International Journal of Mathematics and Mathematical Sciences BCK-Algebras and Related Algebraic Systems Guest Editors: Young Bae Jun, Ivan Chajda, Hee Sik Kim, Eun Hwan Roh, Jianming Zhan, and Afrodita Iorgulescu BCK-Algebras and Related Algebraic Systems International Journal of Mathematics and Mathematical Sciences BCK-Algebras and Related Algebraic Systems Guest Editors: Young Bae Jun, Ivan Chajda, Hee Sik Kim, Eun Hwan Roh, Jianming Zhan, and Afrodita Iorgulescu Copyrightq 2011HindawiPublishingCorporation.Allrightsreserved. Thisisaspecialissuepublishedin“InternationalJournalofMathematicsandMathematicalSciences.”Allarticlesareopen accessarticlesdistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution, andreproductioninanymedium,providedtheoriginalworkisproperlycited. Editorial Board AsaoArai,Japan AttilaGila´nyi,Hungary HernandoQuevedo,Mexico ErikJ.Balder,TheNetherlands JeromeA.Goldstein,USA JeanMichelRakotoson,France A.Ballester-Bolinches,Spain SiegfriedGottwald,Germany RobertH.Redfield,USA MartinoBardi,Italy N.K.Govil,USA B.E.Rhoades,USA P.Basarab-Horwath,Sweden R.Grimshaw,UK PaoloE.Ricci,Italy PeterW.Bates,USA HeinzPeterGumm,Germany Fre´de´ricRobert,France HeinrichBegehr,Germany S.M.Gusein-Zade,Russia AlexanderRosa,Canada HowardE.Bell,Canada SeppoHassi,Finland AndrewRosalsky,USA KennethS.Berenhaut,USA PenttiHaukkanen,Finland MishaRudnev,UK O´scarBlasco,Spain JosephHilbe,USA StefanSamko,Portugal MartinBohner,USA HelgeHolden,Norway GideonSchechtman,Israel HuseyinBor,Turkey HenrykHudzik,Poland NaseerShahzad,SaudiArabia TomaszBrzezinski,UK PetruJebelean,Romania N.Shanmugalingam,USA TeodorBulboaca˘,Romania PalleE.Jorgensen,USA ZhongminShen,USA StefaanCaenepeel,Belgium ShyamL.Kalla,Kuwait MariannaA.Shubov,USA W.zuCastell,Germany V.R.Khalilov,Russia H.S.Sidhu,Australia AlbertoCavicchioli,Italy H.M.Kim,RepublicofKorea TheodoreE.Simos,Greece DerChenChang,USA TaekyunKim,RepublicofKorea AndrzejSkowron,Poland ShihSenChang,China EvgenyKorotyaev,Germany FrankSommen,Belgium CharlesE.Chidume,Italy AloysKrieg,Germany LindaR.Sons,USA HiJunChoe,RepublicofKorea WolfgangKu¨hnel,Germany F.C.R.Spieksma,Belgium ColinChristopher,UK IrenaLasiecka,USA IlyaM.Spitkovsky,USA ChristianCorda,Italy YuriLatushkin,USA MarcoSquassina,Italy RodicaD.Costin,USA BaoQinLi,USA H.M.Srivastava,Canada M.-E.Craioveanu,Romania SongxiaoLi,China YucaiSu,China RalE.Curto,USA NoelG.Lloyd,UK PeterTakac,Germany PrabirDaripa,USA R.Lowen,Belgium Chun-LeiTang,China H.DeSnoo,TheNetherlands AnilMaheshwari,Canada MichaelM.Tom,USA LokenathDebnath,USA RaulF.Manasevich,Chile RamU.Verma,USA AndreasDefant,Germany B.N.Mandal,India AndreiI.Volodin,Canada DavidE.Dobbs,USA EnzoLuigiMitidieri,Italy LucVrancken,France S.S.Dragomir,Australia VladimirMityushev,Poland DorothyI.Wallace,USA JewgeniDshalalow,USA ManfredMoller,SouthAfrica FrankWerner,Germany J.Dydak,USA V.Nistor,USA RichardG.Wilson,Mexico M.A.Efendiev,Germany EnricoObrecht,Italy IngoWitt,Germany HansEngler,USA Chia-venPao,USA PeiYuanWu,Taiwan RicardoEstrada,USA WenL.Pearn,Taiwan SiamakYassemi,Iran B.Forster-Heinlein,Germany GeluPopescu,USA A.Zayed,USA DaliborFroncek,USA MihaiPutinar,USA KaimingZhao,Canada XianguoGeng,China FengQi,China YuxiZheng,USA Contents BCK-AlgebrasandRelatedAlgebraicSystems,YoungBaeJun,IvanChajda,HeeSikKim, EunHwanRoh,JianmingZhan,andAfroditaIorgulescu Volume2011,ArticleID268683,3pages RoughFiltersinBL-Algebras,LidaTorkzadehandShokoofehGhorbani Volume2011,ArticleID474375,13pages TwoNewTypesofRingsConstructedfromQuasiprimeIdeals,ManalGhanemand HassanAl-Ezeh Volume2011,ArticleID473413,9pages OnBE-Semigroups,SunShinAhnandYoungHeeKim Volume2011,ArticleID676020,8pages OnAlgebraicApproachinQuadraticSystems,MatejMencinger Volume2011,ArticleID230939,12pages GeneralizedDerivationsandBilocalJordanDerivationsofNestAlgebras,DanguiYanand ChengchangZhang Volume2011,ArticleID748159,6pages FuzzyFilterSpectrumofaBCKAlgebra,XiaoLongXin,WeiJi,andXiuJuanHua Volume2011,ArticleID795934,13pages GraphsBasedonBCK/BCI-Algebras,YoungBaeJunandKyoungJaLee Volume2011,ArticleID616981,8pages AConstructionofMirrorQ-Algebras,KeumSookSo Volume2011,ArticleID219496,6pages CommutativePseudoValuationsonBCK-Algebras,MyungImDohandMinSuKang Volume2011,ArticleID754047,6pages HindawiPublishingCorporation InternationalJournalofMathematicsandMathematicalSciences Volume2011,ArticleID268683,3pages doi:10.1155/2011/268683 Editorial BCK-Algebras and Related Algebraic Systems Young Bae Jun,1 Ivan Chajda,2 Hee Sik Kim,3 Eun Hwan Roh,4 Jianming Zhan,5 and Afrodita Iorgulescu6 1DepartmentofMathematicsEducation,GyeongsangNationalUniversity, Chinju660-701,RepublicofKorea 2DepartmentofAlgebraandGeometry,FacultyofSciences,PalackyUniversity(UP), 77147Olomouc,CzechRepublic 3DepartmentofMathematics,HanyangUniversity,Seoul133-791,RepublicofKorea 4DepartmentofMathematicsEducation,ChinjuNationalUniversityofEducation, Chinju660-756,RepublicofKorea 5DepartmentofMathematics,HubeiInstituteforNationalities,Enshi,Hubei445000,China 6DepartmentofComputerScience,TheBucharestAcademyofEconomicStudies, 010374Bucharest,Romania CorrespondenceshouldbeaddressedtoYoungBaeJun,[email protected] Received5November2011;Accepted10November2011 Copyrightq2011YoungBaeJunetal.ThisisanopenaccessarticledistributedundertheCreative CommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductionin anymedium,providedtheoriginalworkisproperlycited. BCK/BCI-algebras are algebraic structures, introduced by K. Ise´ki in 1966, that describe fragments of the propositional calculus involving implication known as BCK/BCI-logics. It isknownthattheclassofBCK-algebrasisapropersubclassoftheclassofBCI-algebras.We referthereaderforusefultextbooksforBCK/BCI-algebrato(cid:2)1–3(cid:3). Theaimofthisspecialissuewastopromotetheexchangeofideasbetweenresearchers and to spread new trends in this area. It is focused on all aspects of BARAS, from their foundationstoapplicationsincomputersciencesandinformatics. This special issue contains nine papers. In the paper entitled “Commutative pseudo valuationsonBCK-algebras,”M.I.DohandM.S.Kangintroducedthenotionofacommu-tative pseudovaluationonaBCK-algebraandinvestigateditscharacterizations.Theydiscussedthe relationship between a pseudo valuation and a commutative pseudo valua-tion. They also providedconditionsforapseudovaluationtobeacommutativepseudovaluation. Neggers et al. (cid:2)4(cid:3) introduced the notion of Q-algebras which are a generalization of BCK/BCI/BCH-algebras, obtained several properties, and discussed quadratic Q-algebras. In the paper, entitled “A construction of mirror Q-algebras,” K. S. So introduced the notion of mirror algebras to Q-algebras, and she investigated how to construct mirror Q-algebras 2 InternationalJournalofMathematicsandMathematicalSciences from a Q-algebra. She also obtained the necessary conditions for a left mirror algebra (cid:4)M(cid:4)X(cid:5),∗,(cid:4)0,0(cid:5)(cid:5) of (cid:4)X,∗,0(cid:5)tobeaQ-algebra. Manyauthorsstudiedthegraphtheoryinconnectionwith(cid:4)commutative(cid:5)semigroups and(cid:4)commutativeandnoncommutative(cid:5)ringsasshowninthereferencesthatwereferthe readerto.Forexample,Beck(cid:2)5(cid:3)associatedtoanycommutativeringRitszero-divisorgraph G(cid:4)R(cid:5)whoseverticesarethezero-divisorsofR(cid:4)including0(cid:5),withtwoverticesa,bjoinedbyan edgeincaseab(cid:6)0.Also,DeMeyeretal.(cid:2)6(cid:3)definedthezero-divisorgraphofacommutative semigroup S with zero (cid:4)0x (cid:6) 0 ∀x ∈ S(cid:5). Motivated by these works, in the paper, entitled “Graphs based on BCK/BCI-algebras,”, Y. B. Jun and K. S. Lee studied graph theory based on BCK-algebras. They tried to discuss the associated graphs of BCK/BCI-algebras. To do so, theyfirstintroducedthenotionsof(cid:4)l-prime(cid:5)quasi-idealsandzero-divisorsandinvestigated related properties. They introduced the concept of associative graph of a BCK/BCI-algebra and provided several examples. They provided conditions for a proper (cid:4)quasi(cid:5)ideal of a BCK/BCI-algebra to be l-prime. Finally they showed that the associative graph of a BCK- algebraisaconnectedgraphinwhicheverynonzerovertexisadjacentto0,buttheassociative graphofaBCI-algebraisnotconnectedbyprovidinganexample. Inthepaper,entitled,“FuzzyfilterspectrumofaBCKalgebra,”X.L.Xinetal.investigated both the topological structure and fuzzy structure on BCK-algebras. They introduced the concept of fuzzy s-prime filters and discussed some related properties. Using the fuzzy s- primefilters,theyestablishedafuzzytopologicalstructureonboundedcommutativeBCK- algebrasandboundedimplicativeBCK-algebras,respectively. In the paper, entitled “Generalized derivations and bilocal jordan derivations of nest algebras,”D.YanandC.ZhangdiscussedgeneralizedandbilocalJordanderivationsofnest algebras.Theyshowedthatinnestalgebra, (cid:4)1(cid:5)(cid:4)bi(cid:5)localJordanderivationsareinnerderivationsand, (cid:4)2(cid:5)generalizedderivationsaregeneralizedinnerderivations. In the paper, entitled “On algebraic approach in quadratic systems,” M. Mencinger consideredhomogeneousquadraticsystemsviatheso-calledMarkusapproach.Heusedthe one-to-onecorrespondencebetweenhomogeneousquadraticdynamicalsystemsandalgebra whichwasoriginallyintroducedbyMarkusin(cid:2)7(cid:3)andconsideredsomegeneralconnections andtheinfluenceofpowerassociativityinthecorrespondingquadraticsystem. In (cid:2)8(cid:3), H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a generalizationofaBCK-algebraandgaveanequivalentconditionofthefilterinBE-algebras by using the notion of upper sets. In (cid:2)9, 10(cid:3), Ahn and So introduced the notion of ideals in BE-algebras and proved several characterizations of such ideals. In the paper, entitled “On BE-semigroups,”S.S.AhnandY.H.KimcombinedBE-algebrasandsemigroupstointroduce thenotionofBE-semigroups.Theydefinedleft(cid:4)resp.,right(cid:5)deductivesystems(cid:4)(cid:4)LDS,resp., RDS(cid:5)forshort(cid:5)ofaBE-semigroup,andthentheydescribedLDSgeneratedbyanonempty subsetinaBE-semigroupasasimpleform. In the paper entitled “Two new types of rings constructed from quasiprime ideals,” M. Ghanem and H. Al-Ezeh generalized the well-known concepts of regular and PF-rings to ordinarydifferentialringsandconsideredwell-knownpropertiesofregularandPF-ringsin theirsituations. In the paper entitled “Rough filters in BL-algebras,” L. Torkzadeh and S. Ghorbani applied the rough set theory to BL-algebras, and introduced the notion of rough filters (cid:4)subalgebras(cid:5)ofBL-algebrasasageneralizationoffilters(cid:4)subalgebras(cid:5)ofBL-algebras. InternationalJournalofMathematicsandMathematicalSciences 3 Although the selected topics and papers are not an exhaustive representation of the areaofBARASs,theypresenttherichandmany-facetedknowledgethatwehavethepleasure ofsharingwiththereaders. Acknowledgments It was our honor to receive submissions from many authors. We would like to thank the authors for their excellent contributions and patience in assisting us. Moreover, the fundamentalworkofallreviewersonthesepapersisalsoverywarmlyacknowledged.Last, but not least, the publishing staff have worked diligently with us on this special issue. We alsowouldliketoexpressoursinceregratitudetothepublishingstaff. YoungBaeJun IvanChajda HeeSikKim EunHwanRoh JianmingZhan AfroditaIorgulescu References (cid:2)1(cid:3) Y.S.Huang,BCI-Algebra,SciencePress,Beijing,China,2006. (cid:2)2(cid:3) A.Iorgulescu,AlgebrasofLogicasBCKAlgebras,EdituraASE,Bucharest,Romania,2008. (cid:2)3(cid:3) J.MengandY.B.Jun,BCK-Algebras,KyungMoonSaCo.,Seoul,Korea,1994. (cid:2)4(cid:3) J. Neggers, S. S. Ahn, and H. S. Kim, “On Q-algebras,” International Journal of Mathematics and MathematicalSciences,vol.27,no.12,pp.749–757,2001. (cid:2)5(cid:3) I.Beck,“Coloringofcommutativerings,”JournalofAlgebra,vol.116,no.1,pp.208–226,1988. (cid:2)6(cid:3) F.R.DeMeyer,T.McKenzie,andK.Schneider,“Thezero-divisorgraphofacommutativesemigroup,” SemigroupForum,vol.65,no.2,pp.206–214,2002. (cid:2)7(cid:3) L. Markus, “Quadratic differential equations and non-associative algebras,” vol. 45 of Annals of MathematicsStudies,PrincetonUniversityPress,Princeton,NJ,USA,1960,pp.185–213. (cid:2)8(cid:3) H.S.KimandY.H.Kim,“OnBE-algebras,”ScientiaeMathematicaeJaponicae,vol.66,no.1,pp.113–116, 2007. (cid:2)9(cid:3) S.S.AhnandK.S.So,“OnidealsanduppersetsinBE-algebras,”ScientiaeMathematicaeJaponicae,vol. 68,no.2,pp.279–285,2008. (cid:2)10(cid:3) S.S.AhnandK.S.So,“OngeneralizeduppersetsinBE-algebras,”BulletinoftheKoreanMathematical Society,vol.46,no.2,pp.281–287,2009. HindawiPublishingCorporation InternationalJournalofMathematicsandMathematicalSciences Volume2011,ArticleID474375,13pages doi:10.1155/2011/474375 Research Article BL Rough Filters in -Algebras Lida Torkzadeh1 and Shokoofeh Ghorbani2 1DepartmentofMathematics,IslamicAzadUniversity,KermanBranch,Kerman,Iran 2DepartmentofMathematicsofBam,ShahidBahonarUniversity,Kerman,Iran CorrespondenceshouldbeaddressedtoShokoofehGhorbani,sh [email protected] Received22December2010;Revised10March2011;Accepted4April2011 AcademicEditor:YoungBaeJun Copyrightq2011L.TorkzadehandS.Ghorbani.Thisisanopenaccessarticledistributedunder the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproductioninanymedium,providedtheoriginalworkisproperlycited. WeapplytheroughsettheorytoBL-algebras.Asageneralizationoffilters(cid:2)subalgebras(cid:3)ofBL- algebras, we introduce the notion of rough filters (cid:2)subalgebras(cid:3) of BL-algebras and investigate someoftheirproperties. 1. Introduction The rough sets theory introduced by Pawlak (cid:4)13(cid:5) has often proved to be an excellent mathematicaltoolfortheanalysisofavaguedescriptionofobjects(cid:2)calledactionsindecision problems(cid:3). Manydifferentproblemscanbeaddressedbyroughsetstheory.Duringthe last few years this formalism has been approached as a tool used in connection with many different areas of research. There have been investigations of the relations between rough sets theory and the Dempster-Shafertheory and betweenrough sets and fuzzysets. Rough sets theory has also provided the necessary formalism and ideas for the development of somepropositionalmachinelearningsystems.Ithasalsobeenusedfor,amongmanyothers, knowledge representation; data mining; dealing with imperfect data; reducing knowledge representationandforanalyzingattributedependencies.Thenotionsofroughrelationsand rough functions are based on rough sets theory and can be applied as a theoretical basis forroughcontrollers,amongothers.Analgebraicapproachtoroughsetshasbeengivenby Iwinski(cid:4)1(cid:5).Roughsettheoryisappliedtosemigroupsandgroups(cid:2)see(cid:4)2,3(cid:5)(cid:3).In1994,Biswas andNanda(cid:4)4(cid:5)introducedanddiscussedtheconceptofroughgroupsandroughsubgroups. Jun (cid:4)5(cid:5) applied rough set theory to BCK-algebras. Recently, Rasouli (cid:4)6(cid:5) introduced and studiedthenotionofroughnessinMV-algebras. BL-algebras are the algebraic structures for Ha`jek Basic Logic (cid:2)BL-logic(cid:3) (cid:4)7(cid:5), arising from the continuous triangular norms (cid:2)t-norms(cid:3), familiar in the frameworks of fuzzy set
Description: