ebook img

BCS superconductivity near the band edge: Exact results for one and several bands PDF

1.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BCS superconductivity near the band edge: Exact results for one and several bands

BCS superconductivity near the band edge: Exact results for one and several bands D. Valentinis, D. van der Marel, and C. Berthod ∗ Department of Quantum Matter Physics (DQMP), University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland (Dated:January19,2016) WerevisittheproblemofaBCSsuperconductorintheregimewheretheFermienergyissmallerthanthe Debyeenergy.Thisregimeisrelevantforlow-densitysuperconductorssuchasSrTiO thatarenotintheBEC 3 limit,aswellasintheproblemof“shaperesonances”associatedwiththeconfinementofathree-dimensional superconductor.Whiletheproblemisnotnew,exactresultswerelackinginthelow-densitylimit.Intwo dimensions,wefindthattheinitialriseofthepairingtemperatureT atlowdensitynisnonanalyticand c fasterthananypowerofn. Inthreedimensions,wealsofindthat T isnonanalytic,butstartswithzero c slopeatweakcouplingandinfiniteslopeatstrongcoupling. Self-consistenttreatmentofthechemical potentialandenergydependenceofthedensityofstatesarecrucialingredientstoobtaintheseresults. Wealsopresentexactresultsformultibandsystemsandconfirmouranalyticalexpressionsbynumerical simulations. 6 1 PACSnumbers:74.20.Fg,74.62.Yb,74.70.Ad 0 2 l I. INTRODUCTION per we focus on the band-edge effect on T in the bulk, u c emphasizingthegenericbehaviorsinthesimplecaseofan J electrongaswithparabolicdispersionandalocalattraction. 5 TheBardeen–Cooper–Schrieffer(BCS)theory1 remains WerecovertheexpressionsofEagles2 intheweak-coupling 1 theonlystrongmicroscopicfoundationtosupportourunder- limit. Inthelow-densityregime,weprovideexactrelations standingofthefascinatingphenomenonofsuperconductiv- ] as a function of the density, which are valid at arbitrary n ity. Amongmanyotherinsights,thetheoryprovidesasimple coupling. We also give exact numerical results in 2D and o expressionforthecriticaltemperature T ,whichcontinues c 3D,forone-bandandmultibandsystems. Theimplications c to inspire the search for materials with improved perfor- fortheproblemofquasi-2Dshaperesonancesandthecase - mances. Inparticular,itisexpectedthatsuperconductivity r ofLaAlO /SrTiO ,willbereportedinseparatepublications. p isfavoredbyalowdimensionalityduetoenhanceddensity 3 3 u ofstates(DOS)attheFermilevel.2 Forthree-dimensional Our starting point is the mean-field theory for a s momentum-independentpairinginteractionactinginalim- (3D)materials,anearlyproposaltousequantumconfine- at. mentinathinfilm3 hasreceivedsustainedattentionuntil ited energy range around the Fermi surface. This theory yields a pairing temperature which is in general higher m recently.4 Theconfinement-inducedtwo-dimensional(2D) thanthetemperatureofsuperconductingcoherence,espe- subbands produce discontinuities in the DOS and abrupt - cially when the dimensionality and/or the density is low d changes of T as a function of film thickness have been c and superconducting fluctuations become important.14–16 n routinelypredicted. o We ignore these fluctuations and focus on the mean-field c Thepurposeofthisstudyistoexploresomeconsequences equations,refrainingfrommakinganyapproximationwhen [ of an aspect of the problem, considered by Eagles half a solving them for T . This approach is similar to previous centuryago,2,5 butoftenoverlookedinrecentcalculations c 2 basedontheBCSgapequation. AstheFermienergycrosses v 1 theedgeofaband,thereisaregimewherethedynamical 2ħhωD 2 cutoff of the pairing interaction is controlled by the band 5 edge(Fig.1). Thisregimeisrealizedinlow-densityelectron N0(E) 4 gases,whentheFermienergyissmallerthanthedynamical 0 rangeoftheinteraction. IndopedSrTiO ,forinstance,the (a) 1. carrierconcentrationistypically1019 cm3 3 andthecarrier EF E − 0 massisintherange2–4electronicmasses,6 corresponding 6 toaFermitemperatureof50–100K,whiletheDebyetem- 2ħhωD N0(E) 1 peratureis513K.7Inthissituation,thecommonapproxima- : v tionoftakingaconstantDOSoverthefulldynamicalrange Xi fails to give a good estimate for Tc. The near-band edge (b) E regime is also relevant in the quasi-2D problem of shape E r F a resonances,sinceeachresonanceisduetotheFermienergy crossingasubbandedge.8–10 Thepairinginthatsubband, FIG.1. Schematicrepresentationof(a)thehigh-densityregime aswellastheinter-subbandpairinginvolvingthatsubband, and(b)thelow-densityregimeforsuperconductingpairing. In aredominatedbythebandedge. Asynthesisofthesetwo theformer,EF ħhωDandthedensityofstatesN0(E)canbetaken casesis realizedin thequasi-2Dandlow-densityelectron constant.Inth(cid:29)elatter,EF(cid:174)ħhωD,theinteractioniscutbytheband gasattheLaAlO /SrTiO interface.11–13 Inthepresentpa- edge,andthedetailsofN0(E)matter. 3 3 2 mean-field studies of the BCS-BEC crossover where the toanylocalinteractionwithadynamicalcutoff. Inalattice renormalizedchemicalpotentialissolvedself-consistently version, for instance, the cutoff could be the bandwidth. togetherwiththe Tc equationorthegapequationatzero N0β(E) is the DOS per spin and per unit volume for the temperature.17,18 band β. It is defined on an absolute energy scale, such Anexactsolutionofthegapequationrequiresonetotake thatN0β(µ)istheDOSatthechemicalpotentialµ,which intoaccounttheenergydependenceoftheDOS,mostimpor- is common to all bands. The chemical potential must be tantlythecutoffatthebandbottom,andthetemperature adjustedtofixthedensityaccordingto dependenceofthechemicalpotentialµ,whichiscrucialat low-densityn. Becausen, T ,andµallapproachzerosimul- ∞ c n=2 dE f(E)N(E). (1b) taneously, it is essential to use the exact relation µ(n,Tc) (cid:90) in order to capture the correct behavior of Tc for n 0. −∞ Furthermore,oneshouldnotassumeweakcouplingan→d/or Here, f(E) = [e(E µ)/kBT +1] 1 is the Fermi distribution − − assume that Tc is small with respect to the Fermi energy function and N(E) is the total BCS density of states (per and the cutoff for pairing. As a matter of fact, analytical spin) resulting from the opening of the superconducting resultsinthisproblemarerare. InRef.19,rigorousbounds gapsatthechemicalpotentialineachband. for T wereobtainedforageneralinteraction. Theseresults For the calculation of T , it is sufficient to consider the c c are limited to weak coupling and to a positive chemical two equations in the limit of vanishing order parameters. potential. We will see that the chemical potential at Tc is For T =Tc wehave negativeinthelow-densitylimitin2Dforanycouplingand in3Dforcouplingslargerthanacriticalvalue. Exactresults ħhωD tanh E 2hDav.2e0aHlsoowbeeveenr,rseinpcoerttehdefuonritvheerszaelrBoC-tSemgappertaotuTrcergaatipoiins ∆α=(cid:88)β Vαβ∆β(cid:90)−ħhωDdEN0β(µ+E) (cid:16)2E2kBTc(cid:17) (2a) notobeyedinthelow-densitylimit,theseresultscannotbe ∞ usedtodeduce Tc. n=2 dE f(E) N0β(E). (2b) Thispaperisthefirstinaseriesanditprovidesthemath- (cid:90) β −∞ (cid:88) ematical foundations for subsequent studies dedicated to Wenowinsertexplicitformulasfortheenergy-dependent shape resonances in thin films and to the LaAlO /SrTiO 3 3 densitiesofstatesandthedensityandwerewritetheequa- interface. It is organized as follows. In Sec. II we recall tions(2)inadimensionlessform,whichismoreconvenient thebasiccoupledequationsgiving nand T andwewrite c for analytical and numerical treatments. The densities of theminadimensionlessform,foroneandseveralparabolic statesforaparabolicbandindimensionsd=2andd=3 bands. InSec.IIIwepresentouranalyticalandnumerical aregivenby resultsforonebandin2Dand3D,andinSec.IVwebriefly discussmultibandeffects. mβ d2 d 1 N0β(E)=(d−1)π 2π2ħh2 θ(E−E0β) E−E0β 2− , (cid:18) (cid:19) (3) II. BCST EQUATIONFORMULTIBANDSYSTEMS (cid:128) (cid:138) c where m isthebandmass, E istheenergyoftheband β 0β minimum,andθ istheHeavisidefunction. Thisdefinition A. Dimensionlessequationsforthepairingtemperature ensuresthat N0β(µ)istheDOSevaluatedatthechemical potentialµcommontoallbands,consistentlywithEq.(1a). We consider a multiband metal with a local BCS pair- Therelationbetweendensity,chemicalpotential,andtem- inginteraction V actingbetweenelectronsofopposite peratureforaparabolicbandinarbitrarydimensiond is αβ momenta and s−pins in bands α and β.21 We assume that d Cbaonodp,elreapdaiinrigngbeolocwcutrhseopnalyirifnogr ttewmopeelreactturroenTscintothaneosardmeer n=−2 m2πkBħhT2 2 Lid2 −eµk−BET0 , (4) parameter∆α ineachband. Thisincludesthepossibilityof (cid:18) (cid:19) (cid:129) (cid:139) a“proximity”inducedgap∆β inabandthatotherwisefeels where Lip(x) is the polylogarithm given by the series ex- nopairingpotential(Vββ =0),viathenonzerointerband pansion Lip(x) = ∞q=1xq/qp. This function has the sign interactionsVαβ. Themean-fieldgapequationfor∆α is of its argument and reduces to a usual logarithm in two dimensions (p = 1(cid:80)): Li1(x) = ln(1 x). We provide a ħhωD tanh (cid:198)2ξk2B+T∆2β breraiedfedr.erivationofEq.(4)inAp−pendix−Afortheinterested ∆α=(cid:88)β Vαβ∆β(cid:90)−ħhωDdξN0β(µ+ξ) 2 (cid:18)ξ2+∆2β(cid:19). (1a) denWseitymineausnuirtesoafll2[emneωrgDi/e(s2πinħh)u]nd/i2tswohferħheωmD,iseaxprerefesrsenthcee mass,andwedistinguishthedimensionlessvariableswith (cid:198) The pairing interaction acts in a range ħhωD around the tildes,e.g., chemical potential µ. Although the not±ationħhωD is used hreesruel,tswdeoennovtisrieoqnuitrheephporonbolne-mmeindiaittsedgepnaeirrianlgit,ybauntdapopulyr T˜c = ħkhBωTDc, µ˜= ħhωµD, n˜= 2[mωD/n(2πħh)]d/2, etc. 3 Thecoupledequations(2)for T become B. Propertiesofthefunctionsψ (a,b) c d ∆α= ∆βλ¯αβψd 1+µ˜ E˜0β,T˜c (5a) − β (cid:88) (cid:128) (cid:138) n˜=−T˜cd2 (cid:88)β (cid:129)mmβ(cid:139)d2 Lid2 (cid:18)−eµ˜−T˜E˜c0β(cid:19). (5b) strTohnegefsutnscttriuocntsurψedd(eav,ebl)opasreardoisupnldayaed=221in, wFihgi.ch2.coTrhree- sponds physically to having the chemical potential at the Wehaveintroducedthedimensionlessfunction, bottomofoneband. Wearemostlyinterestedinthebehav- 1 tanh x iorfor b 1,whichisexploredintheregimekBTc ħhωD ψd(a,b)=θ(a)(cid:90)1 mind(ax,2()x+a−1)d2−1 2(cid:128)x2b(cid:138), (6) athneddpeanrstii(cid:28)ctyulaaprlpyroinacthheeslizmerito.bI→fa0<,w1,hψichd(ias,rbe)leivsafinn(cid:28)tiwtehfeonr − aswellasthecouplingconstants, m d λ¯αβ =Vαβ(d−1)π 2π2βħh2 2 ħhωD d2−1. (7) (cid:18) (cid:19) (cid:0) (cid:1) Weuseabartorecallthatthesecouplingconstantsarenot evaluatedattheFermienergylikeinthecommonpractice, butatanenergyħhωDabovethebottomofeachband: λ¯αβ = VαβN0β(E0β+ħhωD). Thischoiceisnaturalandleadstothe simplestequations. Theusualdefinitionλ=VN0(µ)poses problems when µ lies below the band bottom and more generallybecauseµisafunctionofinteractionstrengthand temperature. In an N-band system, the relations (5) provide N +1 equationsfortheN+1unknowns,whichare T˜c,µ˜,andthe N 1ratios∆β/∆1. Wecanassumethat∆1=0without los−sofgenerality,becausethereisatleastonen(cid:54) onzerogap parameterat T andwearefreetonumberthebandssuch c that∆1 isthisone. WenoweliminatetheN 1gapratios andreducetheproblemtoapairofequation−sfor T˜ andµ˜. c Withthenewdefinitions rβ =∆β/∆1 and Λαβ(µ˜,T˜c)=λ¯αβψd(1+µ˜ E˜0β,T˜c), (8) − thesetofN equations(5a)becomestheeigenvalueproblem Λr = r with r = (1,r2,...,rN). This means that, when evaluatedatavalueof T˜c solvingEq.(5a),thematrixΛhas atleastoneuniteigenvalue. Inotherwords, T˜ corresponds c to the largest temperature that satisfies the characteristic equationdet(11 Λ)=0. Thetwocoupleddimensionless equationsgiving−nand T forN bandsaretherefore c 0=det[11 Λ(µ˜,T˜c)] (9a) − n˜= T˜cd2 N mα d2 Lid eµ˜−T˜E˜c0α . (9b) − (cid:88)α=1(cid:129) m (cid:139) 2 (cid:18)− (cid:19) The existence of a nontrivial solution to Eq. (5a) clearly impliesEq.(9a). Theconverseisalsotrue: Thevanishingof FIG.2. Representationofthefunctionsψd(a,b)definedinEq.(6) fordimensionsd=2(top)andd=3(bottom).Physically,thea thedeterminantinEq.(9a)issufficienttoenforcethatthe axiscorrespondstovaryingµaroundthebandbottom(a=1)and matrixΛhasoneuniteigenvalue,whichprovidesasolution the baxisisproportionaltoT.Thebluelinesshowthebehavior c toEq.(5a). Theequations(9)havethesamestructurein for b=0and a<1. Thetworedlinesineachgraphshowthe 2D and 3D, the quantitative differences stemming mostly asymptotic bdependenciesfor1<a<2anda>2,respectively. fromdifferentfunctionsψd(a,b). Inthenextparagraphwe The green lines show cuts at the value ψd(a,b) = 2.5, which discussthepropertiesofthesefunctions,whichweshalluse correspondtothepathfollowedinthe(a,b)planebythesolution inthefollowingsectionstoderiveanalyticalresults. oftheBCSequations(9)foronebandandforλ¯=0.4. 4 b=0. Thelimitingvalueisgivenby andintheregimeµ>ħhωD: ψd(0<a<1,b 0)= 1b dx (bx+a2x−1)d2−1 ψ3(a>2,b→0)=(cid:112)a+ a−2+ a−1 → (cid:90)1−ba ln a−1 (cid:112)a(cid:112)−1−(cid:112)a(cid:112)−28eγ−2 . (14) ln(cid:112)1 a (d=2) × (cid:112)a+(cid:112)a 1(cid:200)(cid:112)a 1+(cid:112)a 2 πb  =− − (10)  − − −  (cid:112)a−(cid:112)1−asin−1((cid:112)a) (d=3). Tasheresedalisnyems.pLtoatsitclyb,einhatvhieorhsigahr-edienndsiictay,tehdigihn-TFigs.e2ct(obrotato>m2) c These limiting behaviors are indicated on the graphs as and b , the function reduces simply to ψd(a,b) = bblue0li,nbesu.tIifnadi>ffe1r,enψtdw(aa,ybs)indivtheergtewsolorgaanrgitehsm1ic<alaly<fo2r (aF−ig1u)rd→e/22−∞1a/ls(o2bsh).owsaparticularcutatthevalueψd =2.5. an→d a > 2. The former range corresponds physically to SincetheBCSequation(9a)foronebandissimplyψd = 0fo<rthµe<paħhiωrinDg,siunctehrathctaitonth,ewbhailnedtheedglaettseertsratnhgeeloiswtehrecuustuoaffl 1(1/λ¯+,µ˜th,Te˜cs)efcourtλ¯s =sho0w.4.thNeotleocthuastotfhethaeppsoroluxtiimonastio(an,sb()11=) to(14)showninredunderestimatethefunctionψ atlow regime, where the Fermi energy is larger than the Debye d b;usingtheminsteadoftheexactfunctionsthusleadsto energy. Intwodimensions,theasymptoticbehaviorisquite underestimating T . simple: Ifa>2,wehavethewell-knownresult, c 1 b tanh(x/2) 2eγ ψ2(a>2,b 0)= dx 2x =ln πb , (11) III. ONEPARABOLICBANDIN2DAND3D → 1 (cid:90)−b (cid:18) (cid:19) A. Analyticalresults with γ 0.577 the Euler constant. The function is inde- penden≈tof a,becausetheDOSisconstantovertherange Forasingleband,weplacetheoriginofenergyatthebot- of integration when µ >ħhωD. If 1 < a < 2, we evaluate tomofthebandandweusethebandmassasthereference thefunctionbyextendingtheintegraltoreproducethecase mass. Thecoupledequations(9)for T becomesimply: a>2andsubtractingthedifference: c d 1b tanh(x/2) 1−ba 1 1=λ¯ψd 1+µ˜,T˜c , n˜=−T˜c2 Lid2 −eµ˜/T˜c . (15) ψ2(1<a<2,b→0)= 1 dx 2x − 1 dx −2x In2Dtherela(cid:128)tionbetw(cid:138)eenn˜andµ˜ canb(cid:16)etriviall(cid:17)yinverted (cid:90)−b 2e(cid:90)γ−b andthetwoequationsreducetoasingleimplicitrelation =ln a 1 πb . (12) for T˜c asafunctionofn˜andλ¯: − (cid:18) (cid:19) Equations(11)and(12)arerepresen(cid:112)tedinFig.2(top)as 1=λ¯ψ2 1+T˜cln en˜/T˜c 1 ,T˜c . (16) − redlines. Inordertoobtaintheexactasymptoticbehavior (cid:16) (cid:17) for b 0inthreedimensions, weintroducethefunction Atnottoolowdensity,weseef(cid:0)romthea(cid:1)symptoticexpres- t(x) a→s a piece-wise linear approximation of tanh(x/2)— sionsindicatedinFig.2thatthepairingtemperaturecrosses namely, 1for x < 2, x/2for x <2,and+1for x >2— overbetweentworegimesatµ˜=1. In2Dwehave and we−calculate an−alytically th|e|integral with tanh(x/2) rmeaptlaiocnedanbdy tth(xe)e.xTahcetrdeisffuelrteinscebetweenthelatterapproxi- 2eγ 1 µ˜ µ˜(cid:174)1 T˜c ≈ π exp −λ¯ ×1(cid:112) µ˜>1 (d=2). (17) 1 (cid:18) (cid:19) b tanh(x/2) t(x)  lim dx bx+a 1 − b→0(cid:90)1−mibn(a,2) (cid:112) − 2x T˜c is independent of µ˜ (hence of n˜) for µ˜ > 1, due to 4eγ 1 theconstantDOSandtheconventionalBCSexpressionis = a 1ln − . recovered. In3Dwefind π − (cid:130) (cid:140) (cid:112) Expandingthenonsingulartermstoleadingorderin b,we 8eγ 2 1 e(cid:112)1+1/µ˜ T˜ − µ˜ exp finallygetintheregime0<µ<ħhωD: c ≈ π −λ¯ µ˜1+ 1+1/µ˜ (cid:112) ψ3(1<a<2,b 0) 1  (cid:112) µ˜(cid:174)1(cid:112) → a 1 8eγ 2  (d=3). (18) =(cid:112)a+ a 1ln − − , (13) × e(cid:112)1 1/µ˜ 1 (cid:112)1 1/µ˜ µ˜>1 − (cid:130)(cid:112)a+(cid:112)a 1 πb (cid:140)  − 1−+(cid:112)1−1/µ˜ (cid:112) − (cid:199) −  5 The product λ¯ µ˜ is the coupling evaluated at the chem- toleadingorderin1 a. Thisyields ical potential, which enters the exponential as expected. − ERreqegfu.iam2tieiofnowsfev(1aa7ldi)dm(cid:112)iatintydtoh(fa1tt8hk)eBsaTercee=xidp(ereneγst/isπciao)ln∆tso,,wbEuhqtsic.nh(o2its)itanrnutdehe(in3l)othwoef- T˜c ≈n˜32 exp(cid:150)W(cid:130)8(13/πλ¯2−n˜231)2(cid:140)(cid:153) density and/or strong-coupling regimes (see below). We (d=3,λ¯>1,n 0). (20) emphasizethattheseapproximationsresultfromexpanding → tthheerfeufonrcetiaocncuψrda(tea,obn)lyininththeelilmimititbT→00foartafin>it1eapnodsitaivree Linikcreeainse2sDf,asTtcersttahratns wanityhpaonwienrfinoiftensilfoλp¯e>at1n. =If λ¯0 a<nd1 c µ. These equations are not accurate→in the high-density there is no finite solution a to the equation ψ3(a,0) = regimewhere T islarge. Ournumericalresultsshowthat 1/λ¯, meaning that µ = 0 at zero density. As can be seen c Eqs.(17)and(18)providearatherpoorapproximationas in Fig. 2, the curvature along the cut for ψ3 > 1 is such soonas Tc reachesafewtenthsofħhωD. that µ˜ > T˜c. In the limit T˜c 0 we can use the large-x expansion Li3/2( ex) 4/→(3(cid:112)π)x3/2 and recover µ˜ = Wenowturntothelow-densityregion. In2Danycutof (3(cid:112)πn˜/4)2/−3,whic−histh→ezero-temperaturenoninteracting thefunctionψ2(a,b)atthevalue1/λ¯ convergesat b=0 result. Usingtheasymptoticform(13)wefinallyobtain to a value a<1, given by the relation ln(cid:112)1 a=1/λ¯ (fipsrneoietaecFhingee.sg2az)te.irvoHe.evnTachlueisethiµ˜semacinhce=omn−jiuceag−la2tp/eλo¯dtweenhftf−eieanclttchooefntvd−heeerngpseiastyirtioanpga- T˜c = 8eπγ−2 (cid:130)3(cid:112)4πn˜(cid:140)23 exp−(cid:18)λ1¯ −1(cid:19)(cid:18)3(cid:112)4πn˜(cid:19)13 interaction and the DOS discontinuity: At any finite cou- (d=3,λ¯<1,n 0). (21) plingthemomentumdistributionisspreadandanegative → chemical potential leads to a finite density even at zero Thisfunctionstartswithzeroslopeatn=0andincreases temperature. Thechemicalpotentialatzerodensityisre- slower than any power of n. It is exactly equivalent to lµ˜amteind=toE˜tbh/e(2en+erE˜gby).EbEqoufathtieontw(o1-6p)arftoircleT˜cboun0dbsetcaotembeys wthaeveresscualttt1e7riknBgTlcen=gt(h8aeγ−is2/cπom)EpFuetxepd[wπ/it(h2koFuarsi)n]teifratchteions- 1 = λ¯ln T˜cln(en˜/T˜c 1), which can be→solved for n˜ potential, namely 4πħh2ass/m = V/(λ¯ 1). This potential Tasheal−fautntecrtie(cid:112)oxnp−roefssT˜ico:nn˜sh=ow−T˜scltnh{a1t+n˜iesxspm[−alelexrpt(h−a2n/Tλ˜¯c)/wT˜hce]n}. whahsynµob=ou0ndasttazteerofordetwnsoitpyaritnicltehsisifcλ¯a−s<e.1,Twhheicchheaxnpgleainosf bothapproachzero,suchthatinthislimitwecanreplace behavioratλ¯ =1isdiscontinuousaccordingtoEqs.(20) ln(en˜/T˜c 1)byln(n˜/T˜c). Wethusfindthesolution, and (21), both functions giving T˜c n˜2/3 with different − pre-factors. ∝ Theanalyticalexpressions(17)–(21)arecomparedbelow withthenumericalresults. Notethatifthereferencemassis T˜c =n˜exp W e−n˜2/λ¯ (d=2,n 0). (19) ninotthtehseebeaqnudatmioansss.mα,onemustreplacen˜byn˜(m/mα)d/2  (cid:32) (cid:33) → AstheBCSmean-fieldtheoryisnotbelievedtobeauseful   modelin1D,wehavenotdiscussedthiscase. Forcomplete- ness, and because it has been argued that the singularity W(x) is the Lambert function (or “product logarithm”), of the 1D DOS could induce large enhancements of Tc in whichgivestheprincipalsolutionoftheequation x =WeW. stripedquasi-1Dsuperconductors,8 weshowinAppendixB Equation(19)isnonanalyticinbothλ¯ andn˜. Itgivesa T thatthepairingtemperatureisalsocontinuousandnonana- c startingwithaninfiniteslopeatn=0andincreasingfaster lyticatthebottomofa1Dband. thananypowerofn(inthesensethattherunningexponent Beforeclosingthissection,wepointoutthatthesolution given by the logarithmic derivative approaches zero for ofthegapequationatT =0doesnotgenerallyallowoneto n 0). An approximation of (19) valid to logarithmic deduce T . Althoughthefocusofthepresentpaperison T , c c acc→uracywasgivenearlier.24 wegiveinAppendixCexactresultsforthezero-temperature gapin 2Dat lowdensity, forthe purposeof showingthat In 3D the function ψ3(a < 1,0) approaches 1 for theusualBCSgapto Tc ratioisnotobeyedinthislimit. a 1. Therefore we have the same situation as in 2D→if λ¯ > 1. In this case the chemical potential ap- proaches a finite negative value given by the solution of B. Numericalresults µ˜min+1 µ˜minsin−1 µ˜min+1 =1/λ¯ astheden- sity approa−ches−zero. Since µ˜ is finite and negative in ThenumericalsolutionofEq.(16)isshowninFig.3. T˜ (cid:112)the limit T˜ (cid:112)0, we can (cid:0)u(cid:112)se the asy(cid:1)mptotic expression c c reachesaplateauathighdensityduetotheconstantDOSof Li3/2( ex) →ex for x andgetthechemicalpoten- theband. Forλ¯ oforderone,thevalue T ontheplateau −tialµ˜=−T˜cln(→n˜/T˜c3/2). E→qua−ti∞on(15)canthenbesolvedfor departs significantly from the approximca,∞te solution (17), T˜ intherelevantregime µ˜ 1,bymakinguseofEq.(10) whichbecomesworsewithincreasingλ¯,whilethesimple c − (cid:28) 6 0.5 0.8 (a) λ¯=1 (a) ¯λ = 1.5 0.4 0.6 n˜∞ T˜c, ¯λ = 1 T˜c 0.3 λ¯=0.75 ∞ T˜c 0.4 λ¯ = 0.75 0.2 λ¯=0.5 λ¯ =0.5 0.2 0.1 λ¯=0.3 λ¯ =0.3 0 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 n˜ n˜ 100 100 (b) (b) λ¯ =1.5 10 2 − 10 1 − ) ˜T/c,∞ λ¯=1 1 ˜T1/)(c10−4 ˜Tc 10 2 T˜c,∞ ˜T˜n(c ¯λ = 1 − 10 6 − λ¯=0.3 00 1 λ¯ 2 λ¯=0.3 10 3 10 8 −10−8 10−6 10−4 10−2 100 −10−8 10−6 10−4 10−2 100 n˜/n˜ n˜ ∞ FIG.3. (a)Pairingtemperatureasafunctionofelectrondensity FIG.4. (a)Pairingtemperatureasafunctionofelectrondensity foroneparabolicbandintwodimensions. T isexpressedinunits for one parabolic band in three dimensions. T is expressed in c c ofħhωD/kBandninunitsofmωD/(πħh).Thethinhorizontallines unitsofħhωD/kBandninunitsof2[mωD/(2πħh)]3/2.Thethinand showtheapproximatesolution(17)foreachλ¯.Theverticalbars dashedlinesshowEq.(18),evaluatedusingµ˜0=(3(cid:112)πn˜/4)2/3for indicaten˜ [Eq.(22)]. Thedashedlinesshowtheapproximate µ˜. Theverticalbarsindicateµ˜0=1. (b)Samedataonalog-log scaling T˜c∞= T˜c, (n˜/n˜ )1/2. (b) Same data normalized. The scale. ThedashedlinesshowEqs.(20)and(21). Equation(21) whitedashedlin∞esare∞thepredictionofEq.(19)andtheblack wasusedforλ¯ =1. Theshort-dashedwhitelineforλ¯ =1.5is dashedlineindicatesthesquare-rootbehaviorforn˜(cid:174)n˜ .(Inset) obtainedwithoutexpandingEq.(10)arounda=1(seetext). Maximum pairing temperature as a function of λ¯ (so∞lid line), comparedwithEq.(17)(dotted)andλ¯/2(dashed). Eq.(19)vanishescontinuouslyforn˜ 0,thecorrectpicture isthatofa T tendingasymptotical→lytoadiscontinuityof large-Tc result T˜c, = λ¯/2 becomes increasingly reliable sizezerowithc decreasingn. [insetofFig.3(b)]∞. Thedensityn˜ atwhichtheplateauis The numerical results for the 3D case are displayed in reachedcorrespondstoµ ħhωD co∞incidingwiththebottom Fig.4. Alsoshownisthehigh-densityapproximation(18), oftheband,whichmeans−: evaluated with µ˜ replaced by its zero-temperature nonin- teracting value µ˜ . The approximation falls on top of the n˜ =T˜c, ln e1/T˜c,∞+1 . (22) numerical data fo0r small λ¯, but deviates significantly for ∞ ∞ largercoupling. Thegoodagreementatweakcouplingis (cid:16) (cid:17) For n˜ (cid:174) n˜ , Eq. (17) gives T˜c/T˜c, µ˜1/2. Since µ˜ is due to a cancellation of errors: the agreement worsens if very close∞to a linear function of n˜∞a≈t intermediate and µ˜ rather than µ˜ is used in Eq. (18). The reason is that 0 highdensities(seebelow),weexpecttohavetheuniversal µ(Tc)<µ0andtheuseofµ0alwaysleadstooverestimating scaling T˜c/T˜c, (n˜/n˜ )1/2. This is well obeyed by the Tc. Thishappenstocompensatetheunderestimationof Tc data. ∞ ≈ ∞ duetotheuseofEqs.(13)and(14). Closeton˜=0thebehaviorisnonuniversal,inthesense At low density, the change of behavior from a convex thatthecurvesdonotcollapseif n˜and T˜ arerescaledby increaseforλ¯<1toaconcaveincreaseforλ¯>1isvisible c n˜ and T˜ [Fig.3(b)]. Thenumericaldataareinperfect onthelog-logplotinFig.4(b)—whereaconvexfunction c, ag∞reement∞withthelimitingbehavior(19)atallcouplings. hasaslopelargerthanunity. Thelow-density,low-coupling Theflatteningofthecurvesinthelog-logplotshowsthat limit(21)describesthenumericaldataperfectly. Thelow- the running exponent η(n) in Tc nη(n) approaches zero density,high-couplingexpression(20)deviatesslightlydue for n 0. Thisissuggestiveofa∝discontinuityin Tc(n)at totheuseofEq.(10)atlowestorderin1 a. Thissmall n=0,→reminiscentoftheDOSdiscontinuity. However,since discrepancydisappearsifµ˜ isevaluatedwit−houtexpanding 7 0.3 0.3 momentum distribution above µ , than there are states 2D 3D 0 00..12 ¯λ =0.2¯λ5=0.5¯λ =1 ¯λ =1.5 0.2 ¯λ=0.5¯λ =1¯λ =1.5¯λ =2 vrtahealsmelouroeewvf,oeibtrdyhebraieennlmcoarwaemianµosibu0n.englTtonhww.ehteihcqehuziilenirbcorr-ieutaemsmecspheweraimtthuicriaenlcnprooenateisnnintteigaralλ¯cmtaiunnsdgt Tc 0.1 @ 0 0.0005 ˜µ λ¯=0.25 0.005 −0.1 0 0 0.5 ¯λ=1 IV. MULTIBANDEFFECTS −0.2 e 2/−λ¯0.00050 0.0005 0.1 0 Theinterestraisedbymultibandsuperconductors,inpar- 0.3 − − − 0 0.0005 ticularMgB2 andtheiron-basedfamily,hastriggeredmany − 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 studiesovertheyears.25 Herewediscussmultibandeffects n˜ n˜ thatoccurnearabandedgeandareassociatedwiththelow 10−12 0 densityinoneofthebands. − 2D λ¯=0.5 Itisclearfromtheprevioussectionthataknowledgeof 10−10 λ¯=0.25 theself-consistentchemicalpotentialisrequiredtounder- ˜n)−10 8 −0.2 λ¯=1 stand the behavior of Tc close to a band minimum. This ˜µ(0 − − raisesthequestionoftheroleplayedbyperturbationsthat @T)c−−10−6 ¯λ =0.5 −0.4 λ¯=1.5 asuffpeecrtctohnedcuhcetminigcablapnodte(nNtiBa)l,bsuencheaatshththeepsruepseenrcceonodfuacntionng- ˜µ( −10−4 ¯λ = 1 0.6 bcaanndon(lSyBa)l.teInrtthheesaubpseernccoendoufcitnintegrbparnopdecrotiuepsloinfgth,ethSeBNbBy −10−2 λ¯ =1.5 − 3D λ¯=2 cthheankgeiyngobthseervchateimonicwalapsottheanttiµali.sInfin2iDteaannddinne3gDatfivoerλa¯t>th1e, 100 0.8 − 0 1 2 3 − 0 1 2 3 band bottom, such that the nonanalytic behavior of Tc is n˜ n˜ notcontrolledbyµ. AnNBisthereforenotexpectedingen- eraltochangethisnonanalyticbehaviorqualitatively. An FIG.5. (Toprow)ChemicalpotentialatT inthelow-densitylimit. c exception—confirmingtherule—occurswhenthebottomof Thedotsshowthesolutionofψd(1+µ˜,0)=1/λ¯,withψd(a,0) theNBcoincidespreciselywiththeenergyatwhichtheSB givenbyEq.(10).Theinsetsshowthatµ(n=0)<0in2Dforall λ¯,whileµ(n=0)=0in3Dforλ¯(cid:182)1. (Bottomrow)Difference beginstobepopulated. Forthispeculiararrangement,the betweenthechemicalpotentialat Tc andthezero-temperature NBcontrolstherelationbetweenµandninthelimitTc 0 noninteractingvalueµ˜0.Theverticalbarsindicateµ˜=1. and Tc displaysasimpleanalyticdependenceonn,whic→his linearin2Dand n2/3 in3D.ThisisillustratedinFig.6(a) forthe2Dcase. S∝olvingthecoupledequations(9)fortwo Eq. (10). The value λ¯ = 1 is somewhat peculiar: The bandsintheappropriateregime,wegetarelationbetween numericsshowstheexpectedn˜2/3scaling,butthepre-factor n˜and T˜c whichisaccuratenearthebandminimum: isneitherunityasimpliedbyEq.(20),nor0.742asgiven byFEigqu.r(e215)s,hbouwts∼th0e.6c.hemicalpotentialcalculatednumeri- n˜=T˜c mm1 ln 1+e−exp(−T˜c2/λ¯11) ccoaullpyliantgT,ca.sIdnis2cDussµedcoanbvoevreg.eIsnt3oDaµnetegnadtisvteovzaelruoeaftonra=n0y (cid:20) (cid:18) +mm2 ln 1(cid:19)+e−exp(−2/T˜λ¯c11)−E˜02 . (23) ifλ¯(cid:182)1. Ifλ¯>1itconvergestoanegativevalue. Theden- (cid:18) (cid:19)(cid:21) sityatwhichµ=0isgivenforλ¯(cid:166)1byn˜ 0.62(1 1/λ¯)3. This reproduces the near-band edge behavior as shown Thiscoincideswiththecondition1/(kFas≈) 0.68.−Theef- inFig.6(a)andinparticulargivesthelineardependence fectofincreasingthepairinginteractionis≈mainlytoshift n˜ = T˜c(m2/m)ln(2) at the transition point where E˜02 = the µ(n) curve downwards. At n=0 this shift is entirely exp( 2/λ¯11). duetotheinteraction-inducedspreadingofthemomentum −If E˜0−2 < exp( 2/λ¯11), the SB is not populated at low distribution. Atfinitenpartoftheshiftisduetothethermal densityand−super−conductivityappearsatsomefiniteden- smearing. sity. In all cases, the Tc(n) curve is “stretched” to higher As the density increases, the behavior is qualitatively densities with respect to the one-band result due to the differentin2Dand3D:whileµ˜ approachesµ˜0=n˜ in2D, carriers“lost”intheNB.Forinstance,ifthebandminima this does not happen in 3D. In 2D the chemical potential are degenerate, we see from Eqs. (9) that the one-band is µ˜ = T˜cln(en˜/T˜c 1). Since T˜c saturates for n˜ > n˜ , we Tc(n)curveissimplymodifiedbyarescalingofthedensity have n˜ > T˜c at l−arge n˜ and µ˜ approaches exponen∞tially n n/[1+(m1/m2)d/2]. Thisimpliesthatthepairingtem- thevaluen˜. Thisispeculiartothe2DconstantDOS,since pe→rature is necessarily reduced by a nonsuperconducting bothinteractionandtemperatureredistributestatesinequal band,intheabsenceofinterbandcoupling. amountsbelowandaboveµ . In3Dthesquare-rootDOS Both attractive and repulsive interband interactions in- 0 impliesthattherearemorestatesaddedinthetailofthe crease T fortwobands,26,27 asillustratedbythefactthat c 8 0 0.05 1 0.5 0.05 λ¯12=0 (a) 2D 3D +1 0.8 λ¯22=2 λ¯22=2 0.4 0 +0.5 0.6 0.3 0 T˜c λ¯22=0.5 T˜c 0.4 λ¯22=0.5 0.2 0.5 0.2 − 0 0.1 −e−2/λ¯11 E˜02=−1 1 mm2 e−2/λ¯11 E˜02 2D 3D − − 0 (cid:0) (cid:1) 0.8 λ¯12=0.2 +1 0.4 0.6 +0.5 T˜ c 0 0.4 0.3 T˜ λ¯12=0.5 λ¯12=0.5 c 0.2 0.5 0.2 λ¯12=0.2 λ¯12=0.2 − λ¯12=0 λ¯12=0 0 0.1 E˜02= 1 0 1 2 3 4 0 1 2 3 4 − n˜ n˜ (b) 0 0 0.5 1 1.5 2 FIG.7. (Toppanels)ChangeofTc inducedbyasecondsupercon- n˜ ductingbandin2Dand3D,withoutinterbandcoupling.(Dashed blacklines)Pairingtemperatureforasinglebandwithcoupling wFIiGth.6co.upPlainirgisngλ¯1t1em=p1e,raλ¯t2u2r=ef0o,ratnwdo(baa)nλ¯d1s2i=n0tw,o(bd)iλm¯1e2n=sio0n.2s,. λt¯h1e1t=wo1-abnanddmsayssstemm1w/mith=E˜102.(SE˜o0l1id=li0n.e7s5),Pmai2ri=ngmt1e,mapnedracotuurpelifnogr E02istheenergyminimumofthesecondband,measuredfromthe λ¯22 =0.5(red) andλ¯22 =2−(blue). (Dash-dotted)Case of the energyminimumofthefirst. Themassesarem1=m2=m. The secondbandalone. (Dotted)Caseofthetwo-bandsystemwith dashedlinein(a)istheone-bandresult,shiftedhorizontallyfor λ¯11 =0. (Bottompanels)Increaseof Tc byinterbandcoupling. easiercomparison.(Inset)Blowupofthetransitionregion.Curves (Solidlines)Nointerbandcoupling,samedataandcoloringasin areshownforE˜02= exp( 2/λ¯11)+δE˜,withδE˜rangingfrom thetoppanels.Dottedanddashedlinescorrespondtointerband −fo0r.δ04E˜(=blu0e.,Trihgehtw)hto−ite+d0a.0s−4he(dreldin,elesfts)h.oNwotEeqt.h(e2l3in).eaIrnb(ebh)a,vtihoer couplingλ¯12=0.2and0.5,respectively. dottedlinesaretheresultforλ¯12=0andthedashedwhitelines showEq.(24). Reference6reportsanonmonotonicdependenceofthepair- Eq.(9)involveonlyλ¯212: interbandinteractionsdonotin- ingtemperatureoncarrierconcentrationindopedSrTiO3: duceinterbandpairinginthepresentmodel,butreinforce thiscannotbeinterpretedonthebasisofEq.(9)without theintrabandpairingbysecond-orderprocessesinvolving invokingdensity-dependentinteractions. theotherband. If T startsatfinitedensity,theinterband c coupling leads to a tail in the Tc(n) curve. In the regime Asecondbandcanneverthelessleadtoadecreaseof Tc wherethechemicalpotentialisbelowtheSBbutwellinto atfixeddensity. Specifically,consideraone-bandsystemat theNB,wefind,forinstance,in2D: somedensitywithcouplingλ¯ andpairingtemperatureT0; 11 c 2eγ m addasecondbandathigherenergywithcouplingλ¯22(cid:182)λ¯11 T˜c = π (cid:114)n˜m2 exp(cid:168)λ¯1212 (cid:150)λ¯11+ln −E˜022−n˜mm2 (cid:153)(cid:171). (24) athnedsnaomiendteernbsaitnydhcaosuTpcli(cid:182)ngT;c0t.heTnhitshceatnwboe-briagnodrosuyssltyemprowviethn (cid:16) (cid:17) bymanipulatingEqs.(9). ThisiscomparedwiththenumericalresultinFig.6(b). We move on to the case of two superconducting bands Ifthesecondbandhasacouplingλ¯ >λ¯ , T exceeds 22 11 c and begin with general trends. The observation that T T0 at high enough density and follows the dependence c c is an increasing function of density28 remains true in the thatwouldcorrespondtoanonsuperconductingfirstband. near-bandedgeregime. Itispossibletoshowthattheprop- ThesevarioustrendsareillustratedinFig.7(toppanels). erty dTc/dn(cid:190)0 is guaranteed by Eq. (9) for an arbitrary Figure 7 (bottom panels) shows the effect of interband numberofbandsandanyvaluesofthecouplingconstants. interaction,whichisgenericallyanincreaseof T . c 9 V. CONCLUSION for drawing our attention to a previous approximation of Eq.(19)andtoP.Pieriforpointingouttheequivalenceof Insummary,inthelow-densityregimewherethedynami- Eq. (21) with a known result in the BEC limit. This work calrangeofthepairinginteractionissetbythebandedge, was supported by the Swiss National Science Foundation thepairingtemperature T dependsontheelectrondensity underDivisionII. c ninanonanalyticway. Forparabolicbands,weprovidedex- actasymptoticformulasdescribingthisdependency,taking intoaccounttheenergyvariationoftheelectronicDOS,as wellasthevariationofthechemicalpotentialwithinterac- AppendixA:SimpleproofofEq.(4) tionstrengthandtemperature. Inoneandtwodimensions and in three dimensions at strong enough coupling—in Thedensityofafree-electrongasindimensiond ispro- other words, when there is a bound solution to the two- portionaltothevolumeofthed-dimensionalFermisphere, particleproblem—thechemicalpotential(at T )becomes c smearedbytheFermifunction: negativeatlowdensity: Asaresultthe Tc(n)curvestarts withinfiniteslopeandincreasesfasterthananypowerofn. ddk 1 Otherwise,i.e.,inthreedimensionsatweakcoupling,the n=2 cchuervmeicsatlarptostewnittihalzaeprporsolaocphee,saznedroitatinlocwreadseenssistlyo,wtheerTthc(ann) (cid:90) (2π)d exp ħh2k2k/B2Tm−µ +1 anypowerofn. ddk (cid:16) x (cid:17) Our results may be relevant for low-density supercon- =2 (2π)d x exp ħh2k2 , ductors. InSrTiO3,oxygenreductionandniobiumdoping (cid:90) − 2mkBT allowsonetotunethecarrierdensity6 inarangesuchthat (cid:16) (cid:17) thedimensionlessdensityn˜variestypicallybetween10−2 with x = exp µ/kBT . Inordertoevaluatetheintegral, adn˜nuvdcaer1di0ess.hItenyepttihcceaalLrlyraiAefrrloOdm3e/n1Ss0riTtyi1Oct3oani1n.atelIsnrofathbceee,lttouhwnee-fiddee2ln9dss-ieutyfcfheracttnhgianet- wwerituesek2th=−e exdip=(cid:0)a1nksi2i.onThx(cid:1)i/s(xle−adas)to=a−p(cid:80)ro∞qd=u1cxtqo/faqGaanudssiwane − integrals: ofthesedomains,ourexactformulasdifferfromtheusual (cid:80) formulasvalidathigherdensities. Inthenumericalillustra- tλ¯ioonfsoorfdtehreopnree,swenhticphampearywaeppheaavrevuesreydlacroguepilnincgocmopnasrtaisnotns n= 2 ∞ xq d ∞ dki exp q ħh2ki2 2π 2mk T tothetypicalvaluesoftheorder0.1reportedforSrTiO . We − q=1 i=1(cid:90) (cid:130)− B (cid:140) 3 (cid:88) (cid:89) −∞ efemrspfhraosmizethtehautsuoaulrddeefifinnitiitoionn,soufcthhethcaotuinpltinhgreceodnismtaenntssiodnifs- = 2 ∞ xq d mkBT = 2 mkBT d2 ∞ xq . oursarebiggerthattheusualonesbyafactor(µ/ħhωD)1/2, − (cid:88)q=1 (cid:89)i=1(cid:200)2πħh2q − (cid:18)2πħh2 (cid:19) (cid:88)q=1qd/2 whichistypicallythreeinSrTiO . 3 The observation that T is a nonanalytic function of n ConsideringtheTaylorexpansionofthepolylogarithm,we c nearabandbottomcallsforareconsiderationoftheprob- seethattheq-suminthelastexpressionisLid/2(x),which lem of shape resonances. These refer to oscillations of T provesEq.(4). c in a quasi-two-dimensional superconductor confined in a slab, as a function of the slab thickness. The oscillations arisewhenthechemicalpotentialcrossesthebottomofone oftheconfinement-inducedsubbandsandwerepresented AppendixB:Resultsforoneparabolicbandin1D intheliteratureonthesubjectasdiscontinuities.4 Ourre- sults show that such discontinuities are artifacts, because T vanishescontinuouslyatabandedgeinanydimension. Withtheprovisothatthefactor(d 1)πinEqs.(3)and Thceactualdependenceof T ontheslabthicknessisthere- (7)bereplacedby1,Eqs.(2)–(9)are−validford=1. The fore a continuous function,c which remains to be investi- asymptoticpropertiesofthefunctionψ1(a,b)are gated. Aparticularlyinterestingsysteminthisrespectisthe LtiacAsolOf3b/eSinrgTiaOl3owin-tdeernfascitey,swuhpiecrhcocnudmuuctliantgessythsteemch,acroancfitenreisd- ψ1(0<a<1,b 0)= sin−1((cid:112)a) π/2 1 → (cid:112)1 a ≈ (cid:112)1 a − inaquasi-two-dimensionalgeometry,andalsoamultiband 1 − a− 1 8eγ system. ψ1(1<a<2,b→0)= (cid:112)a 1ln(cid:130)(cid:112)a+−(cid:112)a 1 πb(cid:140) − − 1 ACKNOWLEDGMENTS ψ1(a>2,b 0)= → (cid:112)a 1 − a 1 8eγ WeacknowledgefruitfuldiscussionswithJ.-M.Triscone, ln − . S.Gariglio,andM.Grilli. WearegratefultoA.V.Chubukov × (cid:130)((cid:112)a+(cid:112)a 1)((cid:112)a 1+(cid:112)a 2) πb(cid:140) − − − 10 The corresponding weak-coupling approximations in the (a) regimen˜(cid:166)1are 0.6 ¯λ = 1 8eγ 1 1 0.7 5 T˜c ≈ π exp−λ¯/ µ˜1+ 1+1/µ˜ T˜c 0.4 ¯λ = λ¯ =0.5  (cid:112)µ˜  µ˜(cid:112)(cid:174)1 0.2 λ¯=0.3  (d=1), (B1) × (cid:112) 1 µ˜>1 1+(cid:112)1 1/µ˜ 0 − 0 0.5 1 1.5 2  n˜ in agreement with the result of Ref. 2, where λ¯/ µ˜ is 100 the coupling constant evaluated at the chemical poten- (b) tial. In the low-density limit the chemical potent(cid:112)ial ap- proaches a finite negative value given by the solution of 1/λ¯ = sin−1 1+µ˜min / µ˜min (π/2)/ µ˜min 1. Wecanusetheexpansion Li−1/2( e≈x) ex forl−argen−ega- 10 1 tive x andde(cid:0)d(cid:112)ucethere(cid:1)la−(cid:112)tionµ˜−=T˜cl→n(n˜/T˜c1(cid:112)/2). Wefind T˜c − λ¯ = 1 for T˜ c T˜c ≈n˜2 exp W 12 1π+λ¯λ¯ 2 n˜12 (d=1,n→0). (B2) 10−2 ¯λ = 0.3 (cid:149) (cid:129) (cid:16) (cid:17) (cid:139)(cid:152) The numerical results are shown in Fig. 8 and compared 10 8 10 6 10 4 10 2 100 withtheanalyticalformulas(B1)and(B2). Equation(B1) − − − − n˜ workswellathighdensity,butseverelybreaksdownatlow density,evenatweakcoupling. Thecancellationoferrors FIG.8. (a)Pairingtemperatureasafunctionofelectrondensity observedinthe3Dcasealsooccursheretosomeextent,but foroneparabolicbandinonedimension. T isexpressedinunitsof c themainissueisthatEq.(B1)failstodescribetheregime ħhωD/kBandninunitsof2[mωD/(2πħh)]1/2.Thethinanddashed whereµ˜<0atlowdensity,whilein3Dthisregimeisabsent linesshowEq.(B1),evaluatedusingµ˜0=(π/4)n˜2forµ˜.(b)Same forλ¯<1. Equation(B2)isaccurateatweakcouplingwhere dataonalog-logscale.ThedashedlinesshowEq.(B2). µ˜ 1andhasthesmallinaccuracyassociatedwiththe −appr(cid:28)oximationmadeinsolvingforµ˜ atlargercoupling. Thegapequationisobtainedbyreplacingtanh( )byunity inEq.(1a). Foronebandin2Dwefind ··· AppendixC:GaptoT ratiointhelow-densitylimit c 0 µ˜< 1 − Wegiveherethezero-temperaturegapexplicitlyforone 1/λ¯=12ln (cid:112)1+µ˜(cid:112)2+1∆˜+2∆˜2µ˜ −1<µ˜<1 (C3) bcaanndbeinco2mDb,inaesdawfuitnhctthioenreosfuldte(n1s9i)tyinanorddecorutoploinbgta.inTthhies ln (cid:129)1+(cid:112)∆˜1+∆˜2− (cid:139) µ˜>1. exactgaptoT ratiointhelow-densitylimit. Theexpression  (cid:129) (cid:139) c  ofthedensityat T =0is For µ˜ > 1, the gap is independent of density and given by ∆˜ = 1/sinh(1/λ¯); combined with the weak-coupling result(17),thisyieldstheusualweak-couplingBCSratio n=(cid:90)−∞∞dξN0(µ+ξ)1− ξ2ξ+∆2ξ, (C1) 1∆e)li/em−(ki2n/Bλa¯T.tce)S∆o˜=lvaiπmn/goenfγog.rEItnhqse.thg(aeCp2l,)owwane-ddteh(neCsn3it)ayrtrorievfigenimadte:µ˜µ=˜ <n˜+1,(n˜w−e  (cid:198)  whereN0(E)isthenormal-stateDOSgivenbyEq.(3)and W∆eξ s=etθE(0ħhαω=D −0|aξn|)d∆mw=ithm∆α atsheinzeSreoc-.teIImIpaenrdatmuroevegatpo. ∆˜ = (cid:112)n˜+sin˜n(hn˜(1−/λ1¯))e−2/λ¯ (n˜<1). (C4) dimensionlessvariables. In2Dwehaveat T =0, Comparing Eqs. (C4) and (19) we see that T increases c 0 µ˜< 1 fasterthan∆withincreasingdensity. Asaresultthegapto − T ratiovanishesforn 0,asweshowinFig.9. Thisresult n˜=12 µ˜+1+ µ˜2+∆˜2 1+∆˜2 1<µ˜<1 mcay look surprising i→n view of the fact that known two- − − µ˜(cid:129) (cid:112) (cid:112) (cid:139) µ˜>1. dimensionalsuperconductorstendtohaveagapto Tc ratio (C2) largerthantheBCSvalue. ThesuppressionshowninFig.9 

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.