)revealabsenceof pleated-sheetcrystalspresent).Becauseofthehighheatingratealso the1629 cm21characteristicbeta-pleated-sheetvibration,confirm- nocrystallizationisseen(thetimethesampleisinthetemperature ingthatthesilkfibroinbetapleatedsheetshavebeenmeltedbythe range where crystallization can occur is too short). This film was rapid heating to 650 K, and furthermore, they do not recrystallize heatedandcooledrepeatedlyat2,000 K/s,andallsubsequentscans uponcoolingbecauseoftheextremelyfastcoolingrate.Thefilmsare, SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 3 www.nature.com/scientificreports Figure3|ComparisonofStructuralandFastScanningCalorimetricData. RoomtemperatureFTIRabsorbancespectraofsilkfibroin(a)with correspondingcalorimetricdataat2000K/s(b).(a)Initialnon-crystallinesilk(M0).Silkexposedin-situthreetimestoMeOH(C1–C3red:18h–C1; 2.5h–C2;20min–C3)crystallizes,andbeforefastheatingcontainsbeta-pleated-sheetcrystals,withcharacteristicbetasheetabsorbancemarkedat 1629cm21.Afterfastheatingto650K,beta-pleated-sheetcrystalsmeltandonlyrandomcoils,turns,andalphahelicesremain(M1–M3blue).(b)Heat capacityvs.temperatureat2000K/sforthesamefilmshownin(a),presentedasmatchedsets.Initialnon-crystallinesilk(M0).MeOH-exposed crystallinesamples(C1–C3red)duringfirstheating.Aftercooling,thefilmwasimmediatelyreheated(M1–M3blue).Absenceofmeltingendothermsin reheatingscansconfirmssilkisnolongercrystalline.(c)Heatcapacityvs.temperatureat2000K/s,forwaterannealedsilkfibroinfilmandabundleof nativedegummedcocoonfibers.DownarrowmarksT;uparrowmarksonsetofmelting;horizontalblackarrowmarksregionoffibermeltingandshape g changetodropletmorphology.(d,e)Abundleofdegummedcocoonfibers,imagedinunpolarizedlightat203magnificationbefore(d)andafter(e) heatingto690K.Theseparatefiberscontractwhenthebeta-pleated-sheetcrystalsmelt,removingthephysicalcrosslinks,andallowingthefibersto coalescenceintoasingledroplet. however,fullycapableofcrystallizingonceagain,eitherbyexposure 10–20K/min used in commercial differential scanning calorimeters. toMeOHortohotwatervapor(Fig.3a).Theseexposuretreatments Similarlyforsilkfibroinprotein,thesecond,andanysubsequent,mea- result in lowering of the glass transition temperature ("plasticiza- suringcyclesat2,000K/sshowedthecharacteristicsofanon-crystalline tion"), thus providing sufficient mobility to the fibroin molecular sample:theonlyfeatureobservedintheheatcapacitytraceisthewell- chainssothatcrystallizationcanoccur17,18.Afterexposure,thesam- pronounced glass transition step change. No thermal decomposition plesweredriedfreeofwater(orMeOH)byheatingthemabovethe peakwasobservedintheheatcapacity,andasaresultoftheabsence glasstransitiontemperature(SupplementaryFig.S2,step4). ofdecomposition,thesubsequentscansalloverlappedeachother.The Companionthermalscansofthisfibroinfilmtakenat2,000 K/s thermaldatademonstrateforthefirsttimethatthebeta-pleated-sheet areshowninFig.3bforthesamesetoftreatments.Heatcapacity crystalsinsilkfibroinfilmscanbereversiblycrystallizedandthermally traces show the behavior of the initially non-crystalline film (blue melted,andthemeltingtemperaturerangeisfrom510–560K. curve M0) and then the now-crystalline film after its exposure to Thefastheatingtechniquewasalsoappliedtoasmallbundleof MeOH(redcurvesC1–C3).Eachscanofthecrystallinefilmshowsa degummed native cocoon silk fibers, heating them at 2000 K/s meltingendothermoccurringabovetheglasstransitiontemperature. (Fig.3c).(Optical images ofafiberbundle areshown inFig.3d,e Superimposed on the first heating scan is a second heating (blue andforasinglefiberinFig.4).Theonsetofmeltingofthenative curvesM1–M3)showingheatcapacitycharacteristicofnon-crystal- fibersoccursatamuchhighertemperature(,610 K)thantheonset linematerial.Thesecondscandisplaysnomeltingendotherm,and ofmeltingofasolventcrystallizedsilkfibroinproteinfilm(,530 K), confirmstheFTIRresultthatnobeta-pleated-sheetcrystalsremain regardlessofwhetherthefilmwaswater-annealed(Fig.3c)orMeOH inthefibroinfilmaftermeltingtheminthefirstheatingscan. treated(Fig.3b).Atthesametimethatbeta-pleated-sheetcrystals Uponrapidcoolingat2,000 K/stoatemperaturebelowtheglass aremelting,thehighlyorientedfibersinthebundleundergomolecu- transition,thejustmeltedfilmremainsnon-crystalline.Thecooling larretraction.Thereasonfortheretractionisthatthebeta-pleated- andheatingratesweresufficientlyrapidtopreventrecrystallization sheetcrystalsactasthermo-reversiblecrosslinksinthefiber.Once of molten silk protein during the heat-cool cycle. This behavior is thecrystalsmelt,thefiberisabletoretractfromitsas-spunaligned analogoustothatofsyntheticpolymershavingglasstransitiontem- condition,intorandomcoilconformationandasinglemoltendrop- peratures well above room temperature: (e.g., poly(etheretherke- letforms(Fig.3e,Fig.4b). tone), PEEK, T 5 418 K (145uC)28; isotactic polystyrene, iPS, Before melting, FTIR shows that the degummed cocoon fiber g T 5 373 K (100uC)29: cooling from the molten state prevents compriseshighlyorientedbeta-pleated-sheetcrystals(degreeofcrys- g the polymer from crystallizing even at the relatively slower rates of tallinity,0.62–0.6530).Asistypicaloforientedcrystallinefibers,the SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 4 www.nature.com/scientificreports chain,previouslyonlyaqueousororganicsolvent-basedprocessing ofsuchbeta-pleated-sheetcrystaldominatedproteinscouldbeused tounderstandandcontrolcrystallizationbehavior.Withthefindings reportedhere,nowthermalprocessingcanalsobeconsideredasa processingapproach.Thisfindingremovesakeydistinctionbetween biologically-derivedvs.syntheticpolymersandallowsnewthinking about materials engineering even from beta-pleated-sheet crystal enrichedstructuralproteins. Silksaretheprototypicalbeta-pleated-sheet-containing proteins innature.Mostotherproteinsutilizebeta-pleated-sheetstocontrol protein structure and function, and as such, understanding self- assemblyandunfoldingofthevariousstructuralstatesandtransi- tionsusingrapidandcontrolledthermalheating,wouldaffordnew insightsintothebiophysicsandbiochemistryoftheseproteinsys- tems. Since reversible thermally-induced melting transitions have beendemonstratedforsilk,thethermo-analyticalmethodsusedin thisworkcannowbeappliedtoanybeta-sheet-containingprotein, wheresuchsecondarystructuresregulatethestabilityandfunctionof proteins.Theabilitytocontrolthebeta-sheetstructuraltransitionsof proteinsingeneral,viafastscanningcalorimetry,couldpossiblyhelp clarifythermalmodesofproteinfoldingandunfoldingandoptimize the understanding of these transitions. Furthermore, an improved Figure4|SilkStructureBeforeandAfterMelting. Asingledegummed understanding of thermal melting transitions could have broader nativecocoonfiberbefore(a)andafter(b)meltingat2000K/s,imaged implicationsforrulesofproteinself-assembly,towardsproteinpuri- betweenthepolarizer(vertical)andtheanalyzer(80degreestothe ficationandrefoldinginthefieldofbiotechnology,forexample,orin polarizer)at103magnification.Suggestedsecondarystructureis newwaystothinkaboutregulatingbiocatalysis. indicatedinthelowerpanels:beta-pleated-sheetcrystalsindegummed nativecocoonfiber(c)andrandomcoils,turnsandalphahelicesafter melting(d).Thefiguredemonstratesthemainresultsofthiswork,thatsilk Methods canbemelteddirectlyfromthesolidstateupontheinputofheatenergy Materials.CocoonsofB.morisilkwormsilk(obtainedfromTsukuba,Japan),were boiledfor25mininanaqueoussolutionof0.02MNaCO andrinsedthoroughly alone,withoutdegradation. 2 3 withwatertoextracttheglue-likesericin2,7,9,11,16,17,30,32.Theresultantfluffyfibrous materialservedasthesamplefordegummednativecocoonsilkfibers.Tocreatesilk polarizingmicroscopeimageFig.4ashowsabrightandcolorfulfiber proteinfilms,thesilkfibroinproteinfibersweredissolvedina9.3MLiBrsolutionat 60uCfor4,6h,andthendialyzedindistilledwaterusingaSlide-a-Lyzerdialysis duetothestronglyuniaxialbirefringence.Thatis,theindexofrefrac- cassette(Pierce,MWCO3500)for2days.Aftercentrifugationandfiltrationto tionofthemolecularchainsispreferentiallyalignedalongthefiber removeinsolubleresidues,thefinal2,5wt.%silkfibroinaqueoussolutionwascast axis.Uponinitialheatingto,690 K,thebeta-pleated-sheetcrystals inpolystyrenePetridishestomakesilkfibroinfilms.Afterdryingtoremovewater, inthefibermeltandthefiberlosesitsorientation(Fig.4b),andhence theresultingdryfilmthicknesswasaround10mm. Theas-castfilmswerecompletelynon-crystallinepriortotherapidscanchip itsbirefringence. calorimetry.Priortoplacementonthechipsensortherewasnosignatureofbeta pleatedsheetsineithertheFTIRabsorptionspectrumortheWAXSdiffractogram16. Thedriedlessordered,non-crystallinefilmsrapidlyandcompletelydissolvedwhen Discussion placedinroomtemperaturewater,whereasanysemicrystallinefilmsorfibers, Thefindingsfromthisnewworkhavetwomajorimplications.First, containinginsolublebetapleatedsheets7,11,16,17,32,33,wouldnot. sincetheearliestreportsofbeta-pleated-sheetstructures31therehave Underanopticalmicroscope,verysmallpiecesofsilkfibroinproteinfilmwitharea beennoreportedobservationsofthermallyinducedmeltingofdry, typicallylessthanabout1003100mm2werecutfromthelargerparentfilm.By electrostaticinteraction,thefilmwaspickedupandplacedontotheactiveareaofthe solid state beta-pleated-sheet crystals. The fast heating methods chipsensorusingafinewire.Thesameapproachwasusedtomountindividual employed in the present study prove that even beta-pleated-sheet degummednativecocoonsilkfibers,orsmallbundlesoffibers,ontothechipsensor. crystal dominated structural proteins like silk, will thermally melt undertheappropriateconditions. Thermaltreatmentsofthesamples.Samplesofsilkfibroinfilmsweresubjectedtoa seriesoftreatments(SupplementaryFig.S2)insideoroutsidetherapidscan Onegoalofourresearchinexploringproteinmeltingphenom- calorimeterinvolvingallorsome(dependinguponsample)ofthefollowingsteps: enon is to provide a ‘‘bridge’’ between modern synthetic polymer 1.erasureofthermalhistory,2.crystallizationbysoakingtheentiresensor1samplein scienceandbiomaterialscience,whichwillbenefitmultiplescientific avesselcontainingMeOHandthendryinginair(orbyexposuretohotwatervapor), areasandbroadeninterdisciplinaryinteractions.Thesecondmajor 3–4.dryingandrelaxation,and5.multiplethermalscanstohightemperatureat extremelyfastrates.Allfastscanningwasperformedunderaninertnitrogengas implication of this work, relating to this goal, is that proteins are environment.Thedegummednativecocoonsilkfiber,orsmallbundlesoffibers,were analogoustosyntheticpolymers,evenfromathermodynamicsper- merelydriedandthermallyscanned(i.e.,steps1and2inSupplementaryFig.S2were spective. Melting phenomena demonstrate that crystallized solid omittedforthenativecocoonsilkfibers).Duringthefirstmeasurementcycleto proteins,exemplifiedherewithsilkfibroin,canbeconsideredasfully 650Kforsilkfilms(SupplementaryFig.S2,firstcycleofstep5),allofthecrystalline samplescontainingbetapleatedsheetcrystalsbecamemolten(datashowninFig.3 compatiblewithallmodernpolymertheoriesandexperimentsabout andSupplementaryFig.S4).Uponcoolingfromthemelttobelowtheglasstransition crystallizationandmeltingdevelopedinthelastcentury,withpro- temperature,thesamplessolidifiedintonon-crystallinefilms.Thesecond,andall teinsexpressingthesamethermaltransitionsasthesyntheticpoly- subsequent,measuringcyclesshowedthesamplesremainednon-crystalline,unless mers, and unfolding from the solid state crystal to the liquid melt onceagainsubjecttocrystallizingtreatments(SupplementaryFig.S2,step2)which involveexposuretoeitherhotwatervaporormethanol(MeOH),orisothermal throughtheinputofheatenergyonly.Forthefirsttime,weareable holdingabovetheglasstransitiontemperature. tomakeadirectparallelcorrespondencebetweenthethermalbeha- vior of protein beta-pleated-sheet crystals, and lamellar crystals of FastScanningCalorimetry(FSC).TheFSCmeasurements19–25,34wereperformed synthetic polymers, identifying the crystal melting transition in usingathinfilmchipsensorXI-399ofXensorIntegration(Netherlands) addition to the non-crystalline glass transition in both systems. (SupplementaryFig.S3)employingarecentlydevelopeddifferentialpower compensatedcalorimeter.Detaileddescriptionofthemeasurementprincipleand Whileproteinsmaybemorecomplexintermsofchemicaldiversity, instrumentalsetupisgivenelsewhere22,23.Duetothesmallsamplemassandsmall with 20 different monomers (amino acids) available in the main addendaheatcapacities,ratesashighas1,000,000K/sonheatingandcoolingcanbe SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 5 www.nature.com/scientificreports achievedandheatflowtothesamplecanbemeasuredupto100,000K/s.Twosuch 12.Zheng,Y.etal.Directionalwatercollectiononwettedspidersilk.Nature463, sensorswereconnectedinadifferentialschemewithpowercompensation,asshown 640–643(2010). inSupplementaryFig.S4.Onesensorcontainsthesample;thesecondoneisempty. 13.Askarieh,G.etal.Self-assemblyofspidersilkproteinsiscontrolledbyapH- Afterplacementofthesampleonthesensorandbeforeallmeasurementsagood sensitiverelay.Nature465,236–238(2010). thermalcontactbetweensensormembraneandsamplewasestablished.Thisusually 14.Hagn,F.etal.Aconservedspidersilkdomainactsasamolecularswitchthat wasdonebyheatingabovetheglasstransition,whichenhancessamplemobilityand controlsfibreassembly.Nature465,239–242(2010). allowsrelaxing,flattening,andadhesionofthesample.Resultsforanamorphoussilk 15.Xu,M.&Lewis,R.V.Structureofaproteinsuperfiber:spiderdraglinesilk.Proc. sampleforthefirstandsubsequentscanswithimprovedthermalcontactarepre- Natl.Acad.Sci.USA87,7120–7124(1990). sentedinSupplementaryFig.S6.Theunusualbehaviorduringthefirstheatingscan 16.Hu,X.,Kaplan,D.&Cebe,P.Determiningbeta-sheetcrystallinityinfibrous above500Kisrelatedtoirreversibleshapechangesofthesampleandaresulting proteinsbythermalanalysisandinfraredspectroscopy.Macromolecules39, improvedandstablethermalcontact.Coincidenceoffirstandsecondcoolingandthe 6161–6170(2006). smoothcurvesverifythis.Thestablethermalcontactofthesampleafterthefirst 17.Hu,X.,Kaplan,D.&Cebe,P.Dynamicprotein2waterrelationshipsduring treatmentwasalsonotchangedafterrepeatedcyclesofcrystallizationandmelting b-sheetformation.Macromolecules41,3939–3948(2008). (Fig.3). 18.Hu,X.,Kaplan,D.&Cebe,P.Effectofwateronthethermalpropertiesofsilk Aftercrystallization,(SupplementaryFig.S2,step2)adryingstepat430K fibroin.Thermochim.Acta461,137–144(2007). (SupplementaryFig.S2,step4),whichisbelowtheglasstransition(T 5451K35), 19.Allen,L.H.etal.1000000"C/Sthinfilmelectricalheater:insituresistivity g wasinsertedforremovingremainingwater.Thefollowingrelaxationstepto520K measurementsofAlandTi/Sithinfilmsduringultrarapidthermalannealing. (blackcurveinSupplementaryFig.S5),whichisabovetheglasstransition,is Appl.Phys.Lett.64,417–419(1994). necessaryforremovingtheendothermicrelaxationpeakduetoenthalpyrelaxation 20.Efremov,M.Y.etal.Ultrasensitive,fast,thin-filmdifferentialscanning duringthedryingstep3.Theimmediaterepetitionofthelatterheatingto520K calorimeter.Rev.Sci.Instrum.75,179–191(2004). (greencurveinSupplementaryFig.S5)confirmstheabsenceofanyenthalpy 21.Lopeandia,A.F.,Valenzuela,J.&Rodr´ıguez-Viejo,J.Powercompensatedthin relaxationpeakbecauseofthemissingannealingbelowT.Inthenextheatingto filmcalorimetryatfastheatingrates.SensorsandActuatorsA:Physical143, g 650K(redcurveinSupplementaryFig.S5),themeltingpeakofthebeta-pleated- 256–264(2008). sheetsisclearlyseen.Therepetitionoftheheatingscanto650K(bluecurvein 22.Zhuravlev,E.&Schick,C.Fastscanningpowercompensateddifferentialscanning SupplementaryFig.S5)confirmsthecreationofanon-crystallinesample,asproved nano-calorimeter:1.Thedevice.Thermochim.Acta505,1–13(2010). byFTIRspectroscopy,bytheabsenceofanyendothermicmeltingpeak,andbya 23.Zhuravlev,E.&Schick,C.Fastscanningpowercompensateddifferentialscanning morepronouncedstepattheglasstransition,similartothebehaviorofsynthetic nano-calorimeter:2.Heatcapacityanalysis.Thermochim.Acta505,14–21(2010). polymers.Furtherdiscussionofthechipcalorimetercalibrationandmeasurement 24.Minakov,A.A.&Schick,C.Ultrafastthermalprocessingandnanocalorimetry detailsarefoundinSupplementaryMethods. atheatingandcoolingratesupto1MK/s.Rev.Sci.Instr.78,073902–073910 (2007). 25.Adamovsky,S.A.,Minakov,A.A.&Schick,C.Scanningmicrocalorimetryathigh Opticalmicroscopy.FormorphologystudiesaNikonEclipseE600Polarizing coolingrate.Thermochim.Acta403,55–63(2003). OpticalMicroscope(POM)withCCDcamerawasused.A10xor20xlongworking 26.Barth,A.Theinfraredabsorptionofaminoacidsidechains.Progr.inBiophysics distanceobjectivelenswasusedtoimagesilkfibroinsamplesin-situ,whilethesample andMolecularBiology74,141–173(2000). remainedinpositiononthechipsensor.Forimagingwithunpolarizedlight 27.Barth,A.&Zscherp,C.Whatvibrationstellaboutproteins.QuarterlyRev.of (Figs.3d,e),theanalyzerandpolarizerweresetparalleltoeachother.Imagingwith Biophysics35,369–430(2002). polarizedlight(Fig.2d,eandFig.4a,b)wasdonewiththeanalyzerandpolarizersetat 28.Cebe,P.&Hong,S.D.Crystallizationbehaviourofpoly(ether-ether-ketone). 80degreestoeachother.Thisconfigurationwasusedinsteadofthemorecustomary Polymer27,1183–1192(1986). one(AperpendiculartoP)inordertohavesufficientlighttransmissionforvisual 29.Minakov,A.A.,Mordvintsev,D.A.,Tol,R.&Schick,C.Meltingand observationandfocusing. reorganizationofthecrystallinefractionandrelaxationoftherigidamorphous fractionofisotacticpolystyreneonfastheating(30,000K/min).Thermochim. Fouriertransforminfraredspectroscopicanalysis.Thethinsilkfibroinfilm Acta442,25–30(2006). sampleswereexaminedinsitu,usinginfraredspectroscopy,withthesamplemounted 30.Warwicker,J.O.Comparativestudiesoffibroins:II.Thecrystalstructuresof onthechipsensor.InfraredradiationpassedthroughtheSiNxsupportmembrane variousfibroins.J.ofMolecularBiology2,350–362,IN351(1960). andthesamplewasstudiedintransmissionmodeusingthemicroscopeFTIR 31.Pauling,L.&Corey,R.B.Thepleatedsheet,anewlayerconfigurationof spectrometer(BrukerEquinox55/S)withaliquidnitrogencooledmercurycadmium polypeptidechains.Proc.Natl.Acad.Sci.USA37,251–256(1951). telluride(MCT)detector.Thepositionandfocusofthesampleswereadjusted 32.Yu,L.,Hu,X.,Kaplan,D.&Cebe,P.Dielectricrelaxationspectroscopyof microscopicallythroughanapertureintheIRopticalsystem.Theapertureusedto hydratedanddehydratedsilkfibroincastfromaqueoussolution. givethebestsignal-to-noiseratiowas10mm. Biomacromolecules11,2766–2775(2010). Foreachmeasurement,512scanswereco-addedandFouriertransformed 33.Hu,X.,Kaplan,D.,&Cebe,P.ThermalAnalysisofProtein-MettalicIonSystems. employingaGenzel-Happapodizationfunctiontoyieldspectrawithanominal J.ThermalAnal.Calorim.96,827–834(2009). resolutionof4cm21.Thewavenumberrangedfrom400to4000cm21.Toidentify 34.vanHerwaarden,A.W.Overviewofcalorimeterchipsforvariousapplications. silksecondarystructuresfromtheabsorptionspectra,weobtainedthepositionsofthe Thermochim.Acta432,192–201(2005). absorptionbandmaximafromFourierself-deconvolution16,36,37performedbyusing 35.Pyda,M.,Hu,X.&Cebe,P.HeatCapacityofSilkFibroinBasedontheVibrational theOpus5.0software16,37.Toobtaingoodsignal-to-noiseratio,itwasrequiredtouse MotionofPoly(aminoacid)sinthePresenceandAbsenceofWater. relativelythinsilkfilmssuchasthosepreparedforusewiththechipsensor.Thisthin Macromolecules41,4786–4793(2008). filmbeforetreatmenthadnodifferenceinsecondarystructurewhencomparedwith 36.Goormaghtigh,E.,Cabiaux,V.&Ruysschaert,J.-M.Secondarystructureand thickerfilms.AdditionaldetailsoftheFourierSelfDeconvolutionprocessarefound dosageofsolubleandmembraneproteinsbyattenuatedtotalreflectionFourier- inSupplementaryMethods. transforminfraredspectroscopyonhydratedfilms.Europ.J.ofBiochemistry193, 409–420(1990). 37.Jung,C.Insightintoproteinstructureandprotein–ligandrecognitionbyFourier 1. Shao,Z.&Vollrath,F.Materials:Surprisingstrengthofsilkwormsilk.Nature418, transforminfraredspectroscopy.J.MolecularRecognition13,325–351(2000). 741–741(2002). 2. Omenetto,F.G.&Kaplan,D.L.Newopportunitiesforanancientmaterial. Science329,528–531(2010). 3. Lee,S.-M.etal.Greatlyincreasedtoughnessofinfiltratedspidersilk.Science324, Acknowledgments 488–492(2009). TheauthorsacknowledgesupportfromtheNationalScienceFoundationandGerman 4. Holland,C.,Vollrath,F.,Ryan,A.J.&Mykhaylyk,O.O.Silkandsynthetic polymers:reconciling100degreesofseparation.Adv.Mater.24,105–109(2012). AcademicExchangeServiceDAAD;EZacknowledgesaEuropeanUnionfundedMarie CurieESTfellowship(ADVATEC);XHandDKacknowledgeNIHP41TissueEngineering 5. Altman,G.H.etal.Silk-basedbiomaterials.Biomater.24,401–416(2003). ResourceCenter(P41EB002520). 6. Rockwood,D.N.etal.MaterialsfabricationfromBombyxmorisilkfibroin.Nat. Protocols6,1612–1631(2011). 7. Hu,X.etal.Regulationofsilkmaterialstructurebytemperature-controlledwater Authorcontributions vaporannealing.Biomacromolecules12,1686–1696(2011). P.C.,X.H.,E.Z.,A.W.andD.A.performedtheexperimentsandanalyzedthedatareported 8. Pritchard,E.M.&Kaplan,D.L.Silkfibroinbiomaterialsforcontrolledrelease herein.P.C.,X.H.,D.L.K.,E.Z.,A.W.andC.S.discussedtheexperiments,andcontributedto drugdelivery.ExpertOpiniononDrugDelivery8,797–811(2011). writingandeditingthepaper. 9. Kaplan,D.L.etal.Silk.103–133,Protein-BasedMaterials,McGrath,K.&Kaplan, D.,Eds.(Birkhauser,Boston1997). Additionalinformation 10.Vepari,C.&Kaplan,D.L.Silkasabiomaterial.Prog.inPolym.Sci.32,991–1007 (2007). Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ 11.Jin,H.-J.&Kaplan,D.L.Mechanismofsilkprocessingininsectsandspiders. scientificreports Nature424,1057–1061(2003). Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 6 www.nature.com/scientificreports License:ThisworkislicensedunderaCreativeCommons Howtocitethisarticle:Cebe,P.etal.BeatingtheHeat-FastScanningMeltsSilkBetaSheet Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis Crystals.Sci.Rep.3,1130;DOI:10.1038/srep01130(2013). license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ SCIENTIFICREPORTS |3:1130|DOI:10.1038/srep01130 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.