ebook img

Bayesian Filtering and Smoothing PDF

256 Pages·2013·2.264 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bayesian Filtering and Smoothing

more information - www.cambridge.org/9781107030657 BayesianFilteringandSmoothing Filteringandsmoothingmethodsareusedtoproduceanaccurateestimateofthestate ofatime-varyingsystembasedonmultipleobservationalinputs(data).Interestin thesemethodshasexplodedinrecentyears,withnumerousapplicationsemergingin fieldssuchasnavigation,aerospaceengineering,telecommunications,andmedicine. Thiscompact,informalintroductionforgraduatestudentsandadvanced undergraduatespresentsthecurrentstate-of-the-artfilteringandsmoothingmethods inaunifiedBayesianframework.Readerslearnwhatnon-linearKalmanfiltersand particlefiltersare,howtheyarerelated,andtheirrelativeadvantagesand disadvantages.Theyalsodiscoverhowstate-of-the-artBayesianparameterestimation methodscanbecombinedwithstate-of-the-artfilteringandsmoothingalgorithms. Thebook’spracticalandalgorithmicapproachassumesonlymodestmathematical prerequisites.ExamplesincludeMATLABcomputations,andthenumerous end-of-chapterexercisesincludecomputationalassignments.MATLAB/GNUOctave sourcecodeisavailablefordownloadatwww.cambridge.org/sarkka,promoting hands-onworkwiththemethods. simo sa¨rkka¨ worked,from2000to2010,withNokiaLtd.,IndagonLtd.,andthe NalcoCompanyinvariousindustrialresearchprojectsrelatedtotelecommunications, positioningsystems,andindustrialprocesscontrol.Currently,heisaSenior ResearcherwiththeDepartmentofBiomedicalEngineeringandComputational ScienceatAaltoUniversity,Finland,andAdjunctProfessorwithTampereUniversity ofTechnologyandLappeenrantaUniversityofTechnology.In2011hewasavisiting scholarwiththeSignalProcessingandCommunicationsLaboratoryoftheDepartment ofEngineeringattheUniversityofCambridge.Hisresearchinterestsareinstateand parameterestimationinstochasticdynamicsystemsand,inparticular,Bayesian methodsinsignalprocessing,machinelearning,andinverseproblemswith applicationstobrainimaging,positioningsystems,computervision,andaudio signalprocessing.HeisaSeniorMemberoftheIEEE. INSTITUTE OF MATHEMATICAL STATISTICS TEXTBOOKS EditorialBoard D.R.Cox(UniversityofOxford) A.Agresti(UniversityofFlorida) B.Hambly(UniversityofOxford) S.Holmes(StanfordUniversity) X.-L.Meng(HarvardUniversity) IMSTextbooksgiveintroductoryaccountsoftopicsofcurrentconcernsuitablefor advancedcoursesatmaster’slevel,fordoctoralstudentsandforindividualstudy.They aretypicallyshorterthanafullydevelopedtextbook,oftenarisingfrommaterial createdforatopicalcourse.Lengthsof100–290pagesareenvisaged.Thebooks typicallycontainexercises. Bayesian Filtering and Smoothing SIMO SA¨ RKKA¨ AaltoUniversity,Finland cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107030657 (cid:2)C SimoSa¨rkka¨2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata ISBN978-1-107-03065-7Hardback ISBN978-1-107-61928-9Paperback Additionalresourcesforthispublicationatwww.cambridge.org/sarkka CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface ix Symbolsandabbreviations xiii 1 WhatareBayesianfilteringandsmoothing? 1 1.1 ApplicationsofBayesianfilteringandsmoothing 1 1.2 OriginsofBayesianfilteringandsmoothing 7 1.3 OptimalfilteringandsmoothingasBayesianinference 8 1.4 AlgorithmsforBayesianfilteringandsmoothing 12 1.5 Parameterestimation 14 1.6 Exercises 15 2 Bayesianinference 17 2.1 PhilosophyofBayesianinference 17 2.2 Connectiontomaximumlikelihoodestimation 17 2.3 ThebuildingblocksofBayesianmodels 19 2.4 Bayesianpointestimates 20 2.5 Numericalmethods 22 2.6 Exercises 24 3 BatchandrecursiveBayesianestimation 27 3.1 Batchlinearregression 27 3.2 Recursivelinearregression 29 3.3 Batchversusrecursiveestimation 31 3.4 Driftmodelforlinearregression 33 3.5 Statespacemodelforlinearregressionwithdrift 36 3.6 Examplesofstatespacemodels 39 3.7 Exercises 46 4 Bayesianfilteringequationsandexactsolutions 51 4.1 Probabilisticstatespacemodels 51 4.2 Bayesianfilteringequations 54 4.3 Kalmanfilter 56 v vi Contents 4.4 Exercises 62 5 ExtendedandunscentedKalmanfiltering 64 5.1 Taylorseriesexpansions 64 5.2 ExtendedKalmanfilter 69 5.3 Statisticallinearization 75 5.4 Statisticallylinearizedfilter 77 5.5 Unscentedtransform 81 5.6 UnscentedKalmanfilter 86 5.7 Exercises 92 6 GeneralGaussianfiltering 96 6.1 Gaussianmomentmatching 96 6.2 Gaussianfilter 97 6.3 Gauss–Hermiteintegration 99 6.4 Gauss–HermiteKalmanfilter 103 6.5 Sphericalcubatureintegration 106 6.6 CubatureKalmanfilter 110 6.7 Exercises 114 7 Particlefiltering 116 7.1 MonteCarloapproximationsinBayesianinference 116 7.2 Importancesampling 117 7.3 Sequentialimportancesampling 120 7.4 Sequentialimportanceresampling 123 7.5 Rao–Blackwellizedparticlefilter 129 7.6 Exercises 132 8 Bayesiansmoothingequationsandexactsolutions 134 8.1 Bayesiansmoothingequations 134 8.2 Rauch–Tung–Striebelsmoother 135 8.3 Two-filtersmoothing 139 8.4 Exercises 142 9 Extendedandunscentedsmoothing 144 9.1 ExtendedRauch–Tung–Striebelsmoother 144 9.2 StatisticallylinearizedRauch–Tung–Striebelsmoother 146 9.3 UnscentedRauch–Tung–Striebelsmoother 148 9.4 Exercises 152 10 GeneralGaussiansmoothing 154 10.1 GeneralGaussianRauch–Tung–Striebelsmoother 154 10.2 Gauss–HermiteRauch–Tung–Striebelsmoother 155 Contents vii 10.3 CubatureRauch–Tung–Striebelsmoother 156 10.4 Generalfixed-pointsmootherequations 159 10.5 Generalfixed-lagsmootherequations 162 10.6 Exercises 164 11 Particlesmoothing 165 11.1 SIRparticlesmoother 165 11.2 Backward-simulationparticlesmoother 167 11.3 Reweightingparticlesmoother 169 11.4 Rao–Blackwellizedparticlesmoothers 171 11.5 Exercises 173 12 Parameterestimation 174 12.1 Bayesianestimationofparametersinstatespacemodels 174 12.2 Computationalmethodsforparameterestimation 177 12.3 Practicalparameterestimationinstatespacemodels 185 12.4 Exercises 202 13 Epilogue 204 13.1 WhichmethodshouldIchoose? 204 13.2 Furthertopics 206 Appendix Additionalmaterial 209 A.1 PropertiesofGaussiandistribution 209 A.2 Choleskyfactorizationanditsderivative 210 A.3 ParameterderivativesfortheKalmanfilter 212 A.4 ParameterderivativesfortheGaussianfilter 214 References 219 Index 229

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.