BAYESIAN ESTIMATION AND TRACKING BAYESIAN ESTIMATION AND TRACKING A Practical Guide ANTONJ.HAUG Copyright©2012byJohnWiley&Sons,Inc.Allrightsreserved PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationData: Haug,AntonJ.,1941– Bayesianestimationandtracking:apracticalguide/AntonJ.Haug. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-62170-7(hardback) 1. Bayesianstatisticaldecisiontheory. 2. Automatic tracking–Mathematics. 3. Estimationtheory. I. Title. QA279.5.H38 2012 519.5(cid:1)42–dc23 2011044308 PrintedintheUnitedStatesofAmerica 10987654321 DEDICATION Tomywife,whoinspiresusalltoachieveatthehighestlimitofourabilities. Tomychildren,whoseachievementsmakemeproudtobetheirfather. Tomygrandchildren,whowillalwayskeepmeyoung. Andinmemoryofmyparents,RoseandDavid,whoselovewaswithoutbound. CONTENTS PREFACE xv ACKNOWLEDGMENTS xvii LISTOFFIGURES xix LISTOFTABLES xxv PARTI PRELIMINARIES 1 Introduction 3 1.1 BayesianInference, 4 1.2 BayesianHierarchyofEstimationMethods, 5 1.3 ScopeofThisText, 6 1.3.1 Objective, 6 1.3.2 ChapterOverviewandPrerequisites, 6 1.4 ModelingandSimulationwithMATLAB®, 8 References, 9 2 PreliminaryMathematicalConcepts 11 2.1 AVeryBriefOverviewofMatrixLinearAlgebra, 11 2.1.1 VectorandMatrixConventionsandNotation, 11 2.1.2 SumsandProducts, 12 2.1.3 MatrixInversion, 13 2.1.4 BlockMatrixInversion, 14 2.1.5 MatrixSquareRoot, 15 vii viii CONTENTS 2.2 VectorPointGenerators, 16 2.3 ApproximatingNonlinearMultidimensionalFunctionswith MultidimensionalArguments, 19 2.3.1 ApproximatingScalarNonlinearFunctions, 19 2.3.2 ApproximatingMultidimensionalNonlinearFunctions, 23 2.4 OverviewofMultivariateStatistics, 29 2.4.1 GeneralDefinitions, 29 2.4.2 TheGaussianDensity, 32 References, 40 3 GeneralConceptsofBayesianEstimation 42 3.1 BayesianEstimation, 43 3.2 PointEstimators, 43 3.3 IntroductiontoRecursiveBayesianFilteringofProbabilityDensity Functions, 46 3.4 IntroductiontoRecursiveBayesianEstimationoftheStateMeanand Covariance, 49 3.4.1 StateVectorPrediction, 50 3.4.2 StateVectorUpdate, 51 3.5 DiscussionofGeneralEstimationMethods, 55 References, 55 4 CaseStudies:PreliminaryDiscussions 56 4.1 TheOverallSimulation/Estimation/EvaluationProcess, 57 4.2 AScenarioSimulatorforTrackingaConstantVelocityTarget ThroughaDIFARBuoyField, 58 4.2.1 ShipDynamicsModel, 58 4.2.2 MultipleBuoyObservationModel, 59 4.2.3 ScenarioSpecifics, 59 4.3 DIFARBuoySignalProcessing, 62 4.4 TheDIFARLikelihoodFunction, 67 References, 69 PARTII THEGAUSSIANASSUMPTION:AFAMILYOFKALMAN FILTERESTIMATORS 5 TheGaussianNoiseCase:MultidimensionalIntegrationof Gaussian-WeightedDistributions 73 5.1 SummaryofImportantResultsFromChapter3, 74 5.2 DerivationoftheKalmanFilterCorrection(Update)Equations Revisited, 76 5.3 TheGeneralBayesianPointPredictionIntegralsforGaussian Densities, 78 CONTENTS ix 5.3.1 RefiningtheProcessThroughanAffineTransformation, 80 5.3.2 GeneralMethodologyforSolvingGaussian-Weighted Integrals, 82 References, 85 6 TheLinearClassofKalmanFilters 86 6.1 LinearDynamicModels, 86 6.2 LinearObservationModels, 87 6.3 TheLinearKalmanFilter, 88 6.4 ApplicationoftheLKFtoDIFARBuoyBearingEstimation, 88 References, 92 7 TheAnalyticalLinearizationClassofKalmanFilters: TheExtendedKalmanFilter 93 7.1 One-DimensionalConsideration, 93 7.1.1 One-DimensionalStatePrediction, 94 7.1.2 One-DimensionalStateEstimationErrorVariance Prediction, 95 7.1.3 One-DimensionalObservationPredictionEquations, 96 7.1.4 TransformationofOne-DimensionalPredictionEquations, 96 7.1.5 TheOne-DimensionalLinearizedEKFProcess, 98 7.2 MultidimensionalConsideration, 98 7.2.1 TheStatePredictionEquation, 99 7.2.2 TheStateCovariancePredictionEquation, 100 7.2.3 ObservationPredictionEquations, 102 7.2.4 TransformationofMultidimensionalPrediction Equations, 103 7.2.5 The Linearized Multidimensional Extended Kalman Filter Process, 105 7.2.6 Second-OrderExtendedKalmanFilter, 105 7.3 AnAlternateDerivationoftheMultidimensionalCovariance PredictionEquations, 107 7.4 ApplicationoftheEKFtotheDIFARShipTrackingCaseStudy, 108 7.4.1 TheShipMotionDynamicsModel, 108 7.4.2 TheDIFARBuoyFieldObservationModel, 109 7.4.3 InitializationforAllFiltersoftheKalmanFilterClass, 111 7.4.4 ChoosingaValuefortheAccelerationNoise, 112 7.4.5 TheEKFTrackingFilterResults, 112 References, 114 8 TheSigmaPointClass:TheFiniteDifferenceKalmanFilter 115 8.1 One-DimensionalFiniteDifferenceKalmanFilter, 116 8.1.1 One-DimensionalFiniteDifferenceStatePrediction, 116 x CONTENTS 8.1.2 One-DimensionalFiniteDifferenceStateVariance Prediction, 117 8.1.3 One-Dimensional Finite Difference Observation Prediction Equations, 118 8.1.4 TheOne-DimensionalFiniteDifferenceKalmanFilter Process, 118 8.1.5 Simplified One-Dimensional Finite Difference Prediction Equations, 118 8.2 MultidimensionalFiniteDifferenceKalmanFilters, 120 8.2.1 MultidimensionalFiniteDifferenceStatePrediction, 120 8.2.2 MultidimensionalFiniteDifferenceStateCovariance Prediction, 123 8.2.3 Multidimensional Finite Difference Observation Prediction Equations, 124 8.2.4 TheMultidimensionalFiniteDifferenceKalmanFilter Process, 125 8.3 An Alternate Derivation of the Multidimensional Finite Difference CovariancePredictionEquations, 125 References, 127 9 TheSigmaPointClass:TheUnscentedKalmanFilter 128 9.1 IntroductiontoMonomialCubatureIntegrationRules, 128 9.2 TheUnscentedKalmanFilter, 130 9.2.1 Background, 130 9.2.2 TheUKFDeveloped, 131 9.2.3 TheUKFStateVectorPredictionEquation, 134 9.2.4 TheUKFStateVectorCovariancePredictionEquation, 134 9.2.5 TheUKFObservationPredictionEquations, 135 9.2.6 TheUnscentedKalmanFilterProcess, 135 9.2.7 AnAlternateVersionoftheUnscentedKalmanFilter, 135 9.3 ApplicationoftheUKFtotheDIFARShipTrackingCaseStudy, 137 References, 138 10 TheSigmaPointClass:TheSphericalSimplexKalmanFilter 140 10.1 One-DimensionalSphericalSimplexSigmaPoints, 141 10.2 Two-DimensionalSphericalSimplexSigmaPoints, 142 10.3 HigherDimensionalSphericalSimplexSigmaPoints, 144 10.4 TheSphericalSimplexKalmanFilter, 144 10.5 TheSphericalSimplexKalmanFilterProcess, 145 10.6 ApplicationoftheSSKFtotheDIFARShipTrackingCaseStudy, 146 Reference, 147 CONTENTS xi 11 TheSigmaPointClass:TheGauss–HermiteKalmanFilter 148 11.1 One-DimensionalGauss–HermiteQuadrature, 149 11.2 One-DimensionalGauss–HermiteKalmanFilter, 153 11.3 MultidimensionalGauss–HermiteKalmanFilter, 155 11.4 Sparse Grid Approximation for High Dimension/High Polynomial Order, 160 11.5 ApplicationoftheGHKFtotheDIFARShipTrackingCaseStudy, 163 References, 163 12 TheMonteCarloKalmanFilter 164 12.1 TheMonteCarloKalmanFilter, 167 Reference, 167 13 SummaryofGaussianKalmanFilters 168 13.1 AnalyticalKalmanFilters, 168 13.2 SigmaPointKalmanFilters, 170 13.3 AMorePracticalApproachtoUtilizingtheFamilyofKalman Filters, 174 References, 175 14 PerformanceMeasuresfortheFamilyofKalmanFilters 176 14.1 ErrorEllipses, 176 14.1.1 TheCanonicalEllipse, 177 14.1.2 DeterminingtheEigenvaluesofP, 178 14.1.3 DeterminingtheErrorEllipseRotationAngle, 179 14.1.4 DeterminationoftheContainmentArea, 180 14.1.5 ParametricPlottingofErrorEllipse, 181 14.1.6 ErrorEllipseExample, 182 14.2 RootMeanSquaredErrors, 182 14.3 DivergentTracks, 183 14.4 Cramer–RaoLowerBound, 184 14.4.1 TheOne-DimensionalCase, 184 14.4.2 TheMultidimensionalCase, 186 14.4.3 ARecursiveApproachtotheCRLB, 186 14.4.4 The Cramer–Rao Lower Bound for Gaussian Additive Noise, 190 14.4.5 TheGaussianCramer–RaoLowerBoundwithZeroProcess Noise, 191 14.4.6 TheGaussianCramer–RaoLowerBoundwithLinear Models, 191 xii CONTENTS 14.5 PerformanceofKalmanClassDIFARTrackEstimators, 192 References, 198 PARTIII MONTECARLOMETHODS 15 IntroductiontoMonteCarloMethods 201 15.1 ApproximatingaDensityFromaSetofMonteCarloSamples, 202 15.1.1 GeneratingSamplesfromaTwo-DimensionalGaussian MixtureDensity, 202 15.1.2 ApproximatingaDensitybyItsMultidimensional Histogram, 202 15.1.3 KernelDensityApproximation, 204 15.2 GeneralConceptsImportanceSampling, 210 15.3 Summary, 215 References, 216 16 SequentialImportanceSamplingParticleFilters 218 16.1 GeneralConceptofSequentialImportanceSampling, 218 16.2 ResamplingandRegularization(Move)forSISParticleFilters, 222 16.2.1 TheInverseTransformMethod, 222 16.2.2 SISParticleFilterwithResampling, 226 16.2.3 Regularization, 227 16.3 TheBootstrapParticleFilter, 230 16.3.1 ApplicationoftheBPFtoDIFARBuoyTracking, 231 16.4 TheOptimalSISParticleFilter, 233 16.4.1 GaussianOptimalSISParticleFilter, 235 16.4.2 LocallyLinearizedGaussianOptimalSISParticleFilter, 236 16.5 TheSISAuxiliaryParticleFilter, 238 16.5.1 ApplicationoftheAPFtoDIFARBuoyTracking, 242 16.6 ApproximationstotheSISAuxiliaryParticleFilter, 243 16.6.1 TheExtendedKalmanParticleFilter, 243 16.6.2 TheUnscentedParticleFilter, 243 16.7 ReducingtheComputationalLoadThrough Rao-Blackwellization, 245 References, 245 17 TheGeneralizedMonteCarloParticleFilter 247 17.1 TheGaussianParticleFilter, 248 17.2 TheCombinationParticleFilter, 250 17.2.1 ApplicationoftheCPF–UKFtoDIFARBuoyTracking, 252 17.3 PerformanceComparisonofAllDIFARTrackingFilters, 253 References, 255