ffirs.tex 1/4/2009 16:25 Pagei BAYESIAN SIGNAL PROCESSING ffirs.tex 1/4/2009 16:25 Pageiii BAYESIAN SIGNAL PROCESSING Classical, Modern, and Particle Filtering Methods James V. Candy LawrenceLivermoreNationalLaboratory UniversityofCaliforniaSantaBarbara A JOHN WILEY & SONS, INC., PUBLICATION ffirs.tex 1/4/2009 16:25 Pageiv Copyright©2009byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteither thepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923, (978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisher forpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc., IllRiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynot besuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neither thepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStates at(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Bayesiansignalprocessing:classical,modern,andparticlefilteringmethods/JamesV.Candy., p.cm. Includesbibliographicalreferences. ISBN978-0-470-18094-5(cloth) 1. Signalprocessing—Mathematics. 2. Bayesianstatisticaldecisiontheory. I. Title. TK5102.9.C3187 2008 621.382(cid:1)2–dc22 2008032184 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ffirs.tex 1/4/2009 16:25 Pagev Peace,realpeace,canonlybefoundthroughthe Lord,ourSavior,JesusChrist! ftoc.tex 12/2/2009 16:28 Pagevii CONTENTS Preface xiii ReferencestothePreface xix Acknowledgments xxiii 1 Introduction 1 1.1 Introduction 1 1.2 BayesianSignalProcessing 1 1.3 Simulation-BasedApproachtoBayesianProcessing 4 1.4 BayesianModel-BasedSignalProcessing 8 1.5 NotationandTerminology 12 References 14 Problems 15 2 BayesianEstimation 19 2.1 Introduction 19 2.2 BatchBayesianEstimation 19 2.3 BatchMaximumLikelihoodEstimation 22 2.3.1 Expectation-MaximizationApproach toMaximumLikelihood 25 2.3.2 EMforExponentialFamilyofDistributions 30 2.4 BatchMinimumVarianceEstimation 33 2.5 SequentialBayesianEstimation 36 2.5.1 JointPosteriorEstimation 39 2.5.2 FilteringPosteriorEstimation 41 2.6 Summary 43 References 44 Problems 45 vii ftoc.tex 12/2/2009 16:28 Pageviii viii CONTENTS 3 Simulation-BasedBayesianMethods 51 3.1 Introduction 51 3.2 ProbabilityDensityFunctionEstimation 53 3.3 SamplingTheory 56 3.3.1 UniformSamplingMethod 58 3.3.2 RejectionSamplingMethod 62 3.4 MonteCarloApproach 64 3.4.1 MarkovChains 70 3.4.2 Metropolis-HastingsSampling 71 3.4.3 RandomWalkMetropolis-HastingsSampling 73 3.4.4 GibbsSampling 75 3.4.5 SliceSampling 78 3.5 ImportanceSampling 81 3.6 SequentialImportanceSampling 84 3.7 Summary 87 References 87 Problems 90 4 State–SpaceModelsforBayesianProcessing 95 4.1 Introduction 95 4.2 Continuous-TimeState–SpaceModels 96 4.3 Sampled-DataState–SpaceModels 100 4.4 Discrete-TimeState–SpaceModels 104 4.4.1 DiscreteSystemsTheory 107 4.5 Gauss-MarkovState–SpaceModels 112 4.5.1 Continuous-Time/Sampled-DataGauss-MarkovModels 112 4.5.2 Discrete-TimeGauss-MarkovModels 114 4.6 InnovationsModel 120 4.7 State–SpaceModelStructures 121 4.7.1 TimeSeriesModels 121 4.7.2 State–SpaceandTimeSeriesEquivalenceModels 129 4.8 Nonlinear(Approximate)Gauss-MarkovState–SpaceModels 135 4.9 Summary 139 References 140 Problems 141 5 ClassicalBayesianState–SpaceProcessors 147 5.1 Introduction 147 5.2 BayesianApproachtotheState–Space 147 5.3 LinearBayesianProcessor(LinearKalmanFilter) 150 5.4 LinearizedBayesianProcessor(LinearizedKalmanFilter) 160 5.5 ExtendedBayesianProcessor(ExtendedKalmanFilter) 167 ftoc.tex 12/2/2009 16:28 Pageix CONTENTS ix 5.6 Iterated-ExtendedBayesianProcessor(Iterated-Extended KalmanFilter) 174 5.7 PracticalAspectsofClassicalBayesianProcessors 182 5.8 CaseStudy:RLCCircuitProblem 186 5.9 Summary 191 References 191 Problems 193 6 ModernBayesianState–SpaceProcessors 197 6.1 Introduction 197 6.2 Sigma-Point(Unscented)Transformations 198 6.2.1 StatisticalLinearization 198 6.2.2 Sigma-PointApproach 200 6.2.3 SPTforGaussianPriorDistributions 205 6.3 Sigma-PointBayesianProcessor(UnscentedKalmanFilter) 209 6.3.1 ExtensionsoftheSigma-PointProcessor 218 6.4 QuadratureBayesianProcessors 218 6.5 GaussianSum(Mixture)BayesianProcessors 220 6.6 CaseStudy:2D-TrackingProblem 224 6.7 Summary 230 References 231 Problems 233 7 Particle-BasedBayesianState–SpaceProcessors 237 7.1 Introduction 237 7.2 BayesianState–SpaceParticleFilters 237 7.3 ImportanceProposalDistributions 242 7.3.1 MinimumVarianceImportanceDistribution 242 7.3.2 TransitionPriorImportanceDistribution 245 7.4 Resampling 246 7.4.1 MultinomialResampling 249 7.4.2 SystematicResampling 251 7.4.3 ResidualResampling 251 7.5 State–SpaceParticleFilteringTechniques 252 7.5.1 BootstrapParticleFilter 253 7.5.2 AuxiliaryParticleFilter 261 7.5.3 RegularizedParticleFilter 264 7.5.4 MCMCParticleFilter 266 7.5.5 LinearizedParticleFilter 270 7.6 PracticalAspectsofParticleFilterDesign 272 7.6.1 PosteriorProbabilityValidation 273 7.6.2 ModelValidationTesting 277 7.7 CaseStudy:PopulationGrowthProblem 285 7.8 Summary 289 ftoc.tex 12/2/2009 16:28 Pagex x CONTENTS References 290 Problems 293 8 JointBayesianState/ParametricProcessors 299 8.1 Introduction 299 8.2 BayesianApproachtoJointState/ParameterEstimation 300 8.3 Classical/ModernJointBayesianState/ParametricProcessors 302 8.3.1 ClassicalJointBayesianProcessor 303 8.3.2 ModernJointBayesianProcessor 311 8.4 Particle-BasedJointBayesianState/ParametricProcessors 313 8.5 CaseStudy:RandomTargetTrackingUsingaSynthetic ApertureTowedArray 318 8.6 Summary 327 References 328 Problems 330 9 DiscreteHiddenMarkovModelBayesianProcessors 335 9.1 Introduction 335 9.2 HiddenMarkovModels 335 9.2.1 Discrete-TimeMarkovChains 336 9.2.2 HiddenMarkovChains 337 9.3 PropertiesoftheHiddenMarkovModel 339 9.4 HMM ObservationProbability:EvaluationProblem 341 9.5 StateEstimationinHMM:TheViterbiTechnique 345 9.5.1 IndividualHiddenStateEstimation 345 9.5.2 EntireHiddenStateSequenceEstimation 347 9.6 ParameterEstimationinHMM: TheEM/Baum-WelchTechnique 350 9.6.1 ParameterEstimationwithStateSequenceKnown 352 9.6.2 ParameterEstimationwithStateSequenceUnknown 354 9.7 CaseStudy:Time-ReversalDecoding 357 9.8 Summary 362 References 363 Problems 365 10 BayesianProcessorsforPhysics-BasedApplications 369 10.1 OptimalPositionEstimationfortheAutomaticAlignment 369 10.1.1 Background 369 10.1.2 StochasticModelingofPositionMeasurements 372 10.1.3 BayesianPositionEstimationandDetection 374 10.1.4 Application:BeamLineData 375 10.1.5 Results:BeamLine(KDPDeviation)Data 377 10.1.6 Results:AnomalyDetection 379 ftoc.tex 12/2/2009 16:28 Pagexi CONTENTS xi 10.2 BroadbandOceanAcousticProcessing 382 10.2.1 Background 382 10.2.2 BroadbandState–SpaceOceanAcoustic Propagators 384 10.2.3 BroadbandBayesianProcessing 389 10.2.4 BroadbandBSPDesign 393 10.2.5 Results 395 10.3 BayesianProcessingforBiothreats 397 10.3.1 Background 397 10.3.2 ParameterEstimation 400 10.3.3 BayesianProcessorDesign 401 10.3.4 Results 403 10.4 BayesianProcessingfortheDetectionofRadioactiveSources 404 10.4.1 Background 404 10.4.2 Physics-BasedModels 404 10.4.3 Gamma-RayDetectorMeasurements 407 10.4.4 BayesianPhysics-BasedProcessor 410 10.4.5 Physics-BasedBayesianDeconvolutionProcessor 412 10.4.6 Results 415 References 417 AppendixA Probability&StatisticsOverview 423 A.1 ProbabilityTheory 423 A.2 GaussianRandomVectors 429 A.3 UncorrelatedTransformation: GaussianRandomVectors 430 References 430 Index 431
Description: