Beam secondary shower acquisition design for the CERN high accuracy wire scanner Memoria presentada para optar al grado de Doctor por la Universidad de Barcelona Programa de Doctorado en Ingeniería y Ciencias Aplicadas Autor: Jose Luis Sirvent Blasco Directores: Dr. Bernd Dehning Dr. Federico Roncarolo Tutor: Dr. Ángel Diéguez Barrientos 2 7 1 - 8 1 0 2 - S I S E Departamento de Electrónica y Bioingeniería H8 1 Facultad de Física, Universidad de Barcelona T0 N-/2 2 R1 E/ C12 Septiembre 2018 2 3 Abstract The LHC injectors upgrade (LIU) project aims to boost the LHC luminosity by doubling the beam brightness with the construction of the new LINAC4, the first linear accelerator on the LHC chain. The brighter beams require upgrades on the full injector chain to deliver low emittance beams for the future High-Luminosity LHC (H-LHC). Thus, new and more precise beam instrumentation is under development to operate on this new scenario. These upgrades include the development of a new beam wire scanners generation (LIU-BWS), interceptive beam profile monitors used for the beam emittance calculation. Wire scanners determine the transverse beam profile by crossing a carbon wire (30µm) through the particle beam. The beam profile is inferred from the intensity of the shower of secondary particles, scattered from beam-wire interaction, and the wire position. The current BWS generation features high operational complexity and its performance is partly limited by their secondary shower detectors and acquisition systems. They are tra- ditionally based on scintillators attached to a Photo-Multiplier tube (PMT) through optical filters. These detectors require tuning according to the beam energy and intensity prior to a measurement to not saturate the readout electronics, located on the surface buildings. Under these circumstances, many configurations lead to a poor SNR and very reduced resolution, directly affecting the measurement reliability. In addition, bunch-by-bunch profile measure- ments are degraded by the use of long coaxial lines, which reduce the system bandwidth leading to bunch pile-up. This thesis covers the design of an upgraded secondary shower acquisition system for the LIU-BWS. This includes the study of a novel detector technology for BWS, based on polycrystalline Chemical Vapour Deposited (pCVD) diamond, and the implementation of two acquisition system prototypes. This work reviews operational acquisition systems to identify their limitations and shows advanced particle physics simulations with FLUKA for better understanding of the secondary particles shower behaviour around the beam pipe. Simulations, along with a study of the different beams in each machine, leaded to the estimation of the required dynamics per ac- celerator, and an optimised placement of the upgraded detectors. Tocopewiththeinjectorsworkingpoints, theacquisitionsystemsimplementedperformed high dynamic range signal acquisition and digitisation in the tunnel with a radiation-hard front-end nearby the detector, digital data is afterwards transmitted to the counting room through a 4.8Gbps optical link. This novel schema not only allowed low-noise measurements, but also avoided the bandwidth restrictions imposed by long coaxial lines, and greatly sim- plified the scanner operation. The upgraded design investigates two approaches to cover a dynamic of about 6 orders of magnitude: a single-channel system, with logarithmic encoding, and a multi-channel system, with different gains per channel. Prototypes of both schemes were fully developed, char- acterised on laboratory and successfully tested on SPS and PSB under different operating conditions. The evaluation of the acquisition systems during beam tests allowed the study of the LIU- BWS mechanical performance and comparative the measurements with operational systems. pCVDdiamonddetectors,withatypicalactiveareaof1cm2,weresystematicallyevaluated as BWS detectors. This document analyses the results from several measurement campaigns on SPS over its energy and intensity boundaries (5·109−1.1·1011 protons per bunch and 26 - 450 GeV). The SPS results suggest a potential application on LHC beam wire scanners. 4 5 Acknowledgements Thisthesiswouldn’thavebeenpossiblewithoutthehelp,advice,collaborationandsupport of many people who directly or indirectly have contributed on its development. Firstly I’d like to express my gratitude to Bernd Dehning, he gave me the opportunity to join CERN as a engineering technical student, on the BE-BI-BL section, and trusted me as doctoral student to undertake this project. Tireless and friendly supervisor, he always had a gap for discussions and was willing to help on the accelerators interventions independently of his work load. His wise advice and support were essential in many points of this thesis. Unfortunately, Bernd passed away during the thesis development. A very special thanks goes to Federico Roncarolo, who kindly took over the project supervision and the revision of this document. He welcomed me on the BE-BI-PM section and followed closely the progress of this theis always with good suggestions. A great thanks to Angel Dieguez for accepting the academic supervision of this work and being my link with the University of Barcelona, I really appreciate his help with the university paperwork, which eased a lot the development of a thesis done abroad. Everyday work wouldn’t be the same without the implication of many colleagues from BE-BI-PM and BE-BI-BL, that in some way are a source of inspiration. Thanks Jonathan Emery who followed the project very closely and always provided good advice (and sugges- tions to improve the quality of the research carried out), also to Patrik Samuelsson for his help on installations and to Georges Trad for his great ideas and visits to my office. Lots of thanks to Sune Jacobsen for his help on the detectors design and construction, I had the chance to learn a lot from our conversations. Many thanks to Emiliano Piselli, without him many of the first measurements wouldn’t had been possible, he operated wire scanners until very late in the night for data taking. In general, I would like to thank all members of both sections (PM and BL) who really made me feel like at home from the very first day and made daily work a delight. Many thanks to Tullio Grassi and Stephen Groadhouse from CMS for their collabo- ration on the GBT implementation on Igloo2 FPGAs, it was great to work with them. Here, I would like to acknowledge as well Manoel Barros and Sophie Baron for their advice during our long conversations about the GBT code migration and constant support. Ihadtheopportunitytocontactsomeinstitutesinsearchofcollaboration,Iwanttothank Prof. Ulrich Heintz and his Fermilab contacts for providing some QIE10 samples, also to Eduardo Picatoste and David Gascon the ICECAL designers, and my link with the LHCb collaboration. They kindly provided ICECAL samples and received me as a member of their team while fixing of one of the ICECAL mezzanine boards in the UB. I’d like to thank Raymond Veness, William Andreazza, Dmitry Gudkov and Morad Hamani from BE-BI-ML for their commitment on the procurement of mechanical components required for the detectors construction and their advice for its installation. On the personal side, my biggest thanks goes to my girlfriend Angela, companion during this adventure working at CERN, who did not hesitated in being with me from the very first day (and it’s been 7 years since then...). She was always there on those frustrating periods cheering me and and giving the extra kick (many actually) of motivation needed to complete this document. I need to thank her infinite patience in the difficult task of living with a grumpy doctoral student. I also appreciate a lot her help formatting in LATEXa big part of the present document. But above all, thanks for that smile and her daily complicity. I couldn’t forget to acknowledge my parents who, during my lifetime, gave me the values and encouraged me to give the best of myself when facing a challenge, they always provide unconditionalsupportnomatterthedistance. Finally,abigthanksgoestoallthoserelatives (Angela’s and mine) and friends who supported me during the project. 6 Contents Abstract 2 Acknowledgements 4 1. Introduction 11 1.1. LHC and injectors chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2. Accelerator physics overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1. Particle accelerator basic concepts . . . . . . . . . . . . . . . . . . . . 14 1.2.2. Transverse beam dynamics . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.3. Transverse emittance and beam size . . . . . . . . . . . . . . . . . . . 18 1.2.3.1. Momentum spread . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.4. Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3. Transverse beam profile monitors . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.1. Non-Interceptive devices . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.2. Interceptive devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. CERN beam wire scanners and upgrade programme 25 2.1. Operational systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2. Mechanical designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3. Wire scanners calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4. Operational secondary particles acquisition system . . . . . . . . . . . . . . . 28 2.5. Ugrade motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1. Mechanical point of view. . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.2. Secondaries acquisition system point of view . . . . . . . . . . . . . . . 31 2.6. LIU-BWS Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.1. Optical position sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.1.1. Optical signal stability. . . . . . . . . . . . . . . . . . . . . . 34 2.6.1.2. Resolution and accuracy . . . . . . . . . . . . . . . . . . . . . 35 2.6.1.3. On-axis self-calibration and performance . . . . . . . . . . . 37 2.6.2. Performance on calibration bench . . . . . . . . . . . . . . . . . . . . . 38 3. Radiation detection in high energy physics 41 3.1. The passage of particles through matter . . . . . . . . . . . . . . . . . . . . . 41 3.1.1. Heavy charged particles . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.2. Electrons and Positrons . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.3. Fluctuations on energy loss . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2. Light based detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1. Organic scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2. Inorganic scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3. Cherenkov detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4. Photon detection systems . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.4.1. Photo-Multiplier tubes (PMT) . . . . . . . . . . . . . . . . . 48 3.2.4.2. Hybrid Photo-Detectors (HPD) . . . . . . . . . . . . . . . . . 49 7 8 CONTENTS 3.2.4.3. Solid state photo detectors . . . . . . . . . . . . . . . . . . . 50 3.3. Solid state particle detectors theory . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1. Semiconductor detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2. Diamond detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2.1. Signal formation . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2.2. Pumping effect and polarisation . . . . . . . . . . . . . . . . 56 3.3.2.3. Radiation hardness. . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.2.4. Diamond detectors in high energy physics . . . . . . . . . . . 58 4. Beam wire scanner acquisition system studies 61 4.1. Beams characteristics on the LHC and injector chain . . . . . . . . . . . . . . 61 4.1.1. Beam distributions on the profile monitor locations . . . . . . . . . . . 61 4.1.2. The LHC Injectors Upgrade (LIU) program and HL-LHC beams . . . 71 4.2. Secondary particles shower simulations . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1. Proton Synchrotron Booster (PSB) . . . . . . . . . . . . . . . . . . . . 74 4.2.2. Proton Synchrotron (PS) . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3. Super Proton Synchrotron (SPS) . . . . . . . . . . . . . . . . . . . . . 79 4.2.4. Large Hadron Collider (LHC) . . . . . . . . . . . . . . . . . . . . . . . 81 4.3. Beam profile signal degradation on long transmission lines . . . . . . . . . . . 83 4.3.1. Transmission lines theory overview . . . . . . . . . . . . . . . . . . . . 83 4.3.2. Loses on transmission lines . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3. Coaxial cable CK50 parametrisation . . . . . . . . . . . . . . . . . . . 85 4.3.4. Impact of long cables on bunch-by-bunch beam profiles. . . . . . . . . 86 4.3.5. Models validation and CK50 cable measurements . . . . . . . . . . . . 89 4.3.5.1. Frequency analysis . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.5.2. Temporal analysis . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.5.3. Pick-up noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4. Error sources on beam profile determination . . . . . . . . . . . . . . . . . . . 94 4.4.1. Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4.2. Simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.3. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.3.1. Imaging systems . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.3.2. Wire Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5. Secondary shower acquisition system design 103 5.1. Acquisition system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.1.1. Electronics exposure to radiation . . . . . . . . . . . . . . . . . . . . . 104 5.1.2. The VME FMC Carrier Board (VFC) and GBT-Based Expandable Front-End (GEFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1.3. Readout ASICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.3.1. QIE10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1.3.2. ICECAL V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.1.4. Radiation Hard Optical Link . . . . . . . . . . . . . . . . . . . . . . . 111 5.1.4.1. The GBT frame . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2. Proof-of-concept prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.1. Front-End implementation . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2.1.1. The GBT core on an Igloo2 Flash-Based FPGA . . . . . . . 114 5.2.1.2. QIE10 mezzanine board . . . . . . . . . . . . . . . . . . . . . 129 5.2.1.3. ICECAL V3 mezzanine board . . . . . . . . . . . . . . . . . 130 5.2.2. Back-End implementation . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2.2.1. Firmware organisation . . . . . . . . . . . . . . . . . . . . . . 132 5.2.2.2. Memory mapping and storage capabilities . . . . . . . . . . . 134 5.2.2.3. Expert application . . . . . . . . . . . . . . . . . . . . . . . . 134 CONTENTS 9 6. Laboratory evaluation and beam test results 137 6.1. Front-End prototypes laboratory evaluation . . . . . . . . . . . . . . . . . . . 137 6.1.1. QIE10 Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.2. ICECAL V3 Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1.2.1. ICECAL V3 Preliminary testing . . . . . . . . . . . . . . . . 139 6.1.3. Performance Test ICECAL V3 and AD41240 Readout . . . . . . . . . 140 6.1.4. Performance Test ICECAL V3 and AD6645 Readout . . . . . . . . . . 142 6.2. Diamond detector and acquisition system tests with beam . . . . . . . . . . . 145 6.2.1. Diamond detector set-up and tests on laboratory . . . . . . . . . . . . 145 6.2.2. Test with an operational linear beam wire scanner in SPS . . . . . . . 146 6.2.2.1. Installation in SPS tunnel and test set-up . . . . . . . . . . . 146 6.2.2.2. Loses detection . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.2.3. Diamond detectors tests with nominal intensity beams at 26 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.2.4. QIE10 FE and diamonds performance for different beam in- tensities (450GeV) . . . . . . . . . . . . . . . . . . . . . . . . 151 6.2.2.5. QIE10 FE and diamonds performance for different beam en- ergies (1e11 PpB) . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2.3. Tests with a pre-series LIU beam wire scanner prototype . . . . . . . . 156 6.2.3.1. Detector system assembly . . . . . . . . . . . . . . . . . . . . 157 6.2.3.2. Lead Ions beam profile measurements with diamonds . . . . 159 6.2.3.3. SPS LIU-BWS prototype performance and comparison with operational systems . . . . . . . . . . . . . . . . . . . . . . . 161 6.2.3.3.1. COAST Beam #1: . . . . . . . . . . . . . . . . . . . 161 6.2.3.3.2. AWAKE Beam:. . . . . . . . . . . . . . . . . . . . . 166 6.2.3.3.3. COAST Beam #2: . . . . . . . . . . . . . . . . . . . 169 6.2.4. Conclusions on diamond detectors for secondary shower detection . . . 171 6.2.5. Conclusions QIE10 Front End operation . . . . . . . . . . . . . . . . . 173 6.3. Multi-PMT detector and ICECAL FE tests in the PSB . . . . . . . . . . . . . 174 6.3.1. Scintilator light yield estimations and Multi-PMT system construction 175 6.3.2. Photo-Multipliers characterisation . . . . . . . . . . . . . . . . . . . . 179 6.3.3. Beam Tests with LHC 25ns and ISOLDE beams . . . . . . . . . . . . 182 6.3.3.1. Scanners beam width measurement precision comparison . . 182 6.3.3.2. ICECAL V3 front-end acquisitions . . . . . . . . . . . . . . . 184 6.3.4. Impact of scintillator geometry . . . . . . . . . . . . . . . . . . . . . . 188 7. Conclusions and Outlook 193 7.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 A. Appendix: Resumen en Español 197 A.1. Beam wire scanners en el CERN y su actualización . . . . . . . . . . . . . . . 198 A.2. Estimación del rango dinámico y consideraciones de diseño . . . . . . . . . . . 200 A.3. Diseño del sistema de adquisición de partículas secundarias . . . . . . . . . . 205 A.4. Evaluación en laboratorio y pruebas con haz . . . . . . . . . . . . . . . . . . . 209 A.5. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10 CONTENTS
Description: