BBrriigghhaamm YYoouunngg UUnniivveerrssiittyy BBYYUU SScchhoollaarrssAArrcchhiivvee Theses and Dissertations 2011-11-16 BBeeaarriinngg--OOnnllyy CCooooppeerraattiivvee--LLooccaalliizzaattiioonn aanndd PPaatthh--PPllaannnniinngg ooff GGrroouunndd aanndd AAeerriiaall RRoobboottss Rajnikant Sharma Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Electrical and Computer Engineering Commons BBYYUU SScchhoollaarrssAArrcchhiivvee CCiittaattiioonn Sharma, Rajnikant, "Bearing-Only Cooperative-Localization and Path-Planning of Ground and Aerial Robots" (2011). Theses and Dissertations. 2884. https://scholarsarchive.byu.edu/etd/2884 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bearing-onlyCooperative-LocalizationandPath-Planning ofGroundandAerialRobots RajnikantSharma Adissertationsubmittedtothefacultyof BrighamYoungUniversity inpartialfulfillmentoftherequirementsforthedegreeof DoctorofPhilosophy RandalW.Beard,Chair WynnC.Stirling TimW.McLain MarkB.Colton D.J.Lee DepartmentofElectricalandComputerEngineering BrighamYoungUniversity December2011 Copyright©2011RajnikantSharma AllRightsReserved ABSTRACT Bearing-onlyCooperative-LocalizationandPath-Planning ofGroundandAerialRobots RajnikantSharma DepartmentofElectricalandComputerEngineering,BYU DoctorofPhilosophy In this dissertation, we focus on two fundamental problems related to the navigation of ground robots and small Unmanned Aerial Vehicle (UAVs): cooperative localization and path planning. The theme running through in all of the work is the use of bearing only sensors, with a focusonmonocularvideocamerasmountedongroundrobotsandUAVs. To begin with, we derive the conditions for the complete observability of the bearing-only cooperative localization problem. The key element of this analysis is the Relative Position Mea- surementGraph(RPMG).ThenodesofanRPMGrepresentvehiclestatesandtheedgesrepresent bearing measurements between nodes. We show that graph theoretic properties like the connec- tivity and the existence of a path between two nodes can be used to explain the observability of the system. We obtain the maximum rank of the observability matrix without global information and derive conditions under which the maximum rank can be achieved. Furthermore, we show that for the complete observability, all of the nodes in the graph must have a path to at least two different landmarks of known location. The complete observability can also be obtained without landmarks if the RPMG is connected and at least one of the robots has a sensor which can mea- sure its global pose, for example a GPS receiver. We validate these conditions by simulation and experimental results. The theoretical conditions to attain complete observability in a localization system is an important step towards reliable and efficient design of localization and path planning algorithms. With such conditions, a designer does not need to resort to exhaustive simulations and/or experimentation to verify whether a given selection of a control strategy, topology of the sensor network, and sensor measurements meets the observability requirements of the system. In turn,thisleadstodecreasedrequirementsoftime,cost,andeffortfordesigningalocalizationalgo- rithms. We use these observability conditions to develop a technique, for camera equipped UAVs, to cooperatively geo-localize a ground target in an urban terrain. We show that the bearing-only cooperative geo-localization technique overcomes the limitation of requiring a low-flying UAV to maintain line-of-sight while flying high enough to maintain GPS lock. We design a distributed path planning algorithm using receding horizon control that improves the localization accuracy of thetargetandofalloftheUAVswhilesatisfyingtheobservabilityconditions. Next, we use the observability analysis to explicitly design an active local path planning algorithm for UAVs. The algorithm minimizes the uncertainties in the time-to-collision (TTC) and bearing estimates while simultaneously avoiding obstacles. Using observability analysis we show that maximizing the observability and collision avoidance are complementary tasks. We providesufficientconditionsoftheenvironmentwhichmaximizesthechancesobstacleavoidance and UAV reaching the goal. Finally, we develop a reactive path planner for UAVs using sliding mode control such that it does not require range from the obstacle, and uses bearing to obstacle to avoid cylindrical obstacles and follow straight and curved walls. The reactive guidance strategy is fast,computationallyinexpensive,andguaranteescollisionavoidance. Keywords: cooperative localization, path planning, graph theory, nonlinear system theory, sliding modecontrol,extendedkalmanfilter,liederivatives,visionbasedestimationandcontrolnolistofta- bles ACKNOWLEDGMENTS Iwouldliketothankmyadvisorandcommitteechair,Prof. RandyBeard,forhisguidance, funding, and enthusiasm for the research. Special thanks to Dr. Clark Taylor for inviting me to come to BYU for the PhD programme and providing the initial help for my research. Prof. Tim McLain was a great help in completing the work in this dissertation, and I thank him for being on my committee and providing me funding through TA opportunities. Also, thanks to Prof. Wynn C.Sterling,Prof. D.J.Lee,andProf. MarkColtonforbeingonmycommittee Thanks very much to the other graduate students of MAGICC Lab who have helped me to mature as a researcher. In particular: Travis Millet, Stephen Quebe, John MacDonald, Huili Yu, and Solomon Sun. I especially thank the department staff for making the administrative life of every ECEN student easy. Also I would like to thank Dr. P.B Sujit for the important research relateddiscussions. I would not be here if it wasn’t for my family, and I would not be able to stay if it weren’t for my beautiful wife, Suruchi. This work is dedicated to my wife and the glorious memories I haveofmyuncleKrishanKumar. TABLEOFCONTENTS LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Singlevehiclelocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Cooperativelocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Pathplanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Researchoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Organizationofthemanuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter2 Graph-basedobservabilityanalysisofbearing-only cooperativelocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Bearing-onlycooperativelocalization . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Cooperativelocalizationimplementation . . . . . . . . . . . . . . . . . . 14 2.2.2 Liederivativesandnonlinearobservability . . . . . . . . . . . . . . . . . 16 2.3 Graph-basedobservabilityanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Rowsintheobservabilitymatrixduetoanedge . . . . . . . . . . . . . . . 18 2.3.2 Observabilityanalysiswithoutlandmarks . . . . . . . . . . . . . . . . . . 27 2.3.3 Observabilityanalysiswithknownlandmarks . . . . . . . . . . . . . . . . 30 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 Simulationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter3 Bearing-onlycooperativegeo-localization . . . . . . . . . . . . . . . . . . 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Problemformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Bearing-onlycooperativelocalization . . . . . . . . . . . . . . . . . . . . 51 3.3 Graph-basedobservabilityanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 Rowsintheobservabilitymatrixduetoanedge . . . . . . . . . . . . . . . 55 3.3.2 Rowsintheobservabilitymatrixofa3-nodeRPMG . . . . . . . . . . . . 59 3.4 Controllerforgeo-localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Chapter4 Observabilitybasedpathplanning . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Observabilityanalysisofstateestimation . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Observability-basedpathplanning . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ix
Description: