ebook img

Beamforming for novel matrix arrays PDF

113 Pages·2017·12.04 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Beamforming for novel matrix arrays

Beamforming for novel matrix arrays Fresnel Zone Beamforming and Stolt Migration Fabian Fool y g o ol n h c e T f o y t si r e v ni U t f el D B EAMFORMING FOR NOVEL MATRIX ARRAYS FRESNEL ZONE BEAMFORMING AND STOLT MIGRATION by FabianFool inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience inAppliedPhysics attheDelftUniversityofTechnology, tobedefendedpubliclyonThursdayMarch23,2017at13:30PM. Supervisor: Dr.ir.MartinVerweij TUDelft/ErasmusMC Thesiscommittee: Prof.dr.ir.NicodeJong TUDelft/ErasmusMC Dr.ir.MichielPertijs TUDelft Dr.ir.RikVos ErasmusMC/TUDelft Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. iii A BSTRACT Healthcareisamajorsocietalexpenseandthecostsriseeachyear. Furtherdevelopmentofultra- soundcouldhelpreducethecosts.Currentlyalotofeffortisputintodevelopingmatrixarrayswhich allowforvolumetricimagingandnewapplications.Therearehowevermultipleproblems.Compared toarrayscurrentlyinusewhichhaveintheorderof128elements,matrixarrayscaneasilycontain 1000to10000elements.Ifallelementswouldbeconnectedindependently,thecablewouldbecome verythick.Therefore,beamformingmethodsarerequiredthatcanoperatewithfewertransmitand receivechannels. Furthermore, theroomforelectronicsonthechipislimited. So, therequired electronicsforthebeamformingmethodsshouldbekeptsimple. Currently,tofocusintransmitallelementshavetobewiredout.Transmittinganunfocusedbeam wouldbeanoptiontoreducethechannelcount,butthisseverelylimitedpenetration. So,anew methodisrequiredtofocusintransmitthatrequiresasfewaspossiblechannels. Theamountof receive channels also has to be reduced. This might be done by combining the data from each elementinsomeway.However,thisresultsinproblemswithimageformationasthecurrentgolden standard,DynamicReceiveFocusing(DRF),usesthedatafromallindividualelements. Thus,we needanewimagingalgorithmwhichcanworkwithfewerchannels,butontheotherhandhavea similarorbetterimagequality. Inthisthesiswewillproposesolutionstotheabovementionedproblemswithmatrixarrays.Thiswill bedoneseparatelyforthetransmitandreceivepart,buttheydoinnowayexcludeeachother.Tobe abletofocuspulsedwavesintransmitweproposeamethodbasedonFresnelzoneplateswhichare usedinopticstofocuscontinuouswavelight.Ourmethodonlyrequiresasinglecontinuous-wave excitationsignaltobepresent,whichisconnectedanddisconnectedondemandtoeachelement.We haveevaluatedourmethodwithmeasurementsandsimulations.Ascomparedtotheconventional focusingmethod,thespatialresolutionisnotaffectedbyourmethod,buttheContrast-to-Noise ratiois5%lowerforshallowdepthsandupto20%lowerdeeperintothemedium.Overallthough, thedifferenceswererelativelysmallandsoitisclearthatournewfocusingmethodworksverywell. Ifneeded,betterresultscanbeobtainedbytradinginframerate.Inthiscasetheresultsarealmost indistinguishablefromtheconventionalfocusingmethod. To solve the problem with image formation, we have developed a frequency domain two stage beamforming method for use with matrix arrays, which does not require all element data to be present. Thishasbeendonefortwomatrixtypes. Forthefirstmethodwehaveconfirmedwith simulationsthatitperformssimilartotherespectiveresultsobtainedwithtwo2Dfrequencydomain twostagebeamformingmethodthathavealreadybeenexperimentallyverified. Forthesecond methodwehaveevaluatedtheperformancewithsimulationsandmeasurements.Ourmethodwas abletoobtaina25%betterspatialresolutionascomparedtoDRF,withoutadditionalartefacts.Asan alternativetothelastmethod,wehavealsodevelopedafrequencydomainbeamformingmethod thatdoesrequireallelementdata,butonlyrequiresasingleinsonificationbyasphericalwave.This methoddidperformworsethanthemethoddiscussedbeforeinbothsimulationsandmeasurements, butitdoesoutperformDRFappliedtosphericalwavedata. CONTENTS v C ONTENTS Page 1 Introduction 1 2 Backgroundknowledge 3 2.1 Wavepropagationandextrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Ultrasoundimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Virtualpointssourcesandreceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 SyntheticApertureSequentialBeamforming . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Stoltmigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Imagingperformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 FastHankelTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.8 SphericalHarmonicTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I FresnelZoneBeamforming 17 I.1 Theory 19 I.1.1 Fresnelzoneplatesandlenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 I.1.2 Fresnelzoneplatesinacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I.1.3 ImprovedFresnelzonefocusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I.2 SimulationandexperimentalSetup 25 I.2.1 Beamprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 I.2.2 Imagequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I.3 Results 29 I.3.1 Beamprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 I.3.2 Imagequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I.4 Discussionandconclusions 45 I.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 I.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 II CylindricalStoltMigration 49 II.1 Methoddevelopment 51 II.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 II.1.2 ComparisontopolarandlinearStoltMigration. . . . . . . . . . . . . . . . . . . . . 53 II.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 II.2 Simulationsetup 55 II.3 Results 57 II.4 Conclusions 61 vi CONTENTS III SphericalStoltMigration 63 III.1 Methoddevelopment 65 III.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 III.1.2 ComparisontopolarStoltmigration . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 III.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 III.1.4 Computationtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 III.1.5 Extensiontosphericalwaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 III.2 Simulationandexperimentalsetup 71 III.2.1 Setup1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 III.2.2 Setup2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 III.3 Results 75 III.3.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 III.3.2 Leastsquarestransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 III.3.3 Computationtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 III.3.4 SphericalWaveStoltMigration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 III.3.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 III.3.6 PSASBvsStolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 III.4 Discussionandconclusions 89 III.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 III.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Acknowledgments 93 Bibliography 95 A Hankelfunctionapproximation 99 A.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A.3 Effectonresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 1 1 I NTRODUCTION Healthcare is a major societal expense and the costs rise each year. Since 2000 the costs in the Netherlandshavemorethandoubledto95.5billionEuroin2015,orabout5.628Europerperson.[1] Becauseofthesehighcostsitisimportanttofindnewwaystoprevent,diagnoseandcurediseases thatwillhaveapositiveimpactonthecosts,butalsoofcourseonqualityoflife. Oneoftheimagingmodalitiesusedinhealthcareisultrasound,whichusesacousticalwaveswith ahighfrequency. AnultrasoundsystemisportableandmuchcheaperthanbothanMRIandCT scanner.[2] Also, there is no radiation burden. However, it is not applicable everywhere. Bones reflectmostoftheultrasound,whichmakesimagingtheorgansbehindtheribsdifficult.Also,the penetrationdepthislimited,whichbecomesespeciallyproblematicifthereisathickfatlayer,and theresolutionisnotalwayssufficient. Further development of ultrasound could help reduce the costs. Currently a lot of effort is put into developing matrix arrays which allow for volumetric imaging and new applications. There arehowevermultipleproblems. Comparedtoarrayscurrentlyinusewhichhaveintheorderof 128elements,matrixarrayscaneasilycontain1000to10000elements. Ifallelementswouldbe connected independently, the cable would become very thick. This is for example especially a problemforamatrixarraytobeusedintransesophagealechocardiography,whereaprobeisput intotheoesophagusthroughthethroattoimagetheheart. Asimplewayofreducingtherequiredamountofchannelsthathavetobeusedintransmitistoexcite allelementsatthesametime.Inotherwords,useunfocusedbeamsinsteadoffocusedones.This howeverseverelylimitspenetrationdepthinhighlyattenuatingmedia,especiallyifhighfrequencies havetobeusedtoallowforahigherresolution.Thisisforexamplethecaseinthebrainofpre-term babies,whereonewouldliketoimagethebrainandmeasuretheperfusion.Alackofperfusionisa commonhealthproblemwhichcanleadtocognitivedeficits,motordisabilitiesorevendeath.Sowe needawaytofocusabeamintransmitwithasfewaspossiblechannels.Thereishoweveranother restriction.Forsmallprobes,aswellasarraysusinghighfrequencies,theelectronicsshouldbekept simple. ThismakesitforexampleimpossibletointegrateindividualpulsersontheASICforeach element. The amount of receive channels also has to be reduced. This might be done by combining the datafromeachelementinsomeway. However,thisresultsinproblemswithimageformationas thecurrentgoldenstandard,DynamicReceiveFocusing(DRF),usesthedatafromallindividual elements.Thus,weneedanewimagingalgorithmwhichcanworkwithfewerchannels,butonthe otherhandhaveasimilarorbetterimagequality. 2 1.INTRODUCTION Inthisthesiswewillproposesolutionstotheabovementionedproblemswithmatrixarrays.Thiswill bedoneseparatelyforthetransmitandreceivepart,buttheydoinnowayexcludeeachother.Tobe abletofocuspulsedwavesintransmitweproposeamethodbasedonFresnelzoneplateswhichare usedinopticstofocuscontinuouswavelight.Ourmethodonlyrequiresasinglecontinuous-wave excitationsignaltobepresent,whichisconnectedanddisconnectedondemandtoeachelement. Tosolvetheproblemwithimageformation,wewilldevelopafrequencydomaintwostagebeam- formingmethodforusewithmatrixarrays,whichdoesnotrequireallelementdatatobepresent. Inliterature, twostagebeamformingmethodsinbothtimeandfrequencydomainhavealready beendevelopedforlinear[3][4]andphasedarrays[5][6].Allmethodshavetoshowntooutperform DRF.Furthermore,oneofthesemethodshasalreadybeenextendedforusewithonekindofmatrix arrays[7].Thismethodishowevernotapplicabletotwootherkindsofmatrixarrays,forwhichwewill developthemethodshere.Asanalternative,wewillalsomodifyoneofthedevelopedbeamforming methodstoworkwithsphericalwaves.Thisdoesrequireallelementdata,buttheframeratecanalso bemuchhigher. THESISOUTLINE Wewillfirstintroducebackgroundknowledgeinthenextchapterthatwillbehelpfulinunderstanding therestofthethesis.Thiswillincludewavepropagation,wavefieldextrapolationandthebasicsof ultrasoundimaging.Furthermore,twotwo-stagebeamformingmethodsthatarealreadydeveloped inliterature,SequentialApertureSequentialBeamformingandStoltMigration,willbeintroduced. Afterthis,thethesisbranchesintothreeparts. Thesepartscanbereadindependentlyfromeach other.ThefirstpartisaboutFresnelZoneBeamformingthatonlyrequiresasinglehigh-voltagesignal forfocusing. InchapterI.1ofthispartthetheorybehindFresnelzonefocusingandourmethod areintroduced. Thiswillbefollowedupbythesimulationandexperimentalsetupusedforthe investigationofthenewmethod.ChapterI.3containsthesimulationandexperimentalresultsand inthenextchaptersomeopenendsarediscussedandtheconclusionsarepresented. PartIIisallaboutthedevelopmentofamigrationmethodincylindricalcoordinates. Inthefirst chapter of this part the mathematical derivation is given. Also, a comparison with Linear and PolarStoltismadeandanimplementationschemeisgiven.InchapterII.2thesimulationsetupis describedandtheresultsobtainedwiththissetupareshowninthenextchapter.Thefinalchapterof thispartcontainstheconclusions. InthefinalpartStoltMigrationinasphericalcoordinatesystemisdevelopedandextendedtoallow forinsonificationwithsphericalwaves.Likethepreviouspart,thefirstchaptercontainsthemathe- maticalderivationandacomparisonwithPolarStolt.Also,wederiveaquasifastHankeltransform likealgorithmforapossiblefastermigrationandgivetheimplementationscheme.Attheendofthis chapter,wemodifythealgorithmtoworkwithsphericalwaves.ChapterIII.2containsthesimulation andexperimentalsetupthatisusedtoevaluatetheperformanceofthenewlydevelopedmethods incomparisonwiththecurrentgoldenstandard.Inthenextchaptertheresultsarepresentedand discussed.Finally,inchapterIII.4afewopenendsarediscussedandtheconclusionsaregiven. TheappendixcontainsaninvestigationintheapproximationthatweusefortheHankelfunction in this thesis. We will show how good this approximation is and how it might have affected the results. Furthermore, weintroducetwoalternativeapproximationsandcomparethemwiththe approximationthatwehaveused.

Description:
An electronic version of this thesis is available at http://repository.tudelft.nl/ Bibliography. 95. A. Hankel function approximation. 99. A.1. Approximations . do not construct each scan line independently, SASB and Stolt Migration, .. can be found for both the modulus and the phase in Abramowitz.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.